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Abstract

Recently, Rayleigh distribution has received considerable attention in the statistical
literature. In this paper, we consider the point and interval estimation of the functions
of the unknown parameters of a two-parameter Rayleigh distribution. First, we obtain
the maximum likelihood estimators (MLEs) of the unknown parameters. The MLEs
cannot be obtained in explicit forms, and we propose to use the maximization of the
profile log-likelihood function to compute the MLEs. We further consider the Bayesian
inference of the unknown parameters. The Bayes estimates and the associated cred-
ible intervals cannot be obtained in closed forms. We use the importance sampling
technique to approximate (compute) the Bayes estimates and the associated credible
intervals. For comparison purposes we have also used the exact method to compute
the Bayes estimates and the corresponding credible intervals. Monte Carlo simulations
are performed to compare the performances of the proposed method, and one data
set has been analyzed for illustrative purposes. We further consider the Bayes predic-
tion problem based on the observed samples, and provide the appropriate predictive
intervals. A data example has been provided for illustrative purposes.
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1 Introduction

The Weibull distribution is one of the most popular distributions in analyzing lifetime data.

It can have increasing, decreasing and constant hazard functions depending on the shape pa-

rameter. Rayleigh distribution can be obtained as a special case of the Weibull distribution,

where the shape parameter is taken to be 2.

Rayleigh distribution was introduced by Lord Rayleigh (1880), in connection with a

problem in acoustics, way before Weibull distribution was introduced by W. Weibull (1951).

Rayleigh distribution has a nice connection with other distributions like chi-square and

extreme value distributions. Estimations, predictions, and inferential issues of one-parameter

Rayleigh distribution haven been extensively studied by different authors, see for example

Johnson, Kotz and Balakrishnan (1994), Dey and Das (2007), Dey (2009), Howlader and

Hossain (1995), and the references therein.

Very recently, Khan, Provost and Singh (2010) considered the two-parameter Rayleigh

distribution and considered the predictive inference based on doubly censored samples. The

two-parameter Rayleigh distribution, which has one scale and one location parameter has

the following probability density function (PDF);

f(x; λ, µ) = 2λ(x − µ)e−λ(x−µ)2 ; x > µ, λ > 0. (1)

Here λ > 0 and 0 < µ < ∞ are the scale and location parameters respectively. Due to the

presence of the location parameter, the two-parameter Rayleigh distribution can be used

more effectively to analyze real life data than one-parameter Rayleigh distribution.

In reliability or life testing experiments, the data are often censored. Among the different

censoring schemes, Type-I and Type-II are the most popular censoring schemes. Unfortu-

nately, in any of these censoring schemes, it is not possible to withdraw live items during

the experiment. In this paper, we consider a generalization of the classical Type-II censoring
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scheme, where it is possible to withdraw live items during the experiment, and it is known

as progressive Type-II censoring scheme.

Although, progressive censoring scheme was introduced long ago in the statistical litera-

ture, in recent years the progressive censoring scheme has received considerable attention in

the statistical literature, see for instance the book by Balakrishnan and Aggrawalla (2000),

and an excellent review article by Balakrishnan (2007). For some recent references, the

readers are referred to Kundu (2008), Pradhan and Kundu (2009) or Pradhan and Kundu

(2011) and see the references cited therein.

Recently, Huang and Wu (2008), Kim and Han (2009) and Wu and Huang (2010) consid-

ered the statistical inferences and some related issues for one-parameter Rayleigh distribution

when the data are progressively censored. In this paper we consider the point and interval

estimation of the functions of the unknown parameters of a two-parameter Rayleigh distri-

bution when the data are progressively Type-II censored. We first consider the maximum

likelihood estimators (MLEs) of the unknown parameters. The MLEs of the unknown pa-

rameters cannot be obtained in closed form, and we propose to use the maximization of the

profile log-likelihood function to compute the MLEs of the unknown parameters.

Next, we consider the Bayesian inference of the unknown parameters under the assump-

tions of independent gamma and uniform priors on the scale and the location parameters

respectively. It is observed that the Bayes estimates and the associated credible intervals

cannot be obtained in closed form. We use the importance sampling procedure to approxi-

mate (compute) the Bayes estimates and the associated credible intervals. For comparison

purposes we have also used the exact method to compute the Bayes estimates and the corre-

sponding credible intervals. Monte Carlo simulations are performed to see the effectiveness

of the proposed method, and a data analysis is performed for illustration. It is observed

that the importance sampling method works quite satisfactorily in this case. The main ad-
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vantage of the importance sampling method is that the same generated samples can be used

to construct the Bayes estimates of the different functions of the parameters, and also to

construct the associated credible intervals. It is not required to perform different integrations

for different estimators.

Another important problem in life testing experiments is the prediction of the unknown

observable belonging to a future sample, based on the current available sample, known

in literature as informative sample. For different applications and for relevant references,

the readers are referred to Al-Hussaini (1999), Basak, Basak and Balakrishnan (2006) or

Kundu and Howlader (2010). In this paper, we consider the prediction problem in terms of

the estimation of the predictive density of an unobserved observation based on the observed

sample. We also construct a predictive interval for a future observation using the importance

sampling procedure. An illustrative example has been provided.

The rest of the paper is organized as follows. In Section 2, we briefly discuss about the

basic properties of the two-parameter Rayleigh distribution, and also progressive Type-II

censoring scheme. In Section 3, we provide the MLEs of the unknown parameters. Bayes

estimators and the associated credible intervals are provided in Section 4. Monte Carlo

simulation results and the analysis of a data set have been provided in Section 5. Prediction

problem has been considered in Section 6, and finally conclusions appear in Section 7.

2 Preliminaries

2.1 Rayleigh Distribution: A Brief Review

The two-parameter Rayleigh distribution as defined in (1) is always unimodal and it has the

following cumulative distribution function (CDF)

F (x; λ, µ) = 1 − e−λ(x−µ)2 ; x > µ. (2)
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The hazard function of the two-parameter Rayleigh distribution is an increasing function.

