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We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a
time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged
fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity
of the model, it can serve as a model for 1/fa spectra in a certain class of experimental and natural systems
such as catalytic reactions and mollusc patterns.
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The phenomenon of 1/fa noise is found in a widespread
variety of systems[1–3]. Usually a noise signal is said to be
1/ fa (or 1/f) if its spectrum follows over some decades a
power lawSsvd,v−a with an exponent near to one. Despite
1/ f noise being known for a long time, up to now there is no
general explanation for universal mechanisms(if they exist).
However, on a very general level it is believed that complex
systems[4] are able to generate 1/f noise. While real com-
plex systems are usually not exactly solvable, extremely sim-
plified models are under investigation. One prominent ex-
ample is the sandpile-sketching Bak-Tang-Wiesenfeld model
[5], a two-dimensional cellular automaton, which itself does
not reproduce 1/f sufficiently.

In this work we study an even more simplified model
introduced in 1984 by Wolfram[6], which is known to be
able to exhibit complex behavior: the Sierpinski automaton.
Looking not at the generated fractal Sierpinski gasket itself,
but on therow sum, corresponding to the total(in)activity of
the whole system, we have a signal as shown in Fig. 1 with
increasing mean and increasing spatial size of the corre-
sponding system; thus every physical realization of the sys-
tem will be finite size limited.

Despite the fact that on first glance they seem to be the-
oretical toy models only, Sierpinski patterns have been found
in nature. Detailed models have explained mollusc patterns
by reaction-diffusion models and cellular automata[7,8]; Si-
erpinski patterns also occur in kink breeding dynamics[9]
and have been observed in catalysis[10]. This phenomenon
occurs generically for suitable parameter choices in four
standard types of nonlinear spatiotemporal dynamics includ-
ing the Bonhoeffer–van der Pol and the complex Ginzburg-
Landau equation[11].

Consequently, catalytic processes can exhibit similar time
signals as the Sierpinski sum signal. A comparison of the
reaction rate of a catalytic process with the Sierpinski sum
signalXstd=oxistd has been given in Refs.[12,13]. A single
statexistd at a timet can be interpreted to indicate the activity
of a local catalysis process, i.e., reaction(activity) when
xistd=0 and no reaction(inactivity) when xistd=1. The au-
thors [12] observe a qualitative similarity between the ex-
perimental and theoretical time series. Due to dominating
finite size effects 1/fa spectra(or long-time correlations)
could not be identified in the spectrum of the experimental
data[14]. As models of chemical reactions, cellular automata
have been studied widely[15], explaining spiral waves and

pattern formation in chemical reactions. CO oxidation on
Pts110d and its control by global delayed feedback has been
studied and compared to models[16], including the occur-
rence of patterns similar to Sierpinski structures in the inter-
mittent turbulent phase. Recently, 1 /fa spectra have been
measured directly in a chemical reaction[17] by a supercon-
ducting quantum interference device setup that allows for
much higher resolution in time, space, and signal-to-noise
ratio than the direct gravimetric measurement of the reaction
rate in Ref.[12]. The power law extends over more than two
decades, indicating the spatiotemporal dynamics of the cata-
lytic reaction exhibits avalanches on all sizes and self-
organized critical behavior[17]. Interestingly, the Sierpinski
gasket was more recently found in a video feedback system
[18]. Apart from observation of the Sierpinski pattern itself,
its geometry has been used widely, e.g., for sandpile dynam-
ics [19] and measurements of magnetoresistance on fractal
wire networks[20].

Definition of the model. The dynamics of the so-called
Sierpinski automaton is related to the generation law of the
Pascal triangle. This pattern can be generated by the follow-
ing simple one-dimensional cellular automaton: We consider
a linear array of sites(or spins) xistd which can take the
values 0 or 1 at discrete time stepst. We restrict ourselves to
the special initial condition, that fort=0 only one spin is
different from all others:

x0s0d = 1 and ∀iÞ0 xis0d = 0. s1d

The dynamics is defined by the following next-neighbor in-
teraction:

FIG. 1. The self-similar Sierpinski signalXstd for T=128.
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xist + 1d = fxi−1std + xi+1stdg mod 2, s2d

i P f−` ,`g, xistdP h0,1j at discrete timet. In the context of
catalytic processes[10,12,13] a simplified chemical interpre-
tation of this rule reads: A catalytic process is stopped when
too little (i.e., no) or too many(i.e., 2) neighbor sites are
active. A catalytic process is initiated(or continued) when
only one neighbor site is active. This can originate from a
minimal catalysis temperature combined with a local self-
limiting reaction rate.

The spatiotemporal evolution is obtained from the rows of
the Pascal triangle by applying modulo 2 elementwise,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

→
mod 2

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

which is also known as the Sierpinski gasket. The Sierpinski
gasket is a well-known self-similar structure(with point di-
mension ln 3/ ln 2 inx for t→`) that is obtained by twofold
replication of the first four rows to the subsequent four rows,
and iteration of this process with the whole triangle.

