Assessment of Egyptian buffaloes crossing with Pakistani and Italian buffaloes for some production traits

Fooda, T. A.; Elbeltagy, A. R.; Laila R. Hassan and SetEl-habaeib S. Awad

Animal Production Research Institute-Buffalo Breeding Research Department- Dokki- Giza – Egypt <u>Tarek_Fooda@yahoo.com; Ahmed_elbeltagi@yahoo.com; lailarashad@hotmail.com; dr_habaeb@yahoo.com</u>

Abstract: Egyptian buffaloes are considered one of the most important dual purpose farm animals that represent 44% of dairy animals in Egypt. In 1980, the Animal Production Research Institute (APRI) imported 93 Pakistani semen straws for crossbreeding to improve milk productivities. In 2003, Ministry of Agriculture (MoA) allowed the commercial importation of Italian buffalo semen, which randomly utilized in some large scale buffalo farms. This study aims to evaluate the Egyptian buffalo crosses with both Pakistani and Italian buffaloes for some productive traits to assess the crossing trials. For the first trial of the study, 180 records (85 pure Egyptian buffaloes (E), 22 record 1/2 Egyptian (E) 1/2 Pakistani (PA) buffaloes and 52 record 3/4E 1/4PA buffaloes and 21 record 7/8E 1/8PA) through the period from 1980 to 1998 were used for the evaluation of Egyptian (E) Pakistani (PA) crossbred. Data for the second trial, concerned with the evaluation of the Egyptian (E) Italian (I) crosses, was collected from two private farms. A total 138 records; 64 record from Ganat Elreda farm (32 record E and 32 record 1/2E 1/2I) and 74 records from "United Group farm" (26 record E and 48 record 1/2E 1/2I buffaloes) was utilized. Utilized record covers the period from 2005 to 2009. Average for total milk yield was nearly the same for Egyptian and its cross with Pakistani buffaloes. In trial 1, Milk yield generally tended to increase with the advancement of parities till the \geq 7 parity. Egyptian buffaloes showed the highest values for all growth traits measures. In trial 2, significant difference in milk productivity between the Egyptian and its Italian crossbred, which was significantly higher ($P \le$ 0.001) in farm 2 than it is in farm 1 ($P \le 0.01$), was observed. The same trend in difference was detected for the parity effect. Italian crosses showed higher least square means (LSM) estimates for total milk yield (TMY) than the Egyptian buffaloes, which also increased with the advancement of the parity, in the two farms. LSM data reveal increase of 27 and 15% in 1/2E1/2I crossbred milk production than the Egyptian in farm 1 and farm 2, respectively. Difference between the highest and lowest breeding value (BV) in the Egyptian population is larger than it is in the crossbred population. More studies are recommended for the assessment of productive, reproductive and genetic diversity of crossbred populations before the enhancement of crossbreeding activities on national level. [Fooda, T. A.; Elbeltagy, A. R.; Laila R. Hassan and SetEl-habaeib S. Awad. Assessment of Egyptian buffaloes

[Fooda, T. A.; Elbeltagy, A. R.; Laila R. Hassan and SetEl-habaeib S. Awad. Assessment of Egyptian buffaloes crossing with Pakistani and Italian buffaloes for some production traits. Journal of American Science 2011;7(1):269-276]. (ISSN: 1545-1003). <u>http://www.jofamericanscience.org</u>.

Keywords: Egyptian, Pakistani and Italian buffaloes, crossing, production traits, breeding value.

1. Introduction

Egyptian buffaloes are considered one of the most important farm animals that are kept for dual purposes (milk/meat). There are nearly 4 million buffaloes, representing 44% of dairy animals in Egypt (FAOSTAT, 2009), which contribute 44 % (2,640,638 ton) of total milk production (5,960,102 ton) and 18 % (270,000 ton) of total meat production (1,528,789 ton) (FAOSTAT, 2008). Egypt suffers from a huge production gap in milk and meat production detected in annual imported milk and meat (http://www.fao.org). Production of buffalo in Egypt couldn't fill such a gap due to the absence of specialized breeds/lines for (meat/milk) and the need for national genetic improvement scheme programs.

Therefore trials for the introduction of foreign breed of buffalo (crossbreeding with both Italian and Pakistani breeds) were performed with the aim to significantly improve the genetic makeup of the Egyptian buffaloes for economic traits, as in case of the native cattle crossbreeding.

Pakistani buffaloes have the potentiality of producing over than 5,000 liters of milk per lactation under efficient breeding, feeding and health care program. Nili Ravi is the best breed at national and international level in terms of its production potentiality, reflected in average milk yield per lactation of 2,430 liters, while some high yielding Nili Ravi also produce 3000-5000 liters/lactation (Bilal *et al.*, 2006).