All the moments of a two-parameter Rayleigh distribution exists. But if the random variable

X follows two-parameter Rayleigh distribution as in (2), then the , then the elements of the

Fisher information matrix may not be finite.

2.2 Progressive Type-II Censoring Scheme

Progressive Type-II censoring scheme can be described as follows: Suppose n units are placed

on a life test and the experimenter decides before hand the quantity m, the number of failures

to be observed. Now at the time of the first failure, R1 of the remaining n − 1 surviving

units are randomly removed from the experiment. At the time of the second failure, R2 of

the remaining n − R1 − 1 units are randomly removed from the experiment. Finally, at the

time of the m-th failure, all the remaining surviving units Rm = n − m − R1 − · · · − Rm−1

are removed from the experiment.

Therefore, a progressive Type-II censoring scheme consists of m, and R1, · · · , Rm, such

that R1 + · · · + Rm = n − m. The m failure times obtained from a progressive Type-II

censoring scheme will be denoted by t1, · · · , tm.

3 Maximum Likelihood Estimators

Based on the observed sample t1 < · · · < tm from a progressive Type-II censoring scheme,

(R1, · · · , Rm), the likelihood function can be written as

L(λ, µ) = c

m∏

i=1

f(ti; λ, µ) [1 − F (ti; λ, µ)]Ri ; λ > 0, 0 < µ < t1, (3)

where c = n(n − 1 − R1) · · · (n − R1 − · · · − Rm−1 − m + 1), and f(·) and F (·) are same

as defined before in (1) and (2) respectively. Therefore ignoring the additive constant, the
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log-likelihood function can be written as

l(µ, λ) = m ln λ +
m∑

i=1

ln(ti − µ) − λ

m∑

i=1

(Ri + 1)(ti − µ)2; if µ < t1 (4)

and 0 otherwise. The MLEs of the unknown parameters can be obtained by maximizing the

log-likelihood function (4) with respect to the unknown parameters. We have the following

result:

Theorem 1: For m ≥ 2, the MLEs of µ and λ for (µ, λ) ∈ [0, t1) × (0,∞) exists and they

are unique.

Proof: See in the Appendix.

To compute the MLEs, consider the two normal equations;

∂l(λ, µ)

∂λ
=

m

λ
−

m∑

i=1

(Ri + 1)(ti − µ)2 = 0 (5)

∂l(λ, µ)

∂µ
= −

m∑

i=1

(ti − µ)−1 + 2λ
m∑

i=1

(Ri + 1)(ti − µ) = 0. (6)

From (5), we obtain the MLE of λ, as a function of µ, say λ̂(µ), as

λ̂(µ) =
m∑m

i=1(Ri + 1)(ti − µ)2
. (7)

Note that for known µ, (7) is the MLE of λ. Now when µ is also unknown, substituting,

λ̂(µ) in (4), we obtain the profile log-likelihood function of µ as

g(µ) = l(λ̂(µ), µ) = m ln m − m ln

(
m∑

i=1

(Ri + 1)(ti − µ)2

)
+

m∑

i=1

ln(ti − µ) − m. (8)

Note that, for m = 1, the profile log-likelihood function (8) is an increasing function of µ,

hence the MLE of µ is t1. In this case the MLE of λ is not finite. For m > 1, due to

Theorem 1, the MLEs of µ and λ exist and they are unique. In this case the MLE of µ can

be obtained by maximizing (8) with respect to µ for µ ∈ [0, t1). Once the MLE of µ, say

µ̂MLE is obtained, the MLE of λ, λ̂MLE = λ̂(µ̂MLE) can be easily obtained.
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Note that although the MLEs of the unknown parameters can be obtained quite conve-

niently, the exact distribution of the MLEs is not possible to obtain. Due to this reason the

construction of the exact confidence intervals is also very difficult. One has to rely on the

different bootstrap procedures for this purpose. Alternatively it is possible to use Bayesian

procedure to compute Bayes estimates and to construct the associated credible intervals.

4 Bayesian Inference

In this section we develop the Bayesian inference of the unknown parameters of the two-

parameter Rayleigh distribution when the data are progressively Type-II censored. We

mainly discuss the Bayes estimates and the associated credible intervals of the unknown

parameter(s). Although we have developed the estimates using squared error loss function,

any other loss function can be easily incorporated.

Note that if the location parameter is known, then the scale parameter has a gamma

conjugate prior. On the other hand, if both the parameters are unknown, the joint conjugate

prior does not exist. Moreover, even for complete sample case, all the elements of the

expected Fisher information matrix are not finite. Therefore the Jeffrey’s prior also does not

exist for this case. We consider the following priors on λ and µ and they are fairly general.

Since for a given µ, λ has a conjugate gamma prior, we assume the same prior on λ as

follows;

π1(λ|a, b) ∝ λa−1e−bλ; λ > 0, a > 0, b > 0, (9)

and for µ the following data dependent uniform prior has been considered

π2(µ) ∝ 1, 0 < µ < t1. (10)

Moreover, they are assumed to be independent.
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Based on the observed sample the joint posterior density function of λ and µ is

π(λ, µ|Data) = K λa+m−1e−λ(b+
Pm

i=1
(Ri+1)(ti−µ)2)

m∏

i=1

(ti − µ), 0 < λ < ∞, 0 < µ < t1, (11)

here the normalizing constant K is

K =

[∫ t1

0

∫ ∞

0

λa+m−1e−λ(b+
Pm

i=1
(Ri+1)(ti−µ)2)

m∏

i=1

(ti − µ)dλdµ

]−1

. (12)

Note that

∫ t1

0

∫ ∞

0

λa+m−1e−λ(b+
Pm

i=1
(Ri+1)(ti−µ)2)

m∏

i=1

(ti−µ)dλdµ =

∫ t1

0

Γ(a + m)
∏m

i=1(ti − µ)

[b +
∑m

i=1(Ri + 1)(ti − µ)2]
a+m dµ.