Instead of considering the fractal pattern itself, we look at
a scalar observable that can be compared to experimental
time series. Before considering the spectrum, we briefly
sketch a direct solution[21] and illustrate the analogy to a
formal language approach. The row sum[or total (in)activ-
ity] over space at timet, defined by

Xstd: = o
i

xistd, s3d

is referred to as the Sierpinski signal. The Sierpinski automa-
ton rule then generates a time seriesXstd (Fig. 1) starting
from t=0 with

1, 2, 2,4, 2,4,4,8, 2,4,4,8,4,8,8,16, . . . . s4d

As we are interested in an analytic expression for Eq.(4), we
first note thatXstd can be generated up tot=2N−1 from the
start sequenceu0=s1d by N iterations of the sequence repli-
cation rule

un → un+1 = sun,2und. s5d

Obviously Xstd takes only powers of 2, so we consider
fln Xstdg / ln 2, which starts as

0, 1, 1,2, 1,2,2,3, 1,2,2,3,2,3,3,4, . . . . s6d

Strikingly, this appears to be the number of ones in

0,01,10,11,100,101,110,111,1000,1001,

1010,1011,1100,1101,1111, . . . , s7d

i.e., the binary decomposition of the time variablet starting
with t=0. Therefore the observable is given by

Xstd = 2oxsBstdd, s8d

which is no longer recursively defined. Hereoxs.d denotes
the cross sum, i.e., the sum over all digits(in the respective

number system), andBs.d is the operator of the binary de-
composition. This analytic solution was already discovered
in 1852 by Kummer[21] in a number-theoretic context.

A convenient closed expression can be obtained by ex-
pressing time by a number ofspins

t = o
j=0

N−1

s j2
j, s P h0,1j s9d

and expressingXshsijd from the same configuration as

Xstd = XSo
j=0

N−1

s j2
jD = 2o j=0

N−1
s j . s10d

By these expressions fortshsijd andXshsijd, we have a para-
metric expression parametrized by a set ofN spins for all
Xstd with times up tot=2N−1.

Spectrum of the Sierpinski signal. The periodogramXsvd
of the time signal now is calculated analytically. The binary
time decomposition allows a Fourier transformation ofXstd
fairly direct from the definition

Xsvd = o
t=0

2N−1

eivtXstd = o
s0

¯ o
sN−1

eivtshsijdXftshsijdg

= o
s0

¯ o
sN−1

p
j=0

N−1

expfs jsiv2j + ln 2dg

= p
j=0

N−1

o
s j

expfs jsiv2j + ln 2dg

= p
j=0

N−1

f1 + expsiv2j + ln 2dg, s11d

where all sums overs j are taken over the two possible val-
ues s j =0 and s j =1. We now calculate the periodogram’s
power spectrum, i.e.,uXsvdu2. The absolute value ofXsvd
simplifies to a trigonometric product which the logarithm
converts into a sum

lnuXsvdu2 = o
j=0

N−1

lnf5 + 4 cossv2jdg, s12d

showing a rugged fine structure as shown in Fig. 2. A rough
estimate of the sum in Eq.(12) is obtained approximating the
sum by an integralsy: =v2jd,

lnuXsvdu2 < E
0

N−1

lnf5 + 4 cossv2jdgdj s13d

=
1

ln 2
E

v

v2N−1 lnf5 + 4 cosyg
y

dy. s14d

As lns5+4xd< lns5d+ 4
5x for uxu!1, we obtain
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lnuXsvdu2 <
ln 5

ln 2
E

v

v2N−1 dy

y
+

4

5 ln 2
E

v

v2N−1 cossyd
y

dy.

The integral over the integral cosine is nearly independent of
the upper boundary for high values of the boundary. Thus,
we can substitute the upper boundaryv2N−1 by some
N-dependent constant, saycN@1. Finally, substituting the
cosine by one yields immediately a rough approximation of
Eq. (12):

uXsvdu2 < cN8v−4/s5 ln 2d , v−1.15. s15d

Due to the increase of the mean ofXstd, spectral estimation
from the periodogramXsvd (implying a periodical extension
in time domain) has to be discussed carefully. As

ot=0
2N−1 Xstd=3N, the average increase is kXstdlL

=kXstdlh0¯2N−1j= tb with b=lns3/2d / lns2d<0.585. Further,
the signal exhibits an increasing variancekXstd2lh0¯2N−1j= tg

with g=lns5/2d / lns2d<1.32. Consequently, we investigate
two variants ofXstd: A suitable per definitionem mean-free
sum signal defined byYstd=Xstd−s1+bdtb, and a mean-free
signal with nonincreasing variance

Zstd = Ystd/kYstd2lh0¯tj
1/2 . s16d

The spectrum ofYsvd can be directly obtained from Eq.(11)
and the evaluation of the Fourier transform oftb:

