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ABSTRACT 

The Architectural/Engineering/Construction (AEC) industry is slowly shifting toward performance-driven project and 

project delivery.  Assuring good performance requires efficient performance control processes.  Among the different 

construction performance control processes, many critical ones, including progress tracking, productivity tracking and 

dimensional quality control, rely on efficient three-dimensional (3D) information flows.  However, the AEC industry 

currently lacks reliable and efficient means of monitoring 3D information at the object level, which is critical to these 

processes.  The authors have developed an innovative approach for automated 3D data collection (A3dDC) by 

automatically recognizing 3D Computer-Aided Design (CAD) model objects in 3D laser scans.  This paper rapidly 

presents this approach and then details how it enables (1) automated life-cycle project 3D data collection for integration 

within Building Information Models, and consequently (2) the monitoring processes above to perform better.  It is also 

shown how this approach enables planning for 3D scanning and ultimately strategic scanning. 
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1. BACKGROUND 

The Architectural/Engineering/Construction (AEC) 

industry is slowly shifting toward performance-

driven projects and project delivery.  Projects must 

perform better from the owner and users’ view 

points by, for instance, consuming less energy, 

providing good lighting conditions to the users, 

enabling safe and rapid evacuation in case of 

emergency.  And, the delivery of the project must 

perform better from the owner and contractor’s view 

points (e.g. construction safety, time, quality, cost). 
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Assuring good performance requires efficient 

performance control processes.  This is true for 

projects managed in a traditional manner, and even 

more particularly for projects using the Lean 

Construction management approach [1]. 

Control processes include (1) a forward information 

flow to drive process behavior and (2) a feedback 

information flow for monitoring purposes [2]. The 

feedback flow is typically used to adjust the forward 

information flow in order to meet the overall 

expected project performance. 

In the AEC industry, the forward information flow 

corresponds to the flow of information resulting 

from design, planning and management activities, 

and the feedback flow results from construction 

monitoring activities.   

The current state of the AEC industry is that control 

processes are inefficient [2, 3, 4]. In order to 

improve this situation, significant research efforts 

are currently directed toward the development of 

database systems that aim at rationalizing, 

streamlining and relating the information pertaining 

to a given project acquired during its entire life-

cycle: from planning to construction to operation 

and maintenance to decommissioning.  They 

improve the “visualization” of the project status to 

the user (management) and potentially enable 

automated project performance control.  These 

systems are referred to as Building Information 

Models (BIMs), Bridge Information Models 

(BrIMs), City Information Models (CIMs), etc.  In 

this paper, we will refer to these systems as Project 

Information Models (PIMs). 

Currently, PIMs can however only partially improve 

project process flows.  They can significantly impact 

forward process flows, but are constrained by the 

inefficiency and unreliability of currently achieved 

performance monitoring information flows.  The 

AEC industry has been lacking efficient and reliable 

means of recording accurate project as-built status 

information [3, 4].  Many research and development 

efforts are now being conducted, driven by new 

technologies, with the aim of developing efficient 

and reliable Automated Data Collection (ADC) 

systems for Automated Project Performance Control 

(APPC) [2]. 

2.  ADC-ENABLING TECHNOLOGIES AND 

CURRENT RESEARCH 

New technologies that can enable ADC include: 

• Global Navigation Satellite Systems (GNSSs): 

GNSSs include the Global Positioning System 

(GPS), the GLONASS system, and soon the 

Galileo and other systems. They allow the 

tracking of the three-dimensional positions of 

objects in the geocentric coordinate frame. The  

geo-positioning is achieved with different 

levels of accuracies depending on whether base 

stations and/or post-processing techniques are 

used or not.  Note that GNSS systems do not 

directly provide orientation information.  For 

this, digital compasses may be used. 

Radio Frequency and Identification (RFID) or Ultra 

Wide Band (UWB) systems: RFID and UWB 

systems allow storing and remotely (and without line 

of sight) retrieving data stored in tags attached to 

tracked items.  Indoor UWB systems are now being 

used like GNSS systems for precise 3D tracking 

inside structures. 

Video and audio technologies, such as digital and 

video cameras are available to cheaply record site 

activity in real-time. 

Laser Detection and Ranging (LADAR): Also 

referred to as laser scanners, LADAR technologies 

allow acquiring 3D depth images with millimeter 

accuracies and with ultra high resolutions. 