In Italy there are 300,000 buffaloes, located mainly in the central and south of Italy but due to the quota on cattle milk buffaloes have been moved towards the north partially replacing dairy cows. The number of milk recorded buffaloes is around 44,000 (one third of the buffalo cows). Average milk production is 2250 kg/lactation. It has increased for the last 17 years, mainly due to better management than on genetic improvement (Maria Larsson, 2009).

No previous assessment, neither genetic nor phenotypic, has been performed for assessing such crossbreeding. The main objective of the present study is to evaluate the Egyptian buffalo crosses with both Italian and Pakistani buffaloes for some productive traits to assess the crossing trials.

2. Material and Methods

This study is divided into two trials; the first is concerned with the assessment of Egyptian-Pakistani crosses (EPAC), where the animals included belong to experimental herds kept in Mahalet Mousa farm, belonging to Animal Production Research Institute (APRI), Ministry of Agriculture (MoA), Egypt. In 1980, APRI imported 93 Pakistani semen straws for crossbreeding trials for improving milk production of buffalo. APRI practiced a crossbreeding scheme since then with different crossing ratios. A total of 180 records (85 pure Egyptian buffaloes (E), 22 record 1/2Egyptian (E) 1/2 Pakistani (PA) buffaloes and 52 record 3/4E 1/4PAbuffaloes and 21 record 7/8E 1/8PA) through the period from 1980 to 1998 were used for the evaluation. Traits included are total milk yield (TMY), lactation period (L), birth weight (BW), weaning weight (WW) and average daily gain (ADG) calculated for the period from birth to weaning.

The data were analyzed using SAS (2002), according to the following model for total milk yield: $Y_{ijk} = \mu + B_i + P_j + b(L)_{ijk} + (BP)_{ij} + (BL)_{ijk} + (PL)_{ijk}$ (1) $+ \mathbf{E}_{ijk}$ Where: Y_{ijk} : observation on the kth animals of the ith

population in the jth parity, μ : overall mean, B_i : fixed effect due to the population, (i: E, $\frac{1}{2}E$ $\frac{1}{2}Pa$ and $^{3}\!\!4E$ & $^{1}\!\!4Pa$), P_i: fixed effect due to lactation parity, (j: 1, 2, ..., 6, \geq 7), b : regression coefficient of Y on L (lactation period), (BP) : the interaction between breed and parity, (BL) : the interaction between breed and lactation period, (PL) : the interaction between parity and lactation period and Eijk : random error assumed N.I.D. (0, $\sigma^2 e$).

While the model used for birth, weaning weight and daily gain traits was:

 $\mathbf{Y}_{ijk} = \mathbf{\mu} + \mathbf{B}_i + \mathbf{S}_j + \mathbf{E}_{ijk}$ (2) Where: Y_{ijk} observation on the kth animals of the ith population in the j^{th} sex of calve, μ : overall mean, B_i : fixed effect due to the population, (i: E, 1/2E 1/2PA, 3/4E 1/4PA and 7/8E 1/8 PA), S_i: fixed effect due to sex of calve, (j: male and female) and E_{iik} : random error assumed N.I.D. (0, $\sigma^2 e$).

The second trial is concerned with the evaluation of the Egyptian (E) -Italian (I) crosses. . In 2003, MoA allowed the commercial importation of Italian buffalo semen, which has been spread in some large scale buffalo farms. Two of these dairy buffalo farms are included in this study being "Ganat Elreda"

farm in Ismaeleia governorate and "United Group" farm in Qaliobeia governorate. The two farms were selected to represent two different agro-ecological systems in Egypt; the reclaimed desert in Ismaeleia and the old delta in Oaliobeia. The two farms purchase their buffaloes as milking animals in their second parity from the animal markets. They keep the new purchased lactating animals under assessment, for production and health conditions, for two weeks, and then they decide to keep or cull them. It seems successful practical selection rules under the conditions of absence of pedigree and production recording system in the majority of small and medium scale buffalo holdings. For crossbreeding, they use imported Italian buffalo semen with known breeding values for various production and type traits. A total 138 records; 64 record from Ganat Elreda farm (32 record E and 32 record 1/2E 1/2I) and 74 records from "United Group farm" (26 record E and 48 record 1/2E 1/2I buffaloes). Records covering the period from 2005 to 2009 were used for the evaluation the crossbreeding performance for the total milk yield (TMY), lactation period (L), birth (BW) and weaning (WW) weights traits.