(13)

Suppose, we want to compute the Bayes estimate of some function of λ and µ, say θ(λ, µ),

then under squared error loss function it should be the posterior mean, i.e.

θ̂Bayes = K

∫ t1

0

∫ ∞

0

θ(λ, µ) λa+m−1e−λ(b+
Pm

i=1
(Ri+1)(ti−µ)2)

m∏

i=1

(ti − µ)dλdµ, (14)

provided it is finite.

For general θ(λ, µ), (14) cannot be obtained in explicit form. Numerical integration

procedure can be used to compute (14). Alternatively, some approximation like Lindley or

some of its variants can be used to approximate (compute) the Bayes estimate. Although

it is possible to compute the approximate Bayes estimate by this method, the associated

credible interval cannot be obtained by this method.

Alternatively, the importance sampling technique can be used to compute the Bayes esti-

mate and also to construct the associated credible interval. It is well known that with proper

importance sampling procedure, simulation consistent Bayes estimates and the associated

credible interval can be obtained, see for example Chen et al. (2000), Kundu and Pradhan

(2009), Pradhan and Kundu (2009), Pradhan and Kundu (2011) and the references cited

therein.



9

For implementing the importance sampling procedure, we re-write (11) as follows;

π(λ, µ|Data) =
f1(λ|µ,Data)f2(µ|Data)h(µ)

∫ t1

0

∫∞

0
f1(λ|µ,Data)f2(µ|Data)h(µ)dλdµ

, (15)

where

f1(λ|µ,Data) =
(b +

∑m

i=1(Ri + 1)(ti − µ)2)m+a

Γ(m + a)
λm+a−1e−λ(b+

Pm
i=1

(Ri+1)(ti−µ)2); λ > 0,

(16)

f2(µ|Data) =
k 2(

∑m

i=1 ti(Ri + 1) − nµ)

(nµ2 − 2µ
∑m

i=1 ti(Ri + 1) + b +
∑m

i=1 t2i (Ri + 1))m+a
; 0 < µ < t1 (17)

where

k = (m + a − 1)
[
(g(t1))

m+a−1 − Am+a−1
]

g(t) =

(
nt2 − 2t

m∑

i=1

ti(Ri + 1) + b +
m∑

i=1

t2i (Ri + 1)

)

A = b +
m∑

i=1

t2i (Ri + 1),

and

h(µ) =






Γ(m+a)
Qm

i=1
(ti−µ)

2k(
Pm

i=1
ti(Ri+1)−µ)

for µ < t1

0 for µ ≥ t1.

(18)

Note that, f1(λ|µ,Data) is a gamma density function with the shape and scale parameters

as m + a and b +
∑m

i=1(Ri + 1)(ti −µ)2 respectively. f2(µ|Data) is a proper density function

and it has the distribution function for 0 < µ < t1 as

F2(µ|Data) =
k

m + a − 1

[
1

(g(µ))m+a−1
−

1

Am+a−1

]
, (19)

which is easily invertible.

Now we propose the following procedure to compute the Bayes estimate of θ(λ, µ) and

the associated credible interval.

• Step 1: Generate µ ∼ f2(µ|Data) using (19).
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• Step 2: Generate λ|µ ∼ gamma(m + a, b +
∑m

i=1(Ri + 1)(ti − µ)2)

• Step 3: Repeat Step 1 and Step 2, to obtain (µ1, λ1), · · · , (µN , λN)

• Step 4: Then a simulation consistent estimator of (14) can be obtained as

∑N

i=1 θ(λi, µi)h(µi)∑N

i=1 h(µi)
(20)

Now we would like to construct the highest posterior density credible interval (HPD) of

θ using the generated importance sampling procedure, as suggested by Chen et al. (2000).

Suppose θp is such that P (θ ≤ θp|Data) = p, for 0 < p < 1. Consider the following function

g(λ, µ) =






1 if θ ≤ θp

0 if θ > θp.

(21)

Clearly, E(g(λ, µ)|Data) = p. Therefore, a simulation consistent Bayes estimate of θp under

squared error loss function can be obtained from the generated sample {(µ1, λ1), · · · , (µN , λN)}

as follows. Let

wi =
h(µi)∑N

i=1 h(µi)
,

and θ1 = θ(λ1, µ1), · · · , θN = θ(λN , µN). Rearranging (θ1, w1), · · · , (θN , wN) as follows

{(θ(1), w[1]), · · · , (θ(N), w[N ])}, where θ(1) < · · · < θ(N). Note that, w[i]’s are not ordered,

they are associated with θ(i)’s. Then a simulation consistent Bayes estimate of θp can be

obtained as θ̂p = θ(Np), where
Np∑

i=1

w[i] ≤ p <

Np+1∑

i=1

w[i],

see Chen and Shao (1999) or Chen et al. (2000).

Now using the above procedure, a 100(1-α)% credible interval can be obtained as

(θ̂δ, θ̂δ+1−α), for δ = w[1], w[1] + w[2], · · · ,

N1−α∑

i=1

w[i]. (22)
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Therefore, a 100(1-α)% HPD credible interval of θ becomes, ((θ̂δ∗ , θ̂δ∗+1−α), where δ∗ is such

that for all δ,

(θ̂δ∗+1−α − θ̂δ∗) ≤ (θ̂δ+1−α − θ̂δ)

5 Numerical Experiments and Data Analysis

5.1 Numerical Experiments

In this section we present some experimental results to observe the behavior of the proposed

method for different sample sizes, different effective sample sizes, different priors, and for dif-

ferent sampling schemes. We have considered different sample sizes; n = 20, 25, 30, different

effective sample sizes; m = 10, 15, and eleven ([a] - [k]) different sampling schemes. Among

the eleven schemes, schemes [a], [c], [f], [h], [j] are the usual Type-II censoring schemes. Here

all the remaining n − m surviving units are removed at the m-th failure time point. The

censoring schemes [b], [d], [g], [i], [k] are just the opposite of the Type-II censoring schemes.

