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Abstract. We review recent results on stability of traveling waves in partly parabolic reaction-
diffusion systems with stable or marginally stable equilibria. We explain how attention to what
are apparently mathematical technicalities has led to theorems that allow one to convert spectral
calculations, which are used in the sciences and engineering to study stability of a wave, into
detailed, theoretically-based information about the behavior of perturbations of the wave.

1. Introduction

A reaction-diffusion equation in one space-dimension is a partial differential equation of the form

Yt = DYxx +R(Y ), (1.1)

with x ∈ R, t ≥ 0, and Y : R × R+ → Rn. The function R : Rn → Rn is smooth. D = diag(di) is
an n × n constant diagonal matrix with di > 0 for i = 1, . . . , k, where k a number between 1 and
n, and di = 0 otherwise. The equation is parabolic if k = n and partly parabolic otherwise.

Partly parabolic systems, or, as they are also called in the literature, partly dissipative [56,
p.283], partially degenerate [31]), or partially parabolic systems, are perhaps less familiar than
parabolic systems. They have diffusion in some equations (those for which di > 0) and no diffusion
in others. Examples include equations modeling nerve impulses, such as Hodgkin-Huxley and
FitzHugh-Nagumo; combustion and chemical reaction equations in which some reactant is a solid
(hence does not diffuse); intracellular calcium dynamics in the presence of immobile buffers [32,
33, 34, 62, 63]; population interaction models in which some populations diffuse and others do not
[11, 27, 28]; and models for malignant tumor growth [40].

One direction of study of partly parabolic systems has been existence and properties of attractors
of the associated semiflows; see references in [56]. In addition, examples of traveling waves in partly
parabolic equations have been studied for a long time. However, interest in traveling waves of partly
parabolic equations as a class appears to be recent. For commentary on this class of equations, see
Tsai [62] and Rottmann-Matthes [48].

Because of Galilean invariance (resulting from no x-dependence in the equations), system (1.1)
admits solutions of the form Y∗(ξ), ξ = x − ct, called traveling waves. Traveling waves move with
constant velocity while keeping their shape. When c = 0, they are called standing waves, and are
the equilibrium (that is, time-independent) solutions of (1.1). Without loss of generality we will
always take c ≥ 0. In general, traveling waves of (1.1) with velocity c are equilibrium solutions of
the PDE

Yt = DYξξ + cYξ +R(Y ), (1.2)

obtained from (1.1) by replacing x by the moving coordinate ξ = x − ct. Since a shift Y∗(· + q),
q ∈ R, of a traveling wave is also a traveling wave, equilibria of (1.2) come in one-parameter families.

Traveling wave solutions of (1.1) are the simplest solutions other than constants. They arise in
applied problems from such fields as optical communication, combustion theory, biomathematics
(calcium waves in tissue, nerve conduction, population dynamics), chemistry (autocatalytic reac-
tions), and botany (vegetation patterns). In applications traveling waves are frequently the most
important solutions.
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Our interest is in traveling waves that connect spatially homogeneous state. Hence we suppose
that Y∗(ξ) is an equilibrium solution of (1.2) with

lim
ξ→±∞

Y∗(ξ) = Y±.

Y∗(ξ) is called a pulse if Y− = Y+ and a front if Y− 6= Y+. Such traveling waves are found
by replacing Yt in (1.2) by 0, writing the resulting ODE as a first-order system Zξ = G(Z, c),

Z ∈ Rn+k, and looking for solutions that connect equilibria. Equilibria of the ODE represent
spatially homogeneous solutions of the PDE.

We shall limit our attention to traveling waves that approach their end states Y± exponentially.
Such waves are sometimes embedded in a continuum of waves. Some of these waves may not be
physical because, for example, they have negative values for physical quantities that must be non-
negative. In other cases some of the waves converge to one or both of their end states at rates slower
than exponential. The latter may be stable to exponentially small perturbations of themselves [39],
but this means that they are observed only when carefully prepared, nonphysical initial conditions
are used. Physically important initial conditions are generally strongly localized and therefore are
exponentially small perturbations of traveling waves that converge to their end states exponentially.
Hence it is usually sufficient to only consider traveling waves with this property.