Data was analyzed according to the following model for total milk yield :

 $Y_{ijklm} = \mu + B_i + P_j + C_k + S_l + b_1(L)_{ijklm} + b_2(A)_{ijklm} +$

 $(LA)_{ijklm} + E_{ijklm} \qquad (3) \\ Where: Y_{ijklm} : observation on the m^{th}_{-}$ animals of the ith population in the jth parity in the kth year of calving in the l^{th} season of calving, μ : Overall mean, Bi: fixed effect due to the population, (i: E and 1/2E 1/2I), P_i: fixed effect due to lactation parity, (j: 1, 2 and 3), C_k : fixed effect due to the year of calving, (k: 2007, 2008 and 2009), S1: fixed effect due to the season of calving (1: Winter and Summer), b₁: regression coefficient of Y on L (lactation period), b₂: regression coefficient of Y on A (Age at first calving), (LA): the interaction between lactation period and Age at first calving and Eiiklm: random error assumed N.I.D. (0, $\sigma^2 e$).

While the model used for birth and weaning weights traits was:

 $\mathbf{Y}_{ijkl} = \boldsymbol{\mu} + \mathbf{B}_i + \mathbf{C}_j + \mathbf{S}_k + \mathbf{E}_{ijkl} \qquad (4)$ Where: \mathbf{Y}_{ijkl} : observation on the lth animals of the ith population in the jth year of calving in the kth season of calving, μ : Overall mean, B_i: fixed effect due to the population, (i: E and 1/2E 1/2I), C_i: fixed effect due to the year of calving, (j: 2005, 2006 and 2007), S_k : fixed effect due to the season of calving (k: Winter and Summer) and Eijkl: random error assumed N.I.D. (0, $\sigma^2 e$).

The Animal model (derivative-free restricted maximum likelihood, DFREML, Meyer, 1997) was used for the prediction of buffaloes breeding value for TMY trait according to the following model:

 $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_{\mathbf{a}} \mathbf{a} + \mathbf{Z}_{\mathbf{c}} \mathbf{c} + \mathbf{e}$ (5)

where: Y = Vector of observations, X = Incidence matrix relating fixed effects to y, b = Vector of an overall mean and fixed effects (parity, year, season of calving and lactation period and age at first calving as a covariable), Z_a = Incidence matrix relating direct additive genetic effects to y, a = Vector of random effect (direct additive genetic associated with the incidence matrix Za, Z_c = Incidence matrix for permanent environmental effect, c = Vector of permanent environmental effect associated with the incidence matrix Zc and e = Vector of random residual effects N (0, I σ^2 e); I is an identity matrix. The variancecovariance of the random effects was as follows:

Where: A = Numerator relationship matrix, I_c , $I_n =$ Identity matrix with order equal to number of animals and number of records, respectively.

3. Results and discussion Trial1:

Unadjusted means, standard deviations and number of records for total milk yield and lactation period are presented in Table 1.

Table (1). Unadjusted means, standard deviations
(SD) and number of records (No.) for
total milk yield (TMY) and lactation
period (LP) in Egyptian (E) and their
crossing with Pakistani (PA) buffaloes.

	TMY (Kg)		LP (E		
Buffaloes population	Mean	SD	Mean	SD	NO.
Egyptian (E)	1502	344	263	60	85
1/2 E 1/2 PA	1357	394	218	47	22
3/4 E 1/4 PA	1383	372	193	42	29

Average total milk yield was nearly the same, considering the lactation period, for Egyptian buffaloes and its crossing with Pakistani, but Egyptian group had lower degree of deviation. For lactation period, Egyptian buffalo showed its ability to persist longer lactation than its two crossing groups. Reviewing other research articles for contemporary herds, averages total milk yield were similar to those reported by Abd El-Raoof (1995) but higher than those reported by Mostageer et al. (1981); Khattab *et al.* (1985); Kotby *et al.* (1989);

Khalil *et al.* (1992); Khattab and Mourad (1992); Khalil (1993) and Mansour *et al.* (1993) in Egyptian buffaloes. It was lower than the estimates, 1564, 2159 and 1879 kg, obtained by Soliman *et al.* (1985); Ashmawy (1991) and Mourad and Mohamed (1995), respectively.

Mean-squares estimates for lactation period, shown in Table 2, present significant differences between the three studied populations, and the population/lactation interactions (P ≤ 0.05). Expectedly, lactation period covariate had highly significant effect on milk yield, while lactation parity did not have significant effect on TMY. This result is in disagreement with Soliman (1976); Kotby et al. (1989); Ashmawy (1991); Khalil et al. (1992); Khalil (1993) and El-Menshawy (1994) for Egyptian buffaloes, all reporting high significant differences between lactation parities. Ashmawy (1991) reported that the effect of parity on milk yield traits with advance of lactation order may be attributed to the increase in weight, size, advancement in age, and/or developing the udder secretory tissues until reaching full development.

