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Abstract

We give asymptotics for the left and right tails of the limiting Quicksort distribution.
The results agree with, but are less precise than, earlier non-rigorous results by Knessl
and Spankowski.
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1 Introduction

Let Xn be the number of comparisons used by the algorithm Quicksort when sorting
n distinct numbers, initially in a uniformly random order. Equivalently, Xn is the internal
pathlength in a random binary search tree with n nodes. (See e.g. Knuth [7, Sections
5.2.2 and 6.2.2] or Drmota [1, Chapter 8 and Section 1.4.1] for a description of the
algorithm and of binary search trees.) It follows that Xn satisfies the distributional
recurrence relation

Xn
d
= XUn−1 +X∗n−Un

+ n− 1, n ≥ 1, (1.1)

where
d
= denotes equality in distribution, and, on the right, Un is distributed uniformly

on the set {1, . . . , n}, X∗j
d
= Xj , X0 = 0, and Un, X0, . . . , Xn−1, X

∗
0 , . . . , X

∗
n−1 are all

independent. (Thus, (1.1) can be regarded as a definition of Xn.)
It is well-known, and easy to show from (1.1), that

EXn = 2(n+ 1)Hn − 4n ∼ 2n lnn, (1.2)

where Hn :=
∑n
k=1 k

−1 is the n:th harmonic number. Moreover, it was proved by
Régnier [9] and Rösler [10], using different methods, that the normalized variables

Zn :=
Xn − EXn

n
(1.3)

converge in distribution to some limiting random variable Z, as n→∞.
There is no simple description of the distribution of Z, but various results have

been shown by several different authors. For example, Z has an everywhere finite
moment generating function, and thus all moments are finite [10], with EZ = 0 and
VarZ = 7− 2

3π
2; furthermore, Z has a density which is infinitely differentiable [11; 2].
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Moreover, the recurrence relation (1.1) yields in the limit a distributional identity, which
can be written as

Z
d
= UZ ′ + (1− U)Z ′′ + g(U), (1.4)

where U , Z ′ and Z ′′ are independent, U ∼ U(0, 1) is uniform, Z ′, Z ′′
d
= Z, and g is the

deterministic function

g(u) := 2u lnu+ 2(1− u) ln(1− u) + 1. (1.5)

Furthermore, Rösler [10] showed that (1.4) together with EZ = 0 and VarZ < ∞
determines the distribution of Z uniquely; see further [3]. The identity (1.4) is the basis
of much of the study of Z, including the present work.

In the present paper we study the asymptotics of the tail probabilities P(Z 6 −x) and
P(Z > x) as x→∞. Using non-rigorous methods from applied mathematics (assuming
an as yet unverified regularity hypothesis), Knessl and Szpankowski [6] found very
precise asymptotics of both the left tail and the right tail. Their result for the left tail is
that, as x→∞, with γ = (2− 1

ln 2 )−1,

P(Z 6 −x) = (c1 + o(1)) exp
(
−c2eγx

)
= exp

(
−eγx+c3+o(1)

)
, (1.6)

where c1, c2, c3 are some constants (c1 is explicit in [6], but not c2). For the right tail,
they give a more complicated expression, which by ignoring higher order terms implies,
for example,

P(Z > x) = exp
(
−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)

)
. (1.7)

It has been a challenge to justify these asymptotics rigorously, and so far very little
progress has been made. Some rigorous upper bounds were given by Fill and Janson [4],
in particular

P(Z > x) 6 exp
(
−x lnx+ (1 + ln 2)x

)
, x > 303, (1.8)

with the same leading term (in the exponent) as (1.7), and for the left tail

P(Z 6 −x) 6 exp(−x2/5), x > 0, (1.9)

which is much weaker than (1.6).

Also the present paper falls short of the (non-rigorous) asymptotics (1.6)–(1.7) from
[6], but we show, by simple methods, the following results, which at least show that the
leading terms in the top exponents in (1.6)–(1.7) are correct.