Ysvd = Xsvd − s1 + bdFstbd. s17d

The power spectrum of the periodically extended functiontb

decays(for small values of the frequency) as a power law
with an exponent of approximately −2. Thus, the decay is
much stronger thanXsvd and the power spectra ofYstd and
Xstd deviate only slightly. Hence, it follows thatuYsvdu2
,uXsvdu2,v−a. Similarly, uXsvdu2 also estimatesuZsvdu2. We
now compare these results with numerically applied discrete
Fourier transformation. The power spectrum is fitted(least
squares) in Fig. 3 by a power law with exponenta about
1.11, being in good agreement with the analytical resulta
<1.15 of Eq.(15). If one measures a power spectrum ex-
perimentally, this may generically be done by observation of

resonances, where the system is coupled with a tuneable os-
cillator of given frequency and finite bandwidth. Therefore it
is quite natural to consider an averaged spectrum. The(in-
commensurable) averaging procedure applied in Fig. 4
smoothes the peaks atv=2k. The peak amplitudes decay as
the average spectrum itself. For commensurable averaging
(inset of Fig. 4) the peaks atv=2k disappear completely.

Note that the spectrauXsvdu2 and uYsvdu2 from FFT for
T=222 (not shown) also display 1/fa behavior, with expo-
nents aX=1.12 andaY=1.11, respectively. Moreover, we
have used the method of a sliding window that normalizes

the fluctuations[28] of the detrended signalYstd, i.e., Z̃std
=Yst+ ld / kY2lht−l+1,t+lj

1/2 . For different values of the window
width 2l, the power spectra exhibit power law behavior with
exponents of abouta<1.1. Thus 1/fa spectra appear to be a
robust property of Sierpinski signals.

Amplitude distribution. Many systems exhibiting 1/f
noise possess a Gaussian amplitude distribution[22]. In this
paragraph we calculate the amplitude distributionHNs2kd of
Xstd analytically whereHNs2kd denotes the frequency occur-
rence ofX=2k,k=0,1, . . ., for asignal length ofT=2N. The
number of 2k’ s in the signal up tot=2N−1 is the number of
2k’s plus the number of 2k−1’s in the signal sequence up to

FIG. 2. Power spectrum ofXstd for T=1024 time steps up to the
Nyquist frequency ofT/2 (from FFT). The lower envelope is con-
stituted byvskd= bs2k+1d /3c ,kP h2,3, . . .j.

FIG. 3. Power spectrum of the time signalZstd up to T/8 for
T=220 time steps(from FFT) and least-square-fitv−1.11.

FIG. 4. Averaged power spectrum ofZstd up to T/8 for T=220

using (incommensurable) 1.1k-bins, i.e., thekth interval is defined
by fd1.1ke , d1.1k+1eg where the bracketsd e denote rounded integer
values. The inset shows the same spectrum, averaged using 2k bins,
i.e., thekth interval is defined byf2k,2k+1−1g. Both correspond to a
constantdv /v ratio.
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t=2N−1−1, i.e., HNs2kd=HN−1s2kd+HN−1s2k−1d. For the
boundary conditionHNs1d=H1s2d=1 we obtain a sum of bi-
nomial coefficientsHNs2kd=o j=1

N s j
k

d= s N+1
k+1

d ,kù1, which sim-
plifies for N@1 to 2N times the Gaussian distribution

HNs2k−1d <
2N

spN/2d1/2e−
sk − N/2d2

N/2 . s18d

Hence, the amplitude distribution of the occurrence of pow-
ers of 2 is Gaussian for fixedN. The (averaged) amplitude
distributions forYstd andZstd differ from HNs2kd but possess
a similar shape asHNs2kd. Note that the variance distribu-
tions for Xstd, Ystd, andZstd, are not Gaussian but well de-
fined by Eq.(18).

As a final point, numerical simulations show that the av-
eraged signals are robust against noise, i.e., initial conditions
with more than a single 1.

In analogous situations in less simply defined systems,
power laws have also been observed in spatial spectra of the
scum on fluid surfaces and in the random baker map[23],
and in the temporal spectra in dissipative dynamics governed
by the Lorenz equations[24] being related to the Thue-
Morse sequence[24–27]. In fact the Thue-Morse dynamics

1→ s1,−1d ,−1→ s−1,1d itself maps on the string replication
rule un→ fun,s−1dung for generation of the spatial sequence.
As it is not equivalent, but of striking similarity to Eq.(5) for
generation of the temporal Sierpinski signal series, the Sier-
pinski dynamics itself does not follow a replication rule.
While the analytic solution of the Thue-Morse sequence is
s−1doxsBstdd [26], in analogy to Eq.(8), the averaged expo-
nents of the resulting spectra are different.

To conclude, the one-dimensional Sierpinski automaton
generates 1/fa spectra in the number of active states, and can
therefore be considered as one of the simplest models gen-
erating 1/fa spectra. While the Sierpinski automaton is
rather a caricature, the approach of studying the sum signal,
or total (in)activity, and its spectrum, can be transferred to
more realistic models and compared directly with experi-
ments. Although exact Sierpinski patterns with long-range
correlations remain to be experimentally challenging, we
conjecture that 1/fa spectra in a suitable sum signal can be
identified in every experimental setup exhibiting Sierpinski
patterns.

We would like to thank P.J. Plath, O. Rudzick, and S.
Bornholdt for fruitful discussions.
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