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FLUID MOVEMENT IN EARTH MATERIALS

TRANSVERSE DIFFUSION IN SATURATED ISOTROPIC GRANULAR MEDIA

By AKIO OGATA

ABSTRACT

An analytical method of determining the ionic diffusion 
transverse to the direction of flow in granular media is presented. 
The basic assumption that the frontal zone created by longi­ 
tudinal dispersion is fully developed and stationary before the 
transverse diffusion can cause spreading is made to simplify the 
mathematical analysis. Solutions were obtained in terms of 
both a series of Bessel's functions and a hypergeometric series. 
Numerical computations were made and results are presented 
in graphical form.

INTRODUCTION

The necessity for disposal of radioactive and other 
wastes and for more quantitative knowledge of micro­ 
scopic flow in porous media has focused interest on 
dispersion phenomena occurring in saturated flow 
through porous media. Various laboratory techniques 
have been developed for determining the dispersion 
coefficient appearing in the analytical solutions. 
Emphasis, however, has been placed on studies of 
longitudinal dispersion for example, those of Beran 
(1957) and Day (1956) and by the writer (Dispersion in 
porous media, doctoral dissertation, Northwestern 
Univ., 1958). The data available on transverse 
diffusion are still extremely meager, owing to the 
difficulty in modeling transverse diffusion and 
measuring the concentration distribution once a model 
is constructed.

The Geological Survey in its ground-water research 
office at Phoenix, Ariz., has developed methods for 
measuring transverse diffusion, by means of radioactive 
isotopes and commercially available counters (Skibitzke 
and others, 1960). However, the studies to date have 
been directed toward feasibility of the methods, and 
quantitative data are not available. This paper will 
consider the mathematical aspects of an approximate 
description of the phenomena by dealing with a simplified 
mathematical model.
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TWO-DIMENSIONAL DISPERSION

The differential equation that describes the two- 
dimensional dispersion of a contaminant hi saturated 
granular media, where radial symmetry exists, is

(D

where C= concentration of contaminants hi lb/ft3 
r=radial distance, in feet, measured from

center of contaminant filament 
£=longitudinal distance, in feet, measured

in the direction of fluid flow 
£=time, in seconds

Z>r=radial diffusion coefficient, in ft2/sec 
Z>z=longitudinal dispersion coefficient, in ft2/

sec 
u=average fluid velocity, hi ft/sec

Equation 1 is readily obtained from the law of conser­ 
vation of mass. Owing to difficulty in solving the 
general case, it is necessary to make some simplifying 
assumptions that are physically realistic.

B-l
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B-2 FLUID MOVEMENT IN EARTH MATERIALS

The physical nature of the dispersion process is shown 
in figure 1. The system may be divided into two re­ 
gions, the frontal zone and the cylindrical filament of 
contaminant upstream from the frontal zone. In the

Contaminant 
supply

Fluid 

reservoir

Granular media.

Fluid velocity u - constant

Circular source

Filament of 
contaminant

h-H

Frontal zone 
of dispersion

FIGURE l. Physical setting of mathematical model.

frontal zone the dispersion, or spreading, of the con­ 
taminant is due to longitudinal plus transverse disper­ 
sion. However, in the region upstream from this 
frontal zone the spreading is due principally to trans­ 
verse diffusion and convection because of the virtual 
nonexistence of a concentration gradient in the direction 
of flow. Thus, if the frontal zone is not considered,

&C 
£*zr~2 =0 and equation (1) reduces to

A|/r ac\ ac ac
ror\or/ ox ot

In discussing the frontal zone, consider a moving 
coordinate system that is, let %=x ut and r=t. 
Substituting this transformation into equation (1) gives

_

Physically, the above equation indicates that the 
observer is moving at a velocity, u.

Experimental and analytical development of the 
dispersion in a one-dimensional system indicates that 
the length of the frontal zone remains constant, once 
it is fully developed. Von Kosenberg (1956) indicates 
that the zone in which the concentration varies by a 
certain percentage depends on the velocity and the 
dispersion coefficient. In the system considered here, 
in which no mass exchange occurs between the liquid 
and the solid phase, this front will progress through 
the medium with the velocity of the fluid.