× / 1	· · · ·	
Source of variation	d.f	MS
Population (B)	2	315609*
Lactation parity (P)	6	117966
Covariable		
Lactation period (L)	1	2690583***
Interactions:		

12

6

2

96076

99301

278976*

*** : P ≤ 0.001

Table (2) Mean squares (MS) for total milk yield.

Milk yield generally tend to increase with the advancement of parities till the \geq 7 parity group (Table 3). These results are in agreement with Soliman (1976); Khalil *et al.* (1992) and El-Menshawy (1994). Such results reflect the buffalo ability to develop milk production and its biological processes for longer production life span (longevity) than the cattle. The population of 3/4E 1/4PA showed the highest milk production followed by the 1/2E 1/2PA population, reflecting the effect of crossbreeding ratio on the trait. The higher Egyptian blood percentage group was favorable, which might be due to the adaptation of Egyptian buffalo population to the Egyptian environment.

B*P

L*P

L*B

* : $P \le 0.05$

standard	errors (5)	L) of factors							
influencing total milk yield (TMY).									
Effect No. LSM±SE									
Parity :									
1	18	1339±150.24							
2	25	1271±119.21							
3	28	1552±78.23							
4	25	1512±111.12							
5	13	1429±117.48							
6	11	1585±100.71							
≥7	16	1664±88.26							
Buffaloes population :									
Egyptian (E)	85	1441±42.74							
1/2 E 1/2 PA	22	1469±107.97							
3/4 E 1/4 PA	29	1527±97.35							

Table (3). Least squares means (LSM) and their standard errors (SE) of factors influencing total milk yield (TMV)

Egyptian buffaloes showed the highest values for all growth traits measures, accompanied with higher deviation (Table 4). Result is in agreement with Fahmy (1972) Mostageer et al. (1981) and Alim (1991) for BW, while, lower than Fooda (1996); (42.8-44.9 kg) and El-Menshawy (1994); (42 kg). For WW, the result is in agreement with El-Naggar et al. (1972); Fahmy (1972) and Mahdy et al. (1999), while is lower than data reported by Mostageer et al. (1981) and El-Menshawy (1994). And is higher than Fooda (1996) and Salama and Mohy El-Deen (1997). The result for ADG (from BW to WW) is in agreement with Salama and Mohy El-Deen (1997) and Mahdy et al. (1999) but is lower than El-Menshawy (1994); (0.66 kg).

Table (4) Unadjusted means, standard deviations
(SD) and number of records (No.) for
birth (BW), and weaning (WW)
weights and average daily gain (ADG)
in Egyptian (E) and their crossing
with Pakistani (PA) buffaloes.

Buffaloes	B	W(Kg)		W	W (Kg)		A	DG (Kg)	
Population	Mean	SD	No.	Mean	SD	No.	Mean	SD	No.
Egyptian	35.0	6.4	73	92	8.4	73	0.54	0.06	73
(E)									
1/2E 1/2PA	34.0	1.5	22	-	-	-		-	-
3/4E 1/4PA	34.0	3.7	52	79	4.7	13	0.44	0.03	13
7/8E 1/8PA	32.0	7.3	21	82	3.5	3	0.47	0.06	3

Although significant differences ($P \le 0.001$) were detected in both weaning weights and daily gains among studied populations, birth weight trait did not show significant differences (Table 5). Birth weights differed significantly between the two sexes ($P \le 0.01$). This result is in agreement with Sadek (1980) and Tantawy (1984), but is disagreement with Fooda (1996). Weaning weight and daily gain traits did not significantly affected by sex. This result is in disagreement with Sadek (1980) and Tantawy (1984), which might be due to the farm management practices, in rearing and growth periods that did not challenge males' potentiality for growth.

Table (5) Mean squares (MS) for body weights.

Source of		ВŴ	WW		ADG	
variation	d.f	MS	d.f	MS	d.f	MS
Population (B)	3	58.656	3	1007.436***	3	0.0576***
Sex (S)	1	189.116**	1	165.137	1	0.0021
** : $P \le 0.01$, *** : P				≤ 0.001		

Egyptian buffaloes showed superiority in growth traits studied (weaning weight and daily gain). Population of 7/8E 1/8PA showed higher estimates for the same traits than the 3/4E 1/4PA indicating the effect of Egyptian population (Table 6). Mahdy *et al.* (1999) reported the same result for the ADG between BW and WW.