Here n−m surviving units are removed at the first failure time point. It may be mentioned

that for fixed n and m, the expected duration of the experiment is maximum for the oppo-

site of Type-II censoring scheme, and minimum for Type-II censoring scheme. For any other

censoring scheme, the expected duration lies in between these two extremes.

In all cases we have used µ = 1 and λ = 1. For a given n, m and a sampling scheme,

using the algorithm proposed by Balakrishnan and Sandhu [10], we have generated a sample

for a given censoring scheme. We compute the MLEs of the unknown parameters based on

the method proposed in Section 3. We also compute the Bayes estimates of the unknown

parameter(s) based on the importance sampling procedure proposed in Section 4. It is

assumed that λ has non-informative prior, i.e. a = b = 0. For comparison purposes we have

also computed the Bayes estimates and the associated credible intervals based on direct
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integrations. In computing the Bayes estimates we have used 5000 importance samples, and

we compute the average bias and the corresponding standard error of the estimates based

on 1000 replications. The results are presented in Tables 1 to 6.

Table 1: The average bias (AB), the standard error (SE) for the MLE of µ are presented for
different sample sizes and different sampling schemes.

n m Scheme No. AB SE

20 10 (9*0,10) [a] 0.0747 0.1152
20 10 (10, 9*0) [b] 0.0637 0.1122
25 10 (9*0, 15) [c] 0.0687 0.1040
25 10 (15, 9*0) [d] 0.0556 0.0993
25 10 (5, 5, 5, 7*0) [e] 0.0571 0.0993
25 15 (14*0, 10) [f] 0.0591 0.1038
25 15 (10, 14*0) [g] 0.0533 0.0977
30 10 (9*0, 20) [h] 0.0606 0.0979
30 10 (20, 9*0) [i] 0.0485 0.0910
30 15 (14*0, 15) [j] 0.0502 0.0934
30 15 (15, 14*0) [k] 0.0476 0.0898

Table 2: The average bias (AB), the standard error (SE) for the MLE of λ are presented for
different sample sizes and different sampling schemes.

n m Scheme No. AB SE

20 10 (9*0,10) [a] 0.5469 0.9574
20 10 (10, 9*0) [b] 0.3658 0.6942
25 10 (9*0, 15) [c] 0.5532 0.9679
25 10 (15, 9*0) [d] 0.3423 0.6595
25 10 (5, 5, 5, 7*0) [e] 0.3743 0.7102
25 15 (14*0, 10) [f] 0.3098 0.5717
25 15 (10, 14*0) [g] 0.2558 0.5059
30 10 (9*0, 20) [h] 0.5344 1.0231
30 10 (20, 9*0) [i] 0.3284 0.6250
30 15 (14*0, 15) [j] 0.3099 0.5656
30 15 (15, 14*0) [k] 0.2299 0.4636
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Table 3: The average bias (AB), the standard error (SE) for the Bayes estimate (when
both are unknown) of µ when µ = 1 are presented for different sample sizes and different
sampling schemes. In the Table “Bayes1” represents the Bayes estimates using the impor-
tance sampling procedure, whereas “Bayes2” represents the Bayes estimates using the direct
computation procedure.

Bayes1 Bayes2
n m Scheme No. AB SE AB SE

20 10 (9*0,10) [a] 0.0139 0.1409 0.5226 0.4551
20 10 (10, 9*0) [b] 0.0289 0.1396 0.4616 0.2453
25 10 (9*0, 15) [c] 0.0150 0.1269 0.4876 0.4085
25 10 (15, 9*0) [d] 0.0291 0.1203 0.4092 0.2576
25 10 (5, 5, 5, 7*0) [e] 0.0199 0.1222 0.4331 0.4279
25 15 (14*0, 10) [f] 0.0409 0.1161 0.4323 0.3764
25 15 (10, 14*0) [g] 0.0075 0.1127 0.3210 0.2236
30 10 (9*0, 20) [h] 0.0142 0.1183 0.3812 0.3312
30 10 (20, 9*0) [i] 0.0290 0.1049 0.3134 0.2459
30 15 (14*0, 15) [j] 0.0335 0.1038 0.2789 0.2129
30 15 (15, 14*0) [k] 0.0013 0.1034 0.2645 0.2106

Table 4: The average bias (AB), the standard error (SE) for the Bayes estimate (when
both are unknown) of λ when λ = 1 are presented for different sample sizes and different
sampling schemes. In the Table “Bayes1” represents the Bayes estimates using the impor-
tance sampling procedure, whereas “Bayes2” represents the Bayes estimates using the direct
computation procedure.

Bayes1 Bayes2
n m Scheme No. AB SE AB SE

20 10 (9*0,10) [a] 0.3667 0.8780 0.7624 1.2340
20 10 (10, 9*0) [b] 0.1712 0.6059 0.2548 0.8121
25 10 (9*0, 15) [c] 0.3738 0.8941 0.6614 0.9059
25 10 (15, 9*0) [d] 0.1460 0.5699 0.2519 0.7953
25 10 (5, 5, 5, 7*0) [e] 0.1781 0.6194 0.4538 0.7389
25 15 (14*0, 10) [f] 0.2778 0.5907 0.3945 0.6812
25 15 (10, 14*0) [g] 0.1660 0.5033 0.2219 0.5109
30 10 (9*0, 20) [h] 0.3675 0.5678 0.4124 0.6125
30 10 (20, 9*0) [i] 0.1364 0.5019 0.2245 0.5715
30 15 (14*0, 15) [j] 0.2791 0.5998 0.3078 0.5823
30 15 (15, 14*0) [k] 0.1281 0.4512 0.1876 0.5257