Because of the existence of another interface in the 
radial direction, the two-dimensional system is not the

same as the one-dimensional system. But, if it is 
assumed that the establishment of this front takes 
place at a relatively rapid rate in comparison with 
transverse diffusion, then the tune rate of change of 
concentration depends only on the radial dispersion. 
Thus, the differential equation describing the process is

Substituting %=x ut, t=r in equation 2 and resub- 
stituting t for r gives

Ur o f OO \_OC/
(3)

Equation 3 is the fundamental differential equation 
describing the dispersion process throughout the region 
for long times. This is the differential equation found 
in various radial-diffusion or heat-flow problems, whose 
solutions are known for various boundary conditions. 

The boundary conditions for the case to be considered 
are

(2) £=0, (7=0, r

(3) r=0,= (4)

It is evident that an initial-value problem needs to be 
solved. Because the longitudinal-dispersion coefficient, 
DX) no longer appears, the subscript r will be dropped 
from the radial-diffusion coefficient.

SOLUTION OF THE DIFFERENTIAL EQUATION

Solution of equation 3 may be obtained by employing 
the Laplace transform; that is, assume that there exists 
a function

, t)dt

If equation 3 is multiplied by e~pt and integrated with 
respect to t within the limits 0 to <» , equation 3 may 
be written

(5a)

_ _ n 
It should be noted that by setting C \    - in 5a

the two equations become equivalent.
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Hence, equation 5 may also be written

B-3

p.D'

Above is Bessel's equation, whose solution is as 
follows (Hildebrand, 1954, p. 167)

where /<,(«) =modified Bessel function of the
first kind of order zero 

K0 (a)= modified Bessel function of the
second Mnd of order zero 

A,B=arbitrary constants
Since K0 remains finite as r >oo ; this solution is valid; 
that is, .4=0 for r^>a. In the region r<X /o remains

/de\
finite as r >0, and also since I ~>T J must be zero, 70 

is the solution, or 5=0. Hence,

r<a

Atr=a Ci=Ci; thus

In addition, the mass rate of transfer across r=a is 
given by

giving
 BKi(aq)=AI1 (qa)

From the above two equations the coefficients A and B 
may be determined; that is,

P

p K0(ga)Ii(qa)+Ki(qa)I0 (q[)

Substituting values for A and B into equation 6 gives 
the Laplace solution of equation 5,

P a) +K0(qa)Ii(ga)
(7)

"I

To obtain the solution of equation 3 for C as a function 
of r and t it is necessary to apply the Bromwich inversion 
theorem,

1 C+i<* _

e"C(r,p)dp
1 fC+i

=^-.
61*% Jc+i

The inversion of equation 7, however, has been eval­ 
uated by Carslaw and Jaeger (1948, p. 285); the 
result for this specific case is

-Deft Ji(aa)[J0 (ar)4>(a)]da 
' «[02 («)] 

J0 (ar)Ji (aa)da
C2 (r,t)=-

TT

where
0(a) = Jl (aa)Y0 (aa)  J0 (dot) YI (aa)

Further (Watson, 1948, page 77),

(8)

_^2
TTZ

Thus, because v=Q,
2 

iraa

Substituting the value for 0(a), the result is

^=0^=0=0^
Jo

(9)

where

J\(a} and J0 («)=Bessel function of the first kind of
order one and zero, respectively 

a=radius of contaminant filament

By direct substitution, the above can be shown to 
satisfy the original differential equation. It is now 
desired that equation 9 be shown to satisfy the 
boundary conditions. For t 0 the solution reduces to 
the following (Watson, ] 948, p. *06):

 =afe
CQ Jo

Ji(aa)Jo(ar)da

 a*

"0 for

 -
2a

  I/a

(10)

The condition at r=a is due to an averaging process 
such that the concentration curve becomes a continuous 
function.

In any numerical integration process difficulties are 
inherent; thus, if possible, equation 9 should be written 
hi terms of tabulated functions to facilitate computa­ 
tion. However, before going into the general case it
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may be advantageous to consider special cases for r=0 
and r=a. For these two values of r, equation 9 may be 
readily integrated, thereby simplifying the analysis con­ 
siderably. The diffusion coefficient may be readily 
obtained from experimental data by using these two 
expressions.