Table (6). Least squares mean (LSM) and their standard errors (SE) for factors influencing birth (BW) and weaning (WW) weights and average daily gain (ADG).

Effect	Bir (I	th weight 3W, Kg)	t Weaning weight (WW, Kg)		Average daily gain (ADG, Kg)		
	No	LSM±SE	No	LSM±SE	No	LSM±SE	
Sex :							
Male	16	37±1.01	4	91±4.53	4	0.51±0.03	
Female	152	33±0.49	85	83±1.76	85	0.48 ± 0.01	
Buffaloes							
population .:					73		
Egyptian (E)	73	37±1.01	73	96±2.51	-	0.56 ± 0.02	
1/2E 1/2PA	22	36±1.39	-	-	13	-	
3/4E 1/4PA	52	35±0.80	13	81±2.34	3	0.44 ± 0.02	
7/8E 1/8PA	21	34±1.41	3	86±5.08		0.48 ± 0.04	

Trial 2:

For the Egyptian buffalo in both farms, first parity yields were higher than the second, while the third parity, estimated for one farm, was the highest (Table 7). Low productivity in the second parity is due to the purchase of under-test new animals from the animal market in their second parity, according to the farm management. Generally in farm1, crossing buffalo produced more milk than the Egyptian in all parities, while in farm 2 Egyptian buffalo produced more milk than the crossing population at first parity. Egyptian buffalo showed longer lactation period than population, indicating higher the crossbred production persistency, with lower daily milk yield, except the third parity in farm 1. Some crossbred animals showed superior productivities in their second lactation (>4500 kg), which resulted in increase in standard deviation. Authors kept all the available records to avoid biasness. In Italy, TMY and LP for Italian buffaloes (measured for only nationally recorded dairy buffaloes; presents 28% of total population) were 2,175 kg and 270d, respectively (Maria Larsson, 2009). In the same reference, author reported TMY and LP for Egyptian buffaloes as 1,600 kg and 321 d, respectively,

therefore, estimated daily milk yield for Italian and Egyptian buffaloes, respectively, are 8 and 5 kg/d. According to Fooda *et al.* (2010) reported the daily milk yield to be 8 kg/d/head measured from 3,495 records collected from 904 buffalo cows.

Table (8) shows the significant difference in milk productivity between the Egyptian and its Italian crossbred population, which was significantly higher ($P \le 0.001$) in farm 2 than it is in farm 1 ($P \le 0.01$). That might be due to different management decision in selection of the purchased Egyptian buffalo animals in the two farms. The same trend in difference is detected for the parity effect, due to the purchase of new milking animals to join the herd in their second parity, affecting the average dairy production of the farm. Parities in farm 2 do not exceed the second (Table 9).

Insignificant effect of season on milk production indicates the good management system in both farms that compensate the season effect. The sever change in lactation period between the first and the second parity, in farm 2 (Table 7) resulted in the significant effect of lactation period ($P \le 0.01$) on milk yield (Table 8). Lactation phase of new purchased animals should be considered, to be corrected for. Both covariables, showed significant effect only in farm 2, indicating the variability in both lactation phase and the age of the Egyptian animals at purchase time.

The correction of fixed effects and covariates reveal that the Italian crosses showed higher LSM estimates values for TMY than the Egyptian buffaloes, which also increases with the advancement of the parity, in the two farms (Table 9). LSM data reveal increase of 27 and 15% in 1/2E 1/2I crossbred milk production than the Egyptian in farm 1 and farm 2, respectively.

Both raw mean and LSM data (Tables 10 and 12) show that Italian crosses are superior to Egyptian buffalo in both body weights (birth and weaning), in both farms. Generally, the Italian buffalo has a body conformation that very likely to meat production animals, in addition to its superiority in milk production due to genetic improvement for dairy production and type traits. Fooda et al. (2009), reported that birth and weaning weights were 33.5 and 77.28 kg for the Egyptian buffalo using the data for 148 females and 96 males, raised in APRI experimental farms.

MSE estimates reveal that the buffalo population (Egyptian vs. Italian crossbred) has the significant effect on both studied weights, except the WW in farm 2 (Table 11). For the Egyptian buffaloes kept in APRI experimental farms, Fooda et al. (2009) reported insignificant effect of year and season of calving on birth weight, while, the same author reported highly significant effects on weaning weight, for the same effects. No trend was detected for birth weight during the period covered in the study, while weaning weight showed positive trend of increase.