In this paper we will review recent, general results that aid in the stability analysis of pulses and
fronts in partly parabolic systems.

2. Linear stability

2.1. Definitions. The definitions in this section do not depend on whether the system is partly
or fully parabolic.

Linearizing (1.2) at the traveling wave Y∗, we obtain the linear PDE

Yt = LY := (D∂ξξ + c∂ξ +DR(Y∗))Y. (2.1)

There are two related constant-coefficient linear PDEs

Yt = L±Y := (D∂ξξ + c∂ξ +DR(Y±))Y, (2.2)

obtained by linearizing (1.2) at Y±. The spectrum of the operator associated with L± on L2(R)n,
which we denote L±, can be computed using Fourier transform. It is a collection of curves in the
complex plane.

Definition 2.1. The equilibrium Y− is said to be

(i) stable in L2 if the spectrum of L− is contained in the half-plane {Reλ ≤ −ν} for some
ν > 0;

(ii) marginally stable in L2 if the spectrum of L− is contained in the half plane {Reλ ≤ 0} and
includes at least one point on the imaginary axis;

(iii) unstable in L2 if the spectrum of L− contains points with Reλ > 0;

and analogously for Y+.

The right-hand boundary of the union of the spectra of L− and L+ on L2 is also the right-
hand boundary of the essential spectrum of the operator associated with L on any of the standard
Banach spaces L2(R)n, L1(R)n, H1(R)n, or BUC(R)n (bounded uniformly continuous functions);
we denote all these operators by L, and we will usually omit the exponent n and the set R in the
notation. The latter two spaces are better suited to the study of nonlinear equations, since they
are closed under multiplication.

The discrete spectrum of L (eigenvalues of finite algebraic multiplicity that are isolated in the
spectrum) can be studied using ODE techniques. The approach is based on exponential dichotomies;
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see [29, Chapter 5], [30], [53]. Briefly, the eigenvalue equation for (2.1), λU = LU , can be rewritten
as a first-order linear ODE of the form

Zξ = (B(ξ) + λC)Z, Z : R→ Rn+k. (2.3)

Eigenfunctions Y (·) of L correspond to solutions Z(·) of (2.3) that lie in the function space under
consideration. There is a number ` such that for λ to the right of the essential spectrum of L,
the space of solutions of (2.3) that approach 0 exponentially as ξ = −∞ (respectively ξ =∞) has
dimension ` (respectively dimension n+ k − `). If these spaces have nontrivial intersection, λ is in
the discrete spectrum of L on any of the standard function spaces mentioned above; otherwise λ is
in the resolvent set of L. One can construct an analytic function D(λ), the Evans function [30, 53],
defined (at least) to the right of the essential spectrum, whose zeros are the eigenvalues of L; the
multiplicity of the zero gives the algebraic multiplicity of the eigenvalue. For the standard function
spaces mentioned above, there is always an eigenvalue 0 with eigenfunction Y ′∗ , the derivative of
the traveling wave.

We shall use the following definitions to describe stability properties of the waves:

Definition 2.2.
(i) A traveling wave Y∗ is called spectrally stable in a space E if the spectrum of the linear

operator L on E is contained in the half-plane {Reλ ≤ −ν} for some ν > 0, except for a
simple eigenvalue at 0.

(ii) A traveling wave Y∗ is called spectrally unstable due to essential spectrum in a space E if the
discrete spectrum of the linear operator L in E is contained in the half-plane {Reλ ≤ −ν}
for some ν > 0, except possibly for a simple eigenvalue at 0, but the essential spectrum has
nonempty intersection with the imaginary axis.