Theorem 1.1. (i) Let γ := (2− 1
ln 2 )−1. As x→∞,

exp
(
−eγx+ln ln x+O(1)

)
6 P(Z 6 −x) 6 exp

(
−eγx+O(1)

)
(1.10)

(ii) As x→∞,

exp
(
−x lnx− x ln lnx+O(x)

)
6 P(Z > x) 6 exp

(
−x lnx+O(x)

)
. (1.11)

We show the lower bounds in Sections 3 and 4, and the upper bounds in Sections
5 and 6. The lower bounds are proved by direct arguments using the identity (1.4);
the upper bounds are proved by the standard method of first estimating the moment
generating function.
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Remark 1.2. The right inequality in (1.11) follows from the more precise (1.8), where
an explicit value is given for the implicit constant; we include this part of (1.11) for
completeness. (The proof in Section 6 actually yields a better constant than (1.8) for
large x, see (6.10).) We expect that, similarly, the implicit constants in the other parts of
(1.10)–(1.11) could be replaced by explicit bounds, using more careful versions of the
arguments and estimates below. However, in order to keep the proofs simple, we have
not attempted this.

Remark 1.3. We consider only the limiting random variable Z, and not Zn or Xn for
finite n. Of course, the results for Z imply corresponding results for the tails P(Zn 6 −x)

and P(Zn > x) for n sufficiently large (depending on x), but we do not attempt to give
any explicit results for finite n. For some bounds for finite n, see [5] and (for large
deviations) [8].

Remark 1.4. Although we do not work with Zn for finite n, the proofs below of the
lower bounds can be interpreted for finite n, saying that we can obtain Zn 6 −x with
roughly the given probability (for large n) by considering the event that in the first Θ(x)

generations, all splits are close to balanced (with proportions 1
2 ± x

−1/2, say); similarly,
to obtain Zn > x we let there be one branch of length Θ(x) where all splits are extremely
unbalanced (with at most a fraction (x lnx)−1 on the other side). The fact that we require
an exponential number of splits to be extreme for the lower tail, but only a linear number
for the right tail, can be seen as an explanation of the difference between the two tails,
with the left tail doubly exponential and the right tail roughly exponential.

2 Preliminaries

Note that g in (1.5) is a continuous convex function on [0, 1], with maximum g(0) =

g(1) = 1 and minimum g(1/2) = 1− 2 ln 2 = −(2 ln 2− 1) < 0.
Let ψ(t) := E etZ be the moment generating function of Z. As said above, Rösler [10]

showed that ψ(t) is finite for every real t. The distributional identity (1.4) yields, by
conditioning on U , the functional equation

ψ(t) := E etZ =

∫ 1

0

ψ(ut)ψ((1− u)t)etg(u) du. (2.1)

We may replace Z by the right-hand side of (1.4); hence we may without loss of
generality assume the equality (not just in distribution)

Z = UZ ′ + (1− U)Z ′′ + g(U). (2.2)

3 Left tail, lower bound

Proof of lower bound in (1.10). Let ε > 0 be so small that g( 1
2 + ε) < 0, and let a :=

−g( 1
2 + ε) > 0. For any z, on the event {Z ′ 6 −z, Z ′′ 6 −z, and |U − 1

2 | 6 ε}, (2.2) yields

Z 6 −Uz − (1− U)z + g(U) = −z + g(U) 6 −z − a. (3.1)

Hence, for any real z,
P(Z 6 −z − a) > 2εP(Z 6 −z)2. (3.2)

It follows by induction that

P(Z 6 −na) > (2ε)2
n−1P(Z 6 0)2

n

, n > 0. (3.3)

Consequently, using 2ε 6 1, P(Z 6 −na) > (2εP(Z 6 0))2
n

, and thus, with c :=

ln(2P(Z 6 0)) > −∞,

lnP(Z 6 −na) > 2n
(
ln ε+ c

)
, n > 0. (3.4)
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If x > 0, we take n = dx/ae and obtain

lnP(Z 6 −x) > 2x/a+1
(
ln ε+ c

)
. (3.5)

We choose (for large x) ε = x−1/2, so, using Taylor’s formula,

a = −g
(
1
2 + ε

)
= −g

(
1
2

)
+O

(
ε2
)

= 2 ln 2− 1 +O
(
x−1

)
(3.6)

and thus

a−1 = (2 ln 2− 1)−1 +O
(
x−1

)
. (3.7)

Consequently, (3.5) yields

lnP(Z 6 −x) > 2x/(2 ln 2−1)+O(1)
(
lnx−1/2 + c

)
= −eγx+O(1)+ln ln x. (3.8)

4 Right tail, lower bound

Proof of lower bound in (1.11). Let 0 < δ < 1
2 . If 0 < U 6 δ, then

g(U) > g(δ) = 1 + 2δ ln δ +O(δ) > 1 + 3δ ln δ, (4.1)

with the last inequality holding provided δ is small enough.