Some of the points are quite clear from these experimental results. It is clear that as

the effective sample size increases, the SE decrease for all the cases. The performance of the
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Table 5: The average credible interval and the coverage percentage for the Bayes estimate
(when both are unknown) of µ when µ = 1 are presented for different sample sizes and
different sampling schemes.

n m Scheme No. Interval Coverage

20 10 (9*0,10) [a] (0.4524, 1.5512) 89.1%
20 10 (10, 9*0) [b] (0.4243, 1.5406) 90.3%
25 10 (9*0, 15) [c] (0.4450, 1.5325) 91.3%
25 10 (15, 9*0) [d] (0.4228, 1.5244) 91.5%
25 10 (5, 5, 5, 7*0) [e] (0.3589, 1.4250) 92.2%
25 15 (14*0, 10) [f] (0.3845, 1.4351) 92.5%
25 15 (10, 14*0) [g] (0.3287, 1.4237) 93.2%
30 10 (9*0, 20) [h] (0.3531, 1.4206) 93.3%
30 10 (20, 9*0) [i] (0.3537, 1.4106) 93.4%
30 15 (14*0, 15) [j] (0.3896, 1.4190) 94.2%
30 15 (15, 14*0) [k] (0.3181, 1.4154) 94.4%

Table 6: The average credible interval and the coverage percentage for the Bayes estimate
(when both are unknown) of λ when λ = 1 are presented for different sample sizes and
different sampling schemes.

n m Scheme No. Interval Coverage

20 10 (9*0,10) [a] (0.5827, 2.3674) 89.2%
20 10 (10, 9*0) [b] (0.4717, 2.0263) 92.5%
25 10 (9*0, 15) [c] (0.5879, 2.3787) 93.1%
25 10 (15, 9*0) [d] (0.4553, 1.9780) 93.3%
25 10 (5, 5, 5, 7*0) [e] (0.4792, 2.0402) 94.2%
25 15 (14*0, 10) [f] (0.6410, 1.9549) 94.0%
25 15 (10, 14*0) [g] (0.5751, 1.7974) 94.1%
30 10 (9*0, 20) [h] (0.5741, 2.3158) 94.2%
30 10 (20, 9*0) [i] (0.4366, 1.9642) 94.5%
30 15 (14*0, 15) [j] (0.6452, 1.9426) 94.3%
30 15 (15, 14*0) [k] (0.5554, 1.7411) 94.7%

MLEs are quite satisfactory. The Bayes estimates using importance sampling method work

quite well, and in most of the cases it performs better, in terms of SE, than the corresponding

Bayes estimate obtained by direct calculations. Since the computation of the Bayes estimates

using importance sampling method is quite straight forward, it can be used for all practical

purposes. Moreover, if we want to compute the Bayes estimate or the associated credible

interval of any function of the parameters, the same samples can be used.
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Table 7: Strength Data

0.562 0.564 0.729 0.802 0.950 1.053 1.111 1.115 1.194 1.208
1.216 1.247 1.256 1.271 1.277 1.305 1.313 1.348 1.390 1.429
1.474 1.490 1.503 1.520 1.522 1.524 1.551 1.551 1.609 1.632
1.632 1.676 1.684 1.685 1.728 1.740 1.761 1.764 1.785 1.804
1.816 1.824 1.836 1.879 1.883 1.892 1.898 1.934 1.947 1.976
2.020 2.023 2.050 2.059 2.068 2.071 2.098 2.130 2.204 2.262
2.317 2.334 2.340 2.346 2.378 2.483 2.683 2.835 2.835

5.2 Data Analysis

In this section we present a data analysis for illustrative purposes. It is a strength data

set originally reported by Badar and Priest (1982). The authors are thankful to Professor

R.G. Surles for providing the data, which represent the strength measured in GPA for single

carbon fibers and impregnated 1000-carbon fiber tows. The data set is presented below in

Table 7.

Preliminary data analysis indicate that the data are positively skewed. The scaled TTT

transform is provided in Figure 1, it’s concavity indicates that the sample hazard function

is an increasing function, see for example Aarset (1987). Therefore, two-parameter Rayleigh

distribution may be used to analyze this data set. Recently, it has been observed by Dey et

al. (2011) that the two-parameter Rayleigh distribution fits the data quite well.

We have generated progressively censored samples using three different sampling schemes

from the full data set with m = 25 as follows.

Censoring Scheme 1: (24*0,44): 0.562 0.564 0.729 0.802 0.950 1.053 1.111 1.115 1.194

1.208 1.216 1.247 1.256 1.271 1.277 1.305 1.313 1.348 1.390 1.429 1.474 1.490 1.503 1.520

1.522.
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Figure 1: Scaled TTT transform data of the complete sample.

Censoring Scheme 2: (44, 24*0): 0.562 0.564 0.729 0.950 1.053 1.208 1.271 1.277 1.390

1.522 1.551 1.609 1.676 1.816 1.824 1.879 1.898 1.934 1.947 1.976 2.050 2.204 2.262 2.346 2.835

Censoring Scheme 3: (24*1, 20): 0.562 0.564 0.729 0.802 0.950 1.053 1.111 1.115 1.194

1.208 1.247 1.256 1.271 1.277 1.348 1.390 1.429 1.474 1.503 1.520 1.524 1.551 1.551 1.609

1.632

First we obtain the MLEs of µ and λ based on the data obtained in Scheme 1. In Figure

2 we provide the plot of the profile log-likelihood function of µ. It is an unimodal function,

and based on that we obtain µ̂MLE = 0.448, and finally we obtain λ̂ = 0.375. Similarly,

we obtain the MLEs of µ and λ for other schemes too. Although we could not prove it

theoretically, it is observed that the profile log-likelihood function is an unimodal function.

Therefore, finding the MLE of µ is quite simple, and once the MLEs of µ is obtained the

MLE of λ can be obtained immediately.