Figures 1 and 2 illustrate the highest and lowest breeding value for total milk yield in both included farms. Figures (1 and 2) show that the difference between the highest and lowest breeding value (BV) in the Egyptian population is larger than it is in the crossbred population (+101 to -269; 370 kg, and +425 to -135; 560 kg, for the Egyptian and crossbred populations, respectively) in farm 1 and the same trend is noticed in farm 2 (+85 to -181; 266 kg, and +81 to -70; 151 kg, for the Egyptian and crossbred populations, respectively). Comparison between the two farms indicates that farm 1 have more potential animals. Farm 1 milking buffaloes showed much wider range (maximum and minimum) breeding value than Farm 2 (+424.64 vs +85.47 for the maximum, and -269.49 vs. -181.16 for the minimum).

Table (7). Unadjusted means, standard deviations(SD) for total milk yield (TMY) andlactation period (L) at various parity(P) in Egyptian (E) and their crossingwith Italian (I) buffaloes.

Traits	F	arm 1+		Farm 2 ⁺						
Traits	Mean	SD	Ν	Mean	SD	N				
Parity 1										
Total milk yield (TMY, Kg)										
Е	1827	358	18	1977	510	18				
1/2 E 1/2 I	2362	611	19	1647	731	40				
Lactation period (L, Day)										
E	277	46	18	281	65	18				
1/2 E 1/2 I	265	30	19	209	103	40				
Parity 2										
Total milk yield (TMY, Kg)										
E	1540	363	7	1111	559	8				
1/2 E 1/2 I	2500	1251	11	2003	900	8				
Lactation period (L, Day)										
E	271	69	7	102	54	8				
1/2 E 1/2 I	255	46	11	166	78	8				
	Р	arity 3								
Total milk yield (TMY, Kg)										
E	2533	244	9	-	-	-				
1/2 E 1/2 I	3289	692	4	-	-	-				
Lactation period (L, Day)										
E	273	30	9	-	-	-				
1/2 E 1/2 I	285	30	4	-	-	-				

+ Farm 1: Ganat Elreda; Farm 2: United Group

Fable (8) Mean squares	(MS) for	total	milk yield
(TMY).			

5		Farm 1 ⁺	Farm 2 ⁺		
Source of variation	d.f	MS	d.f	MS	
Population (B)	1	3055097**	1	789707***	
Lactation parity (P)	2	1438118**	1	2461196***	
Year of calving (C)	2	1142014*	1	44963	
Season of calving (S)	1	26951	1	144730	
Covariable					
Lactation period (L)	1	958218	1	366262**	
Age at first calving (A)	1	327317	1	242623*	
Interactions:					
L*A	1	316853	1	75239	

+ Farm 1: Ganat Elreda; Farm 2: United Group *: P ≤ 0.05 **: P ≤ 0.01 ***: P ≤ 0.001

Table (9)	Least squ	uare me	ans (l	LSM) and	their
	standard	errors	(SE)	for	total	milk
	vield (TM	(Y).				

	J	()•			
Tiffaat		Farm 1 ⁺			Farm 2 ⁺	
Effect	LSM	SE	N	LSM	SE	N
Population						
E	2156	135	32	1802	69	26
1/2 E 1/2 I	2728	112	32	2077	77	48
Parity						
1	2139	100	36	1524	46	58
2	2338	148	17	2356	120	16
3	2848	191	11	-	-	-
Year						
2007	2790	193	11	-	-	-
2008	2215	119	31	1991	213	20
2009	2320	123	22	1888	48	54
Season						
Winter	2465	117	31	1880	62	45
Summer	2418	116	33	1999	83	29

+ Farm 1: Ganat Elreda; Farm 2: United Group

Table	(10).	Unadjusted	means,	stand	dard
		deviations	(SD) for	birth	and
		weaning	weights	(kg)	in
		Egyptian (1	E) and the	ir cros	ssing
		with Italian (T) buffolo	06	

with Human (1) bullabes.								
Traits	Egyptian buffaloes (E)			1/2 E 1/2 I				
	Mean	SD	N	Mean	SD	N		
Farm 1 ⁺								
Birth weight (BW)	35	9.12	6	41	2.15	12		
Weaning weight (WW)	91	4.31	6	101	6.86	11		
Farm 2 ⁺								
Birth weight (BW)	41	4.63	25	46	6.24	49		
Weaning weight (WW)	105	4.42	25	106	3.74	49		

+ Farm 1: Ganat Elreda; Farm 2: United Group

Table	(11)	Mean	squares	(MS)	for	birth	and	
weaning weights								

		0 0				
	BW		WW			
Source of variation	d.f	MS	d.f	MS		
Farm 1 ⁺						
Population (B)	1	150.358*	1	222,907*		
Year of calving (C)	2	15.752	2	83.574		
Season of calving (S)	1	14.405	1	30.804		
		Farm 2 ⁺				
Population (B)	1	166.45*	1	6.18		
Year of calving (C)	1	6.28	1	7.38		
Season of calving (S)	1	60.06	1	1.24		

+ Farm 1: Ganat Elreda; Farm 2: United Group *: P ≤ 0.05

Table (12) Least square means (LSM) and their standard errors (SE) for birth (BW) and weaning (WW) weights.