Embedded sensing technologies: Embedded system 

technologies, such as Microelectromechanical 

Systems (MEMS), combined with wireless 

communication technologies, enable the monitoring 

of critical project information in real-time, 

sometimes where physical access is otherwise not 

even possible (e.g. concrete temperature for concrete 

maturity for instance). 

ADC systems that use these technologies are 

currently being researched.  For example, [5] 

presents a dual GPS-RFID system for tracking 

material locations on site; [6] presents a ground-

based radio frequency system for indirectly 

measuring project progress by tracking workers’ 

locations; [7] presents an approach for the automated 
retrieval of construction site images according to 
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multiple criteria in particular materials and "shape" 
(linear vs. non-linear objects) and can thus be used for 

retrieval of construction images objects with specific 

material and "shape"; and [8] presents a MEMS 
accelerometer for structural monitoring. 

GPS, RFID, MEMS and embedded sensing systems 

are already demonstrating significant improvements 

in project performance monitoring. It can however 

be noted that, although the use of LADAR 

technologies is generally agreed to have a potentially 

significant impact on project three-dimensional (3D) 

status monitoring, no major research achievements 

have yet been demonstrated in the use of this 

technology for reliable and efficient ADC. 

3. NEED FOR AUTOMATED OBJECT-

LEVEL 3D DATA COLLECTION (A3DDC) 

Many essential AEC control processes, that PIMs 

are intended to support, require monitoring the life-

cycle 3D status of a project.  They include:  

Project progress tracking, 

Productivity tracking, 

Dimensional quality assessment and quality control 

(QA/QC), 

Life-cycle structural (dimensional) health moni-

toring, and 

Safety assurance. 

These activities require comprehensive life-cycle 

project 3D data be not only accurately acquired but 

also organized at the object level.  For instance, 

progress tracking requires, among other aspects, 

identifying the project 3D objects that are built at 

given times.  Then, dimensional QA/QC typically 

requires detailed 3D information be acquired for 

individual objects.  Additionally, PIMs themselves 

typically organize project data from the bottom-up 

starting at the object-level.  Automated Object-Level 

3D Data Collection (A3dDC) would enable efficient 

project life-cycle 3D data management within PIMs, 

and thus support more efficient and reliable project 

performance control processes such as the ones 

mentioned above.  However, very little progress has 

yet been achieved in A3dDC. 

4. NEW APPROACH FOR A3DDC 

The authors have developed an innovative approach 

for the automated recognition of 3D CAD model 

objects in 3D LADAR scans.  The approach enables 

A3dDC and thus can be integrated with PIMs to 

enable efficient project life-cycle 3D data 

management.  A rapid description of the approach 

and its achieved recognition performances are 

provided here.  A more detailed description can be 

found in [9] and, with improvements, in [10]. 

4.1. Description 

For recognizing project 3D objects in a site 3D laser 

scan, the developed approach requires the following 

data: (1) The registered 3D laser scan, and (2) the 

registered project 3D CAD model. It then follows a 

five-step process [11, 12]: 

Convert CAD model: The project 3D CAD model is 

converted into the open-source STereoLithography 

(STL) format. This format is chosen for two reasons: 

(1) it faithfully retains 3D information from the 

original CAD model, and (2) it enables a significant 

reduction in the computational complexity of the 

approach compared to more traditional formats. 

Reference project 3D model in scan: The scan and 

model registration information is used to reference 

the STL-formatted project 3D model in the laser 

scan’s spherical coordinate frame 

Calculate as-planned scan: a virtual scan (or as-

planned scan) is conducted using the referenced 

project 3D model as the virtually scanned world.  In 

this scan, each as-planned point corresponds to 

exactly one point in the real scan (or as-built point): 

they have the same pan and tilt angles. Additionally, 

it is known in the virtual scan from which model 

object each as-planned point is obtained. 

Recognize points: For each pair of as-planned–as-

built range points, they are matched by comparing 

their ranges (they have the same pan and tilt angles).  

If their ranges are similar, the as-built point is 

considered recognized.  Range similarity is checked 

with the following metric, where ∆ρ is the difference 

between the two point ranges (in mm) and ∆ρmin is an 

automatically calculated threshold: 
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In this metric, ∆ρmin is calculated automatically using 

the following formula where εReg is the mean 

registration error between the laser scan and the 3D 

model: 

 

This calculation enables the recognition metric to 

take the two sources of uncertainty that are the 

registration/referencing error (εReg) and possible 

construction error (50) into account. 