As we have no prior information of the hyper-parameters of the prior distribution of λ, we

assume non-informative prior of λ, i.e. a = b = 0. We also construct 95% credible intervals
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Figure 2: Profile log-likelihood of µ.

for µ and λ. All results are presented in Table 8. In all cases, it is clear that the MLEs and

the Bayes estimators with respect to the non-informative priors behave quite similarly. One

major advantage of the Bayesian method is that the construction of the credible intervals

become quite simple in this case.

Table 8: Data analysis result of strength data. The credible intervals are presented within
parenthesis.

Scheme µ̂MLE λ̂MLE µ̂Bayes1 λ̂Bayes1 µ̂Bayes2 λ̂Bayes2

Scheme 1 0.448 0.375 0.476 0.399 0.512 0.428
(0.430, 0.529) (0.375, 0.515) (0.213, 0.725) (0.102, 0.781)

Scheme 2 0.447 0.591 0.416 0.611 0.472 0.635
(0.360, 0.512) (0.476, 0.769) (0.143, 0.723) (0.189, 0.912)

Scheme 3 0.455 0.407 0.471 0.463 0.496 0.503
(0.424, 0.531) (0.412, 0.589) (0.195, 0.782) (0.142, 0.843)
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6 Prediction

In this section we consider the prediction of the censored observations based on the current

available sample, popularly known as the informative sample. Predicting the censored or

future observations based on the informative sample is important in applied statistics. This

problem has received considerable attention recently, see the articles by Al-Hussaini (1999),

Ali Mousa et al. (2005), Balakrishnan et al. (2010), Kundu and Raqab (2012) and see the

references cited therein.

The main objective is to provide the estimate of the posterior predictive density of the

censored observations based on the current type-II censored data, and also to construct pre-

dictive intervals of the censored sample, based on an informative sample, see for example

Dunsmore (1974) for a nice discussion on it. Prediction of censored observations for progres-

sively censored samples was first considered by Balakrishnan and Rao (1997). They mainly

considered the prediction of the future observation. Later Basak et al. (2006) considered

more general problems under the same setup. We mainly consider the similar prediction

problem as of Basak et al. (2006), as described below.

Let X1, · · · , Xn denote the failure times of n independent units placed on a life-testing

experiment. It is assumed that Xi’s are random samples from a distribution function with

CDF (2). Let T1 < · · · < Tm denote the ordered statistics from a progressively Type-II

censoring scheme (R1, · · · , Rm), observed from X1, · · · , Xn. It should be noted that instead

of the complete sample X1, · · · , Xn, we observe only T1 < · · · < Tm. The prediction problem

involves predicting life-lengths Tj:Ri
for j = 1, · · · , Ri and i = 1, · · · ,m of all censored units

in all m stages of censoring. Here Tj:Ri
denotes the j-th order statistics out of Ri removed

units at the i-th stage.

In this case since the CDF F (·; λ, µ) is absolutely continuous, the conditional distribution
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of Tj:Ri
given T1, · · · , Tm is the conditional distribution of Tj:Ri

given Ti. Moreover, the PDF

of Tj:Ri
given Ti = ti is same as the PDF of the j-th order statistics out of Ri units from the

PDF

g(x; λ, µ) =
f(x; λ, µ)

1 − F (ti; λ, µ)
= 2λ(x − µ)e−λ(x−ti)(x+ti−2µ); x > ti. (23)

For predicting Tj:Ri
, we first obtain the posterior predictive density of Tj:Ri

given Ti = ti.

The posterior predictive density of Tj:Ri
given Ti = ti is given by

f ∗
Tj:Ri

|Ti=ti
(t|data) = EPosterior

[
fTj:Ri

|Ti=ti(t|λ, µ)
]

=

∫ ∞

0

∫ t1

0

fTj:Ri
|Ti=ti(t|λ, µ)π(λ, µ|Data)dµdλ. (24)

Here fTj:Ri
|Ti=ti(t|λ, µ) is the conditional PDF of Tj:Ri

given Ti = ti. Using the Markov

property of the conditional order statistics, we have

fTj:Ri
|Ti=ti(t|λ, µ) =

2λRi!

(j − 1)!(Ri − j)!
× (t − µ)2 × e−λ(Ri−j+1)(t−µ)2+λ(ti−µ)2Ri

×
(
e−λ(ti−µ)2 − e−λ(t−µ)2

)j−1

; t > ti, (25)

and π(λ, µ|Data) is same as defined in (11). It is immediate that f ∗
Tj:Ri

|Ti=ti
(t|data) cannot

be expressed in closed form. We propose to use the importance sampling technique as it has

been mentioned in Section 4, to estimate (25). Suppose {(λi, µi); i = 1, · · · , N} is a sample

of size N from the posterior distribution function π(λ, µ|Data), then a simulation consistent

estimator of f ∗
Tj:Ri

|Ti=ti
(t|data) becomes;

f̂ ∗
Tj:Ri

|Ti=ti
(t|data) =

1
∑N

k=1 h(µk)

N∑

k=1

fTj:Ri
|Ti=ti(t|λk, µk)h(µk). (26)

Along the same line we want to consider the estimation of the predictive distribution function

of Tj:Ri
given Ti = ti. Suppose Fj:Ri|Ti=ti(t|λ, µ) denotes the distribution function of Tj:Ri

given Ti = ti, i.e.

Fj:Ri|Ti=ti(t|λ, µ) =
Ri!

(j − 1)!(Ri − j)!

∫ t

0

[G(z|λ, µ)]j−1[1 − G(z|λ, µ)]Ri−jg(z|λµ)

=
Ri!

(j − 1)!(Ri − j)!

∫ G(t|λ,µ)

0

uj−1(1 − u)Ri−jdu, (27)
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and

G(t|λ, µ) =
F (t|λ, µ) − F (ti|λ, µ)

1 − F (ti|λ, µ)
; t > ti.