SOLUTION OF SPECIAL CASES OF r=0 AND r=a

Consider first the concentration variation along r=0. 
Because J0(x) *l as x-*Q the equation above becomes 
simply

c r
7T=<H
^o Jo

,-Dtc? (11)
Integration of the above is given by Watson (J 948, p. 
394), the result being

But

\ VT)=t/  Sinh a;
1TX

Hence, letting 7=37^* the above may be written
oUt

C 

Further,

^-=2 exp ( 7) Sinh (7) 

Sinh (»)=i (c* O

Thus, the concentration distribution at r=Q is given by 

gr=l-exp (-2T) (13)

Note that this expression may be obtained directly from 
the more general solution, equation 24.

However, if the radius of filament a is large enough 
that the concentration of the centerline does not vary 
sufficiently in the experimental model, it would be 
advantageous to choose some other value of r. In this 
instance the best value would be r=a, provided time 
is large. Substituting for r in equation 9 gives

C f   77=a I e-
^o Jo

Dta2Ji(aa)J0 (aa)da

The integration of the above is given by Bateman 's 
Manuscript Project (1953b, p. 50), expressed in terms 
of a hypergeometric series; that is,

CL
where z=jji' Some properties of the hypergeometric

series will be presented in a latter part of the paper. 
Equation 14 may be written as a series

or
C 1 . . . An zn)

where values of An are positive coefficients. Also 
note that

Since (l) n  n\; (2)  =(?&-{-1)! equation 14 further 
reduces to

1 /3N

Co
2V2

nlnl
n=*l

The above expression is the series representation of 
the confluent hypergeometric function; thus it may be 
written

where

However, since a relationship exists between the 
confluent hypergeometric function and the Bessel 
function, it would be advantageous to write equation 
15 in terms of Bessel functions. Bateman (1953a, p. 
265) gives the relationship

; 1+2v;

where r(i>+l) is the 
70(x)=/o(  »); thus

gamma function. Further,

(16)

The concentration distribution along r=a is readily 
computed by means of equation 16.

The function /0 (a?) has been tabulated extensively; 
thus there is no difficulty in computing equation 16. 
As stated previously, equations 13 and 16 provide a 
means of computing the radial-diffusion coefficient from 
experimental data.
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SOME PROPERTIES OF THE HYPERGEOMETRIC SERIES

The hypergeometric function occurs as solution of a 
linear second-order differential equation, which has at 
most three singularities at 0, c°, and 1. In this paper 
the Pochhammer notation is used. By definition, the 
generalized hypergeometric series is as follows (Watson, 
1948, p. 100; Bateman Manuscript Project, 1953a, 
p. 56):

; pi, p2 , pe ',

where

r? n

(a+n-l);(a) 0 =l

It should be noted that if p=2 and q=l the above 
reduces to

(18)_f -i/ N«=o n\(p) n

Note further that if al = I and <x2 =P in equation 18 this 
series becomes an elementary geometric series, or

n=0

Owing to extreme difficulties in dealing with the 
generalized hypergeometric function, only the con­ 
vergence of equation 18 will be stated. For a more 
general discussion of the hypergeometric series the 
reader is referred to the Bateman Manuscript Project 
(1953a, p. 56).

A hypergeometric series of the type given by equa­ 
tion 18 is generally convergent for values of |2|<O- 
Series converge for x  1 only if p  a1  «2>0 and for 
x=   l only if p  ai  a2 +l>0 (Hildebrand, 1954, 
p. 179).

GENERAL SOLUTION FOR COMPUTATION OF 
CONCENTRATION DISTRIBUTION

As stated previously, although equation 9 is the 
required solution of the problem, the numerical evalua­ 
tion of the integral is extremely difficult. Thus, it 
would be advantageous to rewrite it in such a way as to 
facilitate computation. Equation 9 may be written in 
a series of Bessel functions or hypergeometric functions. 
Because tables of Bessel functions were readily avail­ 
able, this series was used. However, both of the series 
will be presented.