Recognize object: Since it is known from which 

model object each as-planned range point is 

obtained, the as-planned range points, and 

consequently their corresponding as-built range 

points, can be sorted by object.  The recognition of 

each object is then performed using the following 

metric where Surf is the covered surface of its 

recognized as-planned point and Surfmin is an 

automatically calculated threshold: 

 

The calculation of the covered surface of the 

recognized as-planned points of an object, Surf, is a 

function of the scan angular resolution and the as-

planned point range and reflection angle.  Then, the 

calculation of Surfmin is a function of the scan 

angular resolution and the maximum model distance 

to the scanner.  This calculation of Surfmin enables 

the object recognition metric to take the scan angular 

resolution into account and ensures that, for each 

recognized object, at least five of its as-planned 

range points are recognized.  And, overall, the object 

recognition metric is invariant with scan resolution 

and object-scanner distance. 

Figure 1 illustrates these five steps with an example. 

4.2. Recognition Performances 

It has been demonstrated with experiments 

conducted with real-life data that this approach 

performs very well. Figure 2 shows the 3D CAD 

model, containing 612 objects, and a 3D laser scan, 

containing about 800,000 points, of the steel 

structure of a building part of a power plant project 

conducted in Toronto that was used for these 

experiments (see Acknowledgements). 

Several laser scans of this building were actually 

obtained, and on average, the developed approach 

achieved a recall rate of 76%, a specificity rate of 

94% and a precision rate of 89%. While the 

specificity and precision rates are very high, the 

recall rate is not as good.  The main reason for this 

lower rate can be found in the fact the model-scan 

registration was actually of poor quality (average 

mean registration errors of around 30mm).  The 

point recognition metric takes the registration error 

into account in the calculation of ∆ρmin.  However, it 

actually only partially takes it into account.  Indeed, 

for some points the registration error may end up 

being in the same direction as their scanning 

directions, in which case the point recognition 

metric would properly account for it.  But, for other 

points, this error may very well be in perpendicular 

directions, in which case the point recognition 

metric would poorly, if at all, account for it.  

However, large objects are rarely missed. 

5. ENABLED PERFORMANCE 

MONITORING APPLICATIONS 

The developed approach enables A3dDC.  Further, if 

3D laser scans are acquired during the entire life of a 

project, the developed approach then enables the 

automated acquisition of the evolution of the 3D 

status of each of the model 3D objects over time.  

The resulting automatically constructed database, 

that can be referred to as the Project 4D Information 

Model (P4dIM) and that can be integrated as a part 

of the entire PIM, enables multiple applications 

related to the management of life-cycle 3D data. 

5.1. Construction Progress and Productivity 

Tracking 

With the P4dIM, the recognition of the 3D objects in 

the 3D laser scans of two different days can be used 

If Surf ≥ Surfmin Then 

       Object is recognized, 

Else 

       Object is not recognized 

End 

∆ρmin = εReg + 50  (1) 

If ∆ρ ≤ ∆ρmin Then 

       As-built point is recognized, 

Else 

       As-built point is not recognized 

End 
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to infer the progress and productivity of construction  

activities between these two days (see detailed 

analysis and experiments in [10]).   

Contrary to previously investigated ADC systems 

for progress tracking, that used indirect measuring 

methods ([6, 11]), this approach recognizes directly 

the quantities put in place (even partial objects like 

partially built brick walls) and so provides true 

progress and productivity measures.  

It must, however, be noted that not all construction 

activities can be monitored in terms of progress and 

productivity by collecting 3D information (e.g. 

painting). Reliable and efficient ADC for complete 

project progress and productivity tracking should 

thus consider fusing data and information from 

several monitoring systems such as the one 

presented here and those mentioned above. 

5.2. Construction Dimensional QA/QC 

The developed approach organizes the dense 

scanned range point clouds per object.  Therefore, 

for each object, the recorded point clouds can be 

used to assess its dimensional integrity. For instance, 

consider a structural concrete column with a 

cylindrical shape. Approaches matching primitives 

to point clouds such as those presented in [12] could 

be used to fit, in this case, a cylinder to the column’s 

range points. The fitting results could then be used 

to perform the following automated dimensional 

quality controls: 

Horizontal location: The horizontal location of the 

as-built column could be controlled by investigating 

whether the horizontal location of the center point of 

the fitted cylinder is the same, within tolerances, to 

the horizontal location of the column in the 

(referenced) 3D model. 

Verticality: The verticality of the as-built column 

could be controlled by investigating whether the 

direction of the main axis of the fitted cylinder is 

vertical, within tolerances. 