Therefore, the posterior predictive density of Tj:Ri
given Ti = ti is given by

F ∗
Tj:Ri

|Ti=ti
(t|data) = EPosterior

[
FTj:Ri

|Ti=ti(t|λ, µ)
]

=

∫ ∞

0

∫ t1

0

FTj:Ri
|Ti=ti(t|λ, µ)π(λ, µ|Data)dµdλ. (28)

A simulation consistent estimator of F ∗
j:Ri

(t|Data) can be obtained as

F̂ ∗
j:Ri|Ti=ti

(t|Data) =
1

∑N

k=1 h(µk)

N∑

k=1

Fj:Ri|Ti=ti(t|λk, µk)h(µk). (29)

Another interesting problem is to construct a two-sided predictive interval of Tj:Ri
based on

the observed sample. Now we will briefly discuss how to construct a 100(1-β)% predictive

interval of Tj:Ri
. Note that a symmetric 100(1-β)% predictive interval of Tj:Ri

can be obtained

by solving the following two equations for the lower bound L and upper bound U , see for

example; Al-Jarallah and Al-Hussaini (2007),

1 + β

2
= P [Tj:Ri

> L|Data] = 1 − F ∗
Tj:Ri

|Ti=ti
(L|Data) ⇒ F ∗

Tj:Ri
|Ti=ti

(L|Data) =
1

2
−

β

2
,

1 − β

2
= P [Tj:Ri

> U |Data] = 1 − F ∗
Tj:Ri

|Ti=ti
(U |Data) ⇒ F ∗

Tj:Ri
|Ti=ti

(U |Data) =
1

2
+

β

2
.

It is not possible to obtain the solutions analytically. We need to apply suitable numerical

techniques for solving non-linear equations.

For illustrative purposes we have considered the data set obtained by censoring scheme 1,

and obtained the posterior predictive density and the corresponding predictive distribution

function of the 26th observation in Figure 3.

7 Conclusions

In this paper we consider the statistical inference of the unknown parameters of the two-

parameter Rayleigh distribution when the data are progressively Type-II censored. Al-
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Figure 3: (a) Posterior predictive density, (b) Posterior predictive distribution function of
the 26-th observation based on censoring Scheme 1 for the strength data.

though, the MLEs can be obtained by solving a one dimensional optimization problem, the

corresponding confidence intervals are not easy to obtain. Due to this reason we consider

the Bayesian inference of the unknown parameters and we suggest using importance sam-

pling technique to compute the Bayes estimates and also to construct associated credible

intervals. It is observed that Bayes estimates with respect to the non-informative priors

behave quite similarly with the corresponding MLEs. We further consider the prediction of

the unobserved observation using the observed sample from a predictive density approach.

Although the predictive density cannot be obtained in explicit forms, we have proposed to

use importance sampling technique to estimate the predictive density function and also the

associated distribution function.
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Appendix

Proof of Theorem 1: We write (4) as

l(µ, λ) = m ln λ +
m∑

i=1

ln(ti − µ) − λ

m∑

i=1

ci(ti − µ)2, (30)

where ci = (Ri + 1) ≥ 1 for i = 1, . . . ,m. The domain of the log-likelihood function l(µ, λ)

is [0, t1) × (0,∞). First we will show that for (µ, λ) ∈ (−∞, t1) × (0,∞), the maximum of

l(µ, λ) exists and it is unique. The following observations will be useful

∂2l(µ, λ)

∂λ2
= −

m

λ2
< 0,

∂l(µ, λ)

∂µ2
= −

m∑

i=1

1

(ti − µ)2
− 2λ

m∑

i=1

ci < 0.

Hence for fixed λ(µ), l(µ, λ) is a strictly concave function of µ(λ). Since m ≥ 2, for fixed λ

lim
µ→−∞

l(µ, λ) = −∞ and lim
µ→t1

l(µ, λ) = −∞ (31)

and for fixed µ

lim
λ→0

l(µ, λ) = −∞ and lim
λ→∞

l(µ, λ) = −∞. (32)

Therefore, for fixed λ (µ), l(µ, λ) is an unimodal function with respect to µ (λ). Further,

lim
µ → −∞

λ → 0

l(µ, λ) = −∞, lim
µ → t1
λ → 0

l(µ, λ) = −∞, lim
µ → −∞

λ → ∞

l(µ, λ) = −∞ lim
µ → t1
λ → ∞

l(µ, λ) = −∞. (33)

Suppose (µ0, λ0) ∈ (−∞, t1) × (0,∞), and l(µ0, λ0) = c. Consider, the following set

A = {(µ, λ) : (µ, λ) ∈ (−∞, t1) × (0,∞), l(µ, λ) ≥ c}.
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A is a closed and bounded set, hence A is compact. Since l(µ, λ) is a continuous function of

(µ, λ), hence l(µ, λ) has a maximum for (µ, λ) ∈ A. To show that if (µ1, λ1) ∈ (−∞, t1) ×

(0,∞) maximizes l(µ, λ), then (µ1, λ1) is unique, observe that for (µ, λ) ∈ (−∞, t1)× (0,∞),

l(µ1, λ1) > l(µ1, λ) > l(µ, λ). (34)

Therefore, if µ1 ≥ 0, the proof is complete. Suppose µ1 < 0, in this case for (µ, λ) ∈

(0, t1) × (0,∞)

l(µ1, λ1) > l(0, λ1) > l(µ, λ1) > l(µ, λ). (35)

Hence in this case the MLE of (µ, λ) becomes (0, λ1), and it is unique.

References

[1] Aarset, M.V. (1987), “How to identify a bathtub shaped hazard rate?”, IEEE Transac-

tions on Reliability, vol. 36, 106 - 108.

[2] Al-Jarallah, R.A. and Al-Hussaini, E.K. (2007), “Bayes inference under a finite mixture

of two-compund Gompertz components model”, Journal of Statistical Computation and

Simulation, vol. 77, 915-927.