Assume that (4.1) holds, and assume that Z ′ > 0, Z ′′ > z > 0 and U 6 δ. Then (2.2)
yields

Z > (1− δ)z + g(δ) > z − δz + 1− 3δ ln δ−1. (4.2)

Consequently,

P(Z > z + 1− δz − 3δ ln δ−1) > δP(Z > 0)P(Z > z). (4.3)

Let x be sufficiently large and choose δ = 1/(x lnx). Then, for 0 6 z 6 x,

z + 1− δz − 3δ ln δ−1 > z + 1− 1

lnx
− 3

ln(x lnx)

x lnx
> z + 1− 2

lnx
, (4.4)

provided x is large enough. Hence, if b := 1 − 2
ln x and c := P(Z > 0) > 0, then for

0 6 z 6 x we have

P(Z > z + b) > cδP(Z > z). (4.5)

By induction, we find for 0 6 n 6 x/b+ 1,

P(Z > nb) > cnδnP(Z > 0) = cn+1δn > (cδ)n+1. (4.6)

Consequently, taking n := dx/be,

lnP(Z > x) > (n+ 1)(ln c+ ln δ) > (x/b+ 2)(ln c+ ln δ)

=
(
x+O(x/ lnx)

)(
− lnx− ln lnx+O(1)

)
= −x lnx− x ln lnx+O(x).

(4.7)
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5 Left tail, upper bound

Lemma 5.1. There exists a > 0 such that for all t > 0, with κ := γ−1 = 2− 1
ln 2 ,

ψ(−t) < exp
(
κt ln t+ at+ 1

)
. (5.1)

Proof. We note that t ln t > −e−1 for t > 0, and thus κt ln t+at+1 > −κe−1 +1 > 0. Since
ψ(t) is continuous and ψ(0) = 1, there exists t1 > 0 such that ψ(−t) < exp

(
1− κe−1

)
for

0 6 t 6 t1, and thus (5.1) holds for all such t, and any a > 0. Next, let t2 := πe2. We may
choose a > 0 such that (5.1) holds for t ∈ [t1, t2].

Before proceeding to larger t, define

h(u) := u lnu+ (1− u) ln(1− u) (5.2)

and note that g(u) = 2h(u) + 1 by (1.5).
Now suppose that (5.1) fails for some t > 0 and let T := inf{t > 0 : (5.1) fails}. Then

T > t2, and, by continuity,

ψ(−T ) = exp
(
κT lnT + aT + 1

)
. (5.3)

Furthermore, if 0 < u < 1, then (5.1) holds for t = uT and t = (1 − u)T , and thus,
recalling (5.2),

ψ(−uT )ψ
(
−(1− u)T

)
< exp

(
κuT ln(uT ) + κ(1− u)T ln((1− u)T ) + auT + a(1− u)T + 2

)
= exp

(
κT lnT + κ

(
u lnu+ (1− u) ln(1− u)

)
T + aT + 2

)
= exp

(
κT lnT + κh(u)T + aT + 2

)
.

Furthermore, g(u) = 1 + 2h(u), and thus we obtain

ψ(−uT )ψ
(
−(1− u)T

)
e−Tg(u) 6 exp

(
κT lnT − ((2− κ)h(u) + 1)T + aT + 2

)
. (5.4)

By (5.2), h(u) is a convex function with h( 1
2 ) = − ln 2, h′( 1

2 ) = 0 and h′′(u) = u−1 +

(1 − u)−1 > 4, and thus by Taylor’s formula, h(u) > − ln 2 + 2(u − 1
2 )2. Furthermore,

2− κ = 1/ ln 2, and thus

(2− κ)h(u) + 1 >
2

ln 2
(u− 1

2 )2 > (u− 1
2 )2. (5.5)

Combining (2.1), (5.4), and (5.5), we obtain

ψ(−T ) 6
∫ 1

0

exp
(
κT lnT + aT + 2− (u− 1

2 )2T
)

du

< exp
(
κT lnT + aT + 2

) ∫ ∞
−∞

e−(u−
1
2 )

2T du

=

√
π

T
exp
(
κT lnT + aT + 2

)
.

(5.6)

Since T > t2 = πe2, this yields ψ(−T ) < exp
(
κT lnT + aT + 1

)
, which contradicts (5.3).