Diameter and Length: The diameter and length of 

the as-built column could be controlled by 

investigating whether the diameter and length of the 

fitted cylinder are the same, within tolerances, to 

 
 

Figure 1. Illustration of the process of the developed approach 

 

     
 

Figure 2. 3D CAD model (left) and a 3D laser scan (right) of the steel structure of the  

investigated building. 



 

 284

those of the same column in the (referenced) 3D 

model. 

Note that most designed and built 3D objects on 

AEC projects have primitive shapes or combinations 

of primitive shapes, so this approach could often be 

used. Otherwise, more complex fitting approaches 

could be investigated. 

5.2. Life-Cycle Dimensional Health Monitoring 

Similarly to dimensional QA/QC, during the project 

Operation and Maintenance (O&M) phase of a 

project the P4dIM would enable the automated 

monitoring of the project objects’ 3D dimensions 

over time. The structural health of a structure is 

often related to its dimensional integrity, particularly 

in the case of imminent failures.  The developed 

approach for P4dIM would enable real-time 

dimensional and consequently structural health 

monitoring.  Note that this is particularly interesting 

as 3D laser scans can be conducted remotely and 

consequently safely. 

6. PLANNING FOR SCANNING AND 

STRATEGIC SCANNING 

Further than enabling real-time monitoring of 

project performances, the developed approach would 

enable two additional important applications: 

planning for scanning and strategic scanning. 

6.1. Planning for scanning 

For each scan, the developed approach conducts, 

from the same position, a virtual scan using the 

project 3D model as the virtually scanned world.  

The assumption is that, if the building is built where 

it is intended to be, the project elements in the two 

scans should dimensionally match. The perfor-

mances of the developed approach confirm that this 

assumption is correct. What this performance 

analysis does not clearly show, however, is that the 

calculation of the as-planned point cloud takes into 

account occlusions due to model objects on other 

model objects, so that a model object fully occluded 

in the real scan is also expected to be fully occluded 

in the as-planned scan. This implies that the 

developed approach can be used to test scanning 

positions prior to conducting the scans in reality, and 

investigate whether they would allow the acquisition 

of object 3D information considered critical for the 

investigated performance control processes. 

Further, the developed approach can be used to plan 

the project life-cycle scanning operations, and 

optimize the number of scans and their locations that 

would need to be performed during a project in order 

to ensure the acquisition of 3D information critical 

to specific project performance control processes. 

It must be noted that occlusions due to non-model 

objects (e.g. equipment, temporary structures) are 

very common on construction sites, and may impact 

the results of this method for automated planning for 

scanning, since they are a priori unknown. In fact, 

the presence of non-model objects will always 

reduce the amount of 3D information actually 

scanned from the project objects. So, in general, 

scanned scenes should always be cleared as much as 

possible of non-model objects prior to conducting 

scans. 

6.2. Strategic scanning 

Further than planning for scanning, the developed 

approach could be used in a reverse mode. As 

mentioned above, as-planned scans can be 

conducted prior to real scans to assess their expected 

3D information content. Since, in an as-planned 

scan, it is known from which object each point is 

obtained, it would be simple to require the scanner 

on site to only scan those points of the objects that 

the performance from which control processes are 

interested in obtaining 3D information. 

This is of great interest.  Indeed, project managers 

who are currently dedicating resources to conduct 

project 3D scanning face the situation that they must 

save enormous amounts of scanned data, from which 

only a small portion is actually useful to their control 

processes.  With the proposed approach, only useful 

3D scanned data would be acquired, thus reducing 

the overall amount of data being stored during the 

life of a project. 

7.  CONCLUSIONS 

The AEC industry lacks efficient and reliable means 

of collecting comprehensive project 3D data 

automatically and at the object level.  This paper 

presented a new approach for automatically and 
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reliably recognizing project 3D CAD model objects 

in construction site 3D laser scans.  This approach 

enables the automated construction of the P4dIM – 

which can be integrated within the PIM, and 

consequently enables the automation (or at least 

strong computer-assistance) of many critical 

performance control processes. This system is 

complementary to other existing or investigated 

GPS, RFID, MEMS and embedded sensing systems, 

and could be integrated with them.  Additionally, it 

is shown how this approach enables planning for 

scanning and even strategic scanning.  This second 

application would help the AEC industry 

significantly reduce the amount of 3D data acquired 

and recorded during each project. 
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