[3] Al-Hussaini, E.K. (1999), “Predicting observable from a general class of distributions”,

Journal of Statistical Planning and Inference, vol. 79, 79 - 91.

[4] Ali Mousa, M.A.M. and Al-Sagheer, S.A. (2005), “Bayesian prediction for progressively

type-II censored data from the Rayleigh model”, Communications in Statistics - Theory

and Methods, vol. 34, 2353 - 2361.

[5] Badar, M.G. and Priest, A.M. (1982), “Statistical aspects of fiber and bundle strength

in hybrid composites”, Progress in Science and Engineering Composites, Hayashi, T.,

Kawata, K. and Umekawa, S. eds. Tokyo, 1129 - 1136.



24

[6] Balakrishnan, N. and Aggrawalla, R. (2000), Progressive Censoring: Theory, Methods

and Applications, Boston, Berkhauser.

[7] Balakrishnan, N., Beutner, E. and Cramer, E. (2010), “Exact two-sample non-parametric

confidence, prediction, and tolerance intervals based on ordinary and progressively type-

II right censored data”, Test, vol. 19, 68 - 91.

[8] Balakrishnan, N. (2007), “Progressive censoring methodology: an appraisal (with discus-

sions), Test, vol. 16, 211 - 296.

[9] Balakrishnan, N. and Rao, C.R. (1997), “Large sample approximations to best linear

unbiased estimation and best linear unbiased prediction based on progressively censored

samples and some applications”, Advances in Statistical Decision Theory and Applica-

tions, eds. Panchapakesan, S. and Balakrishnan, N., Birkhauser, Boston, 431 - 444.

[10] Balakrishnan, N. and Sandhu, R.A. (1995), “A simple algorithm for generating progres-

sively type-II generated samples”, American Statistician, vol. 49, 229 - 230.

[11] Basak, I., Basak, P. and Balakrishnan, N. (2006), “On some predictors of times to failure

of censored items in progressively censored samples”, Computational Statistics and Data

Analysis, vol. 50 1313 - 1337.

[12] Chen, M.H. and Shao, Q.M. (1999), “Monte Carlo estimation of Bayesian credible and

HPD intervals”, Journal of Computational and Graphical Statistics, vol. 8, 69 - 92.

[13] Chen, M.H., Shao,Q.M., and Ibrahim,J.G. (2000), Monte Carlo Methods in Bayesian

Computation, Springer-Verlag, New York.

[14] Dey, S. (2009), “Comparison of Bayes Estimators of the parameter and reliability func-

tion for Rayleigh distribution under different loss functions”, Malaysian Journal of Math-

ematical Sciences vol. 3, 247-264.



25

[15] Dey, S. and Das, M.K. (2007), “A Note on Prediction Interval for a Rayleigh Distribu-

tion: Bayesian Approach”, American Journal of Mathematical and Management Science,

vol. 1&2, 43 - 48.

[16] Dey, S., Dey, T. and Kundu, D. (2011), “Two-parameter Rayleigh distribution: different

methods of estimation”, Submitted.

[17] Dunsmore, I.R. (1974), “The Bayesian predictive distribution in life testing models”,

Technometrics, vol. 16, 455 - 460.

[18] Howlader, H. and Hossain, A. (1995), “Bayesian estimation and prediction from

Rayleigh distribution based on Type-II censored data”, Communications in Statistics

- Theory and Methods, vol. 24, 2249 - 2259.

[19] Huang, S-R and Wu, S-J (2008), “Reliability sampling plans under progressive type-I

interval censoring using cost functions”, IEEE Transactions on Reliability, vol. 57, 445 -

451.

[20] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994), Continuous Univariate Distribu-

tion, Volume 1, John Wiley and Sons, New York.

[21] Khan, H.M.R., Provost, S.B. and Singh, A. (2010), “Predictive inference from a two-

parameter Rayleigh life model given a doubly censored sample”, Communications in

Statistics - Theory and Methods, vol. 39, 1237 - 1246.

[22] Kim, C. and Han, K. (2009), “Estimation of the scale parameter of the Rayleigh dis-

tribution under general progressive censoring”, Journal of the Korean Statistical Society,

vol. 38, 239 - 245.

[23] Kundu, D. (2008), “Bayesian inference and life testing plan for Weibull distribution in

presence of progressive censoring”, Technometrics, vol. 50, 144 - 154.



26

[24] Kundu, D. and Howlader, H. (2010), “Bayesian inference and prediction of the inverse

Weibull distribution for Type-II censored data”, Computational Statistics and Data Anal-

ysis, vol.54, 1547 - 1558.

[25] Kundu, D. and Pradhan, B. (2009), “Bayesian inference and life testing plans for gen-

eralized exponential distribution”, Science in China, Series A: Mathematics (Special

volume dedicated to Professor Z.D. Bai), vol. 52, 1373 - 1388.

[26] Kundu, D. and Raqab, M. (2012), “Bayesian inference and prediction for a type-II

censored Weibull distribution”, Journal of Statistical Planning and Inference, vol. 142,

41 - 47.

[27] Pradhan, B. and Kundu, D. (2009), “On progressively censored generalized exponential

distribution”, Test, vol. 18, 497 - 515.

[28] Pradhan, B. and Kundu, D. (2011), “Bayes estimation and prediction of the two-

parameter gamma distribution”, Journal of Statistical Computation and Simulation, vol.

81, 1187 - 1198.

[29] Rayleigh, J.W.S. (1880), “On the resultant of a large number of vibrations of the some

pitch and of arbitrary phase”, Philosophical Magazine, 5-th Series, vol. 10, 73-78.

[30] Weibull, W. (1951), “A statistical distribution function of wide applicability”, Journal

of Applied Mechanics Transactions, ASME, vol. 18, 293 - 297.

[31] Wu, S-J and Huang, S-R (2010), “Optimal warranty length for a Rayleigh distributed

product with progressive censoring”, IEEE Transactions on Reliability, vol. 59, 661 - 666.