This contradiction shows that no such T exists, and thus (5.1) holds for all t > 0.

Proof of upper bound in (1.10). For x > 0 and any t > 0, by Lemma 5.1,

P(Z 6 −x) 6 e−txE e−tZ = e−txψ(−t) < exp
(
−tx+ κt ln t+ at+ 1

)
. (5.7)

We optimize by taking t = exp(κ−1(x− a)− 1) and obtain

lnP(Z 6 −x) < t(κ ln t+ a− x) + 1 = −κt+ 1 = −eκ
−1x+O(1), (5.8)

which is the upper bound in (1.10) because κ−1 = γ.
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6 Right tail, upper bound

As said in the introduction, (1.8) was proved in [4]. Nevetheless we give for com-
pleteness a proof of the upper bound in (1.11), similar to the proof in Section 5. (It is
also similar to the proof in [4] but simpler, partly because we do not keep track of all
constants and do not try to optimize; nevertheless, it yields a slight improvement of (1.8)
for large x, see (6.10) below.)

Lemma 6.1. There exists a > 0 such that for all t > 0,

ψ(t) 6 exp
(
et + at

)
. (6.1)

Note that [4, Corollary 4.3] shows the bound ψ(t) 6 exp(2et) for t > 5.02, which is
explicit, but weaker for large t.

Proof. Since ψ(0) = 1 < e, it follows by continuity that there exists t1 > 0 such that
ψ(t) 6 e for t ∈ [0, t1], and thus (6.1) holds for t ∈ [0, t1] and any a > 0.

Let t2 := 100, and choose a so that (6.1) holds for t ∈ [t1, t2]. Assume that (6.1) fails
for some t > 0, and let T := inf{t > 0 : (6.1) fails}. Then T > t2, and, by continuity,

ψ(T ) = exp
(
eT + aT

)
. (6.2)

Furthermore, if 0 < u < 1, then (6.1) holds for t = uT and t = (1− u)T , and thus, using
(2.1) and the symmetry u↔ 1− u there, and g(u) 6 1,

ψ(T ) 6 2

∫ 1/2

0

exp
(
euT + auT + e(1−u)T + a(1− u)T + Tg(u)

)
du

6 2

∫ 1/2

0

exp
(
euT + eT−uT + aT + T

)
du.

(6.3)

We consider two cases.
(i) If uT 6 1, then e−uT 6 1− 1

2uT , and thus

euT + eT−uT + aT + T 6 e+ eT (1− 1
2uT ) + (a+ 1)T. (6.4)

Hence, the contribution to (6.3) for u 6 1/T is no more than

2

∫ 1/T

0

exp
(
eT + (a+ 1)T + e− 1

2Te
Tu
)

du < 2 exp
(
eT + (a+ 1)T + e

) 1
1
2Te

T

=
4ee

T
exp
(
eT + aT

)
6 0.7ψ(T ),

(6.5)

by (6.2) and T > t2 = 100, since 4ee
.
= 60.62.

(ii) For uT > 1 and u < 1
2 , recalling T > t2 = 100,

euT + eT−uT + aT + T 6 2eT−uT + aT + T 6 2e−1eT + aT + T

6 0.8eT + T + aT 6 0.9eT + aT

= eT + aT − 0.1eT 6 eT + aT − 100.

(6.6)

Hence, the contribution to (6.3) for uT > 1 is less than, recalling (6.2),

exp
(
eT + aT − 100

)
= e−100ψ(T ) < 0.1ψ(T ). (6.7)

Using (6.5) and (6.7) in (6.3), we find

ψ(T ) < 0.7ψ(T ) + 0.1ψ(T ), (6.8)

a contradiction. Hence T cannot exist and (6.1) holds for all t > 0.
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Proof of upper bound in (1.11). For x > 0 and any t > 0, by Lemma 6.1,

P(Z > x) 6 e−txE etZ = e−txψ(t) 6 exp
(
−tx+ et + at

)
. (6.9)

We take t = lnx (assuming x > 1) and obtain

P(Z > x) 6 exp
(
−x lnx+ x+O(lnx)

)
, x > 1. (6.10)

(The optimal choice of t is actually ln(x− a), but this leads to the same result up to o(1)

in the exponent, which is absorbed by the error term O(lnx).)

Acknowledgments. I thank David Belius and Jim Fill for helpful comments.
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