TIPP4	BW			WW			
Effect	LSM	SE	N	LSM	SE	N	
Farm 1 ⁺							
Population							
Е	34	2.88	6	92	2.90	6	
1/2 E 1/2 I	41	1.67	12	101	1.73	11	
Y							
2005	39	2.33	7	98	2.62	6	
2006	38	2.70	5	92	2.71	5	
2007	36	2.53	6	100	2.54	6	
SE							
Winter	39	1.79	11	95	1.80	11	
Summer	36	2.77	7	98	2.94	6	
			Far	m 2+			
Population							
Е	43	2.50	25	104	1.74	25	
1/2 E 1/2 I	47	2.01	49	105	1.40	49	
Y							
2006	44	0.82	55	106	0.57	55	
2007	44	1.55	19	106	1.08	19	
SE							
E	46	2.38	35	105	1.66	35	
1/2 E 1/2 I	44	2.11	39	104	1.47	39	
-	1 0			-		10	

+ Farm 1: Ganat Elreda; Farm 2: United Group

Fig (1). Highest and lowest breeding values for total milk yield in Ganat Elreda farm.

Fig (2). Highest and lowest breeding values for total milk yield in United Group farm.

Conclusion

It can be concluded that from the results obtained:

Trial 1:

- Only slight increase in milk productivity was noticed due to crossbreeding with the Pakistani buffaloes. Concerning weaning weight and daily gain (from birth to weaning), high significant differences were detected, favoring the Egyptian buffaloes population. It can be then concluded that the Egyptian buffalo is a better dual purpose animal than the Pakistani crossbred.

Trial 2:

- Since the Italian buffalo semen is from the same source and with very close breeding values, the difference in crossbred production performance is due to the Egyptian buffalo's genetic merit. Paying more attention to the genetic improvement of the Egyptian buffalo is quite likely to improve its productive performance.
- Reviewing the results obtained for birth and weaning weights raise the question of the opportunities of using Italian buffalo for improving the national meat production from buffalo.
- There is still need for milk composition analysis, lactation curve fitting, and the assessment of the reproductive performance for the crossbred populations for more accurate assessment of crossbreeding and its performance under local conditions.

A general conclusion can be summarizes as more studies are needed for the assessment of productive, reproductive and genetic diversity of crossbred populations before the enhancement of crossbreeding activities on national level.

Acknowledge

Authors wish to express their gratitude to Elsheikh Amir Amin; (Ganat Elreda farm) and Mr. Francis Abadeer (United Group farm) for providing their help, facilities and support throughout the research work.

References

- 1. Abd El-Raoof, H. M. (1995). Factors affecting the shape of lactation curve in Buffaloes. M. Sc. Thesis, Fac. Agric., Cairo Univ., Cairo, Egypt.
- 2. Alim, K. A. (1991). Environmental and genetical effects on weights of calves in buffalo. World Review of Animal Production, 26: 83-87.
- 3. Ashmawy, A. A. (1991). Repeatability of productive traits in Egyptian buffaloes . J. Anim. Breed. Genet. 108 : 182-186.
- 4. **Bilal M. Q.; M. Suleman and A Raziq (2006)** Buffalo: Black gold of Pakistan. Livestock Research for Rural Development 18 (9).
- 5. **El-Menshawy, S. M. S. (1994).** Studies on productive and reproductive efficiency of Egyptian buffaloes. Ph.D. Thesis, Zagazig Univ., Zagazig, Egypt.