The product of Bessel functions generally may be 
written

= l AnJn (aO)Jn(ar) 
»=o

by use of the recurrence formula

Explicitly,

B-5

(19)

(f)©'

«=2

(f)w
n l -Jn(aa)Jn (<xr)

(20)

Substituting equation 19 into equation 9 and using the 
known integral

= exp

(21)

Equation 9 may be readily integrated. The result of 
the integration is

CQ~~

where £=

_?!±^i /
±Dt J \

, aand = '

1=2 m J (22)

By use of the recurrence relationship for the modified 
Bessel function,

(23)
_2v T 

The second term in equation 22 may be written

co («) w ~2 co ^m oo

TO=2 ffl' -I 7n=0 "*"i -^ TO=I

This on substituting into the original equation gives

b r?w/w (£) (24)

The above result was obtained by Goldstein (1953) in 
the study of exchange processes in fixed columns. 
Equation 24 may be written in another form, however :

£=exp f
OQ L m=l

(25)

Equation 25 also may be written in its alternate form 
(Goldstein, 1953)

m=0 ^
(26)
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Note that for ?j=->l, <1; thus equation 26 con­ 

verges more rapidly than 25 in the region ->1. The
T

converse is true for equation 25; that is, it would be 
advantageous to use equation 25 for computation in

the region -<1. It should be noted further that r
equations 13 and 16 may be obtained directly from 
equations 25 and 26.

As stated previously, equation 9 may be written in 
terms of the hypergeometric series. There exist the 
relationships (Watson, 1948, p. 148)

J0(ar)Ji(aa)

/fta\ ^-^, 
= -7T S (   m  1 m;!;-

for i7 2==-r >1, and ri

da
m=0 mlml

Substituting the above relationships into equation 9 
and using the known integral

/.'
«/ o

2pl/2UH

the expressions obtained are

(27)
and

(28)
V Xwhere \=Tfn' 

4JJt

Hypergeometric functions appearing as coefficients 
of the power series are polynomials of m.

Although both equations 27 and 28 and equations 25 
and 26 may be readily computed, equations 25 and 26 
were used because of their rapid convergence. A plot
f C a f . , f a . . . oi 7=7- versus -7-5=77 for vanous values of rt=- is given in 

GO 4Z?£ r &

C a figure 2, and a plot of -~- versus - for various values of

 J=T: is given in figure 3.

STEADY-STATE SOLUTION

Owing to the nature of the experiments conducted 
(Skibitzke and others, 1960), it would be advantageous 
to assume that a steady state is reached. Accordingly,

^v VV

consider -^-7=0 in equation 2, which gives

r -^--^- -T-
r or \r or/ ax

The boundary conditions become

<7(r,0)=0

/00, (29)

The conditions given are the same as those given for the
np

unsteady-state problem. Further, by letting T=-,u
equations 29 and 3 are identical. Thus, the solution fo r 

steady-state condition may b 

in equation 25, 26, 27, or 28.

steady-state condition may be obtained by letting t -u

CONCLUSION

In attacking the mathematical problem of transverse 
diffusion, an important assumption was made: that the 
front due to the longitudinal dispersion is established 
rapidly as compared to the transverse diffusion. If the 
diffusion transverse to the direction of flow includes 
mechanical dispersion, this assumption would be erro­ 
neous. However, since a homogeneous medium is 
assumed, the assumption that diffusion is wholly due 
to molecular agitation seems to be valid. Although 
there have been no quantitative studies, qualitative 
study using dye tracers in various types of models 
seems to bear this out.

Up to this time, investigation has been directed 
primarily toward evaluating experimental and analyti­ 
cal methods. The approximate method presented leads 
to what is believed to be a realistic solution that can 
be computed. When laboratory experiments are com­ 
pleted the resulting data, in conjunction with the 
solution presented, will furnish a means of determining 
the magnitude of the coefficient of transverse diffusion.
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FIGTJEE 2. Plot of solution for various values of r/o.
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FIGTJEE 3. Plot of solution for various values of (H/4ZW.
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