- El-Naggar, A. A.; K. El-Shazly and I. A. Ahmed (1972). Effect of early weaning on the performance of male buffalo and cattle calves. Anim. Prod., 14: 171-176.
- 7. Fahmy, S. K. (1972). Genetic and environmental relationships among some traits of Egyptian buffaloes. Indian J. Dairy Sci., 25: 80-87.
- 8. **Fooda, T. A. (1996).** Studies on growth and milk production in Egyptian buffaloes. M.Sc. Thesis, Fac. Agric., Ain Shams Univ., Cairo, Egypt.
- Fooda, T. A.; Karima A. Shahin ; Kawther A. Mourad and O. Y. Abdallah (2009). Selection indexes for genetic improvement of body weight at 12 month of age in Egyptian buffaloes. Proc. of 2nd Animal Wealth Research Conf. in the Middle East & North Africa. Cairo International Convention Center, Egypt, 24 – 26 October, pp. 89-100.
- 10. Fooda, T. A.; Kawthar A. Mourad and I. A. Gebreel (2010). Phenotypic and genetic trends for milk production in Egyptian buffaloes. Journal of American Science, 6(11) 143-147.
- 11. FAOSTAT | © FAO Statistics Division (2008).
- 12. FAOSTAT | © FAO Statistics Division (2009).
- 13. **Khalil, M. H. (1993).** Days open adjustment factors and genetic evaluation for lactation traits in Egyptian buffaloes. Annals of Agric. Sci., Moshtohor, 31: 867.
- Khalil, M. H.; E. A. Afifi; L. H. Bedeir and S. M. Zeidan (1992). Genetic analysis of lactation traits in Egyptian buffaloes. Egypt. J. Anim. Prod., 29 : 155-172.
- 15. **Khattab, A. S. and K. A. Mourad (1992).** Estimation of genetic parameters and genetic trends for some milk traits in a herd of Egyptian buffaloes. Egypt, J. Anim. Prod., 29 : 173-184.
- 16. Khattab, A. S.; K. A. Mourad and A. A. Ashmawy (1985). Milk production of the first lactation as affected by age at first calving in Egyptian buffaloes. J. Agric. Res. Tanta Univ. 11 : 619.
- Kotby, E. A.; H. E. El-Sobhy; K. A. Mourad and L. N. Eid (1989). Milk yield in two herds of Egyptian buffaloes in different locations. Proceedings of the International Symposium on the Constraints and Possibilities of Ruminant Production in the Dry Subtropics (MOA of Egypt, ESAP, EAAP, FAO, ICAMAS, WAAP), Cairo, Egypt, 5-7 November 1988. (EAAP Publication No. 38).
- Mahdy, A. E.; O. M. El-Shafie and M. S. Ayyat (1999). Genetic study and sire values for some economic traits in Egyptian buffaloes. Alex. J. Agric. Res., 44 : 15-35.

- Mansour, H.; I. A. Soliman and G. A. Abd El-Hafiz (1993). Factors affecting lactation curve of buffaloes in Upper Egypt. Proceedings of the International Symposium on; Prospects of Buffalo Production in the Mediterranean and Middle East. Cairo, Egypt, 9-12 November 1992. 62: 234-237.
- 20. **Maria Larsson (2009).** Water buffalo identifying questions and possibilities from a Swedish perspective. Report from a Workshop at the Royal Swedish Academy of Agriculture and Forestry 2–3 March.
- 21. Meyer, K. (1997). DFREML Version 3.0-Programs. An "average information" Restricted Maximum Likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices. Genet. Select. Evol., 29: 97-116.
- 22. Mostageer, A.; M. A. Morsy and R. R. Sadek (1981). The production characteristics of a herd of Egyptian buffaloes. Sonderdruck aus Zeitschrift fur Tierjuichtung und Zuchtung. Sbiologie, 98: 220-236.
- 23. Mourad, K. A. and M. M. Mohamed (1995). Genetic and phenotypic aspects of milk yield traits and reproductive performance of Egyptian buffaloes. Egypt, J. of Anim. Prod., 1.
- 24. Sadek, R. R. (1980). Genetic and phenotypic parameters of some productive traits in buffaloes. M.Sc. Thesis, Fac. Agric., Cairo Univ., Cairo, Egypt.
- 25. Salama, M. A. M. and M. M. Mohy El-Deen (1997). Season of calvig and its effect on birth weight and growth of buffalo calves reared in pens or hutches. Annals of Agric. Sci., Moshtohor, 35 : 809-817.
- 26. **SAS** (2002). SAS User's Guide. Statistical Analysis System. Institute, Inc., Cary, NC.
- 27. Soliman, A. M. (1976). The genetics of the lactation curve. M.Sc.. Thesis, Fac. Agric., Ain Shams Univ., Cairo, Egypt.
- Soliman, A. M.; E. S. E. Galal and A. S. Abdel-Aziz (1985). Estimation of genetic parameters related to the lactation curve in Egyptian buffaloes. First World Buffalo congress, Egypt, Cairo, December 27-31.
- 29. **Tantawy, M. A. M. (1984).** Studies on some productive traits in Egyptian buffaloes. M.Sc. Thesis, Fac. Agric., Zagazig Univ., Banha Branch, Moshtoher, Egypt.

12/15/2010