(iii) Assume that 0 is a simple eigenvalue of L on a space E , and let Y denote the null space of
the Riesz spectral projection of the operator L onto the span of Y ′∗ . In this case, a traveling
wave Y∗ is called linearly stable in E if L generates a C0 semigroup etL that, when restricted
to Y, satisfies the estimate ‖etL

∣∣Y‖ ≤ Ke−δt for some K > 0 and δ > 0 and all t ≥ 0.
(iv) A traveling wave Y∗ is called nonlinearly stable (or orbitally stable) in E if a solution of (1.2)

that starts near Y∗ in Y∗ + E stays close to the curve of shifts {Y∗(·+ q), q ∈ R}, of Y∗ for
t ≥ 0, in some norm (possibly not the norm of E).

(v) A traveling wave Y∗ is called nonlinearly exponentially (resp. algebraically) stable with
asymptotic phase in E provided (1) it is stable in E , and (2) a solution of (1.2) that starts
near Y∗ in Y∗+E converges exponentially (resp. algebraically) to a particular shift Y∗(·+q0)
of Y∗ as t→∞. The convergence may be in a norm different from the norm on E .

2.2. Using spectral information to show linear stability. In the stability theory of traveling
waves, one usually attempts to show that spectral stability or linear stability plus some additional
conditions imply nonlinear exponential stability with asymptotic phase. Two basic theorems are
used:

(1) Henry’s Theorem [29, Section 5.1]. If, in the space E , R defines a C1 mapping, the op-
erator L is sectorial, and the traveling wave Y∗ is spectrally stable, then Y∗ is nonlinearly
exponentially stable with asymptotic phase.

(2) Theorem of Bates and Jones [3, Theorem 1.1 and proof of Theorem 4.3]. If, in the space E ,
R defines a C1 mapping, and the traveling wave Y∗ is linearly stable, then Y∗ is nonlinearly
exponentially stable with asymptotic phase.

These theorems are discussed in [53, pp. 1040–1041].
The result of Bates and Jones is proved by showing that in Y∗+E , Y∗ has a local stable manifold

tangent to Y at Y∗. Shifting this manifold by Y (ξ) → Y (ξ + q) sends it to the stable manifold of
the shifted traveling wave Y∗(ξ+ q). The set of such shifts with q close to 0 foliates a neighborhood
of Y∗, which proves the result.
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Henry’s result follows from the result of Bates and Jones: the hypotheses of Henry’s Theorem
imply that Y∗ is linearly stable, because of a spectral mapping theorem that relates the spectrum of
a sectorial operator to the spectrum of the analytic semigroup it generates. However, Henry’s proof
is different from that of Bates and Jones. First, Henry observes that the hypotheses imply that Y∗
is linearly stable. Next, Henry decomposes a solution near Y∗ into Y (ξ, t) = Y∗(ξ + q(t)) + Ỹ (ξ, t),

with Ỹ (·, t) ∈ Y for each t. Using the linear stability of Y∗, Henry appeals to the variation of

constants formula to show that |q(t)| + ‖Ỹ (t)‖ stays small, the solution is defined for all time,

Ỹ (·, t)→ 0, and q(t) approaches constant q0 as t→∞.
In the space H1 or BUC, Henry’s approach applies when the reaction-diffusion equation is

parabolic. Bates and Jones, on the other hand, show how to apply their result when the reaction-
diffusion equation is partly parabolic, provided the traveling wave is a pulse. The difficulty in using
the approach of Bates and Jones is that spectral stability, not linear stability, is the more directly
verifiable condition. For operators that generate C0 semigroups but are not sectorial, spectral
stability does not always imply linear stability. There is no generally applicable spectral mapping
theorem; cf. [13] and [16, Section IV.3]. For partly parabolic systems, L is not sectorial. Indeed,
Evans, whose series of papers on stability of pulses in nerve impulse models is now considered
fundamental, devoted considerable effort to this issue [17]. His argument was simplified by Bates
and Jones. The basic idea is that for a pulse, L− = L+, so etL can be regarded as a compact
perturbation of etL− , a semigroup generated by a constant-coefficient operator.

Henry’s result and the result of Bates and Jones are both special cases of general results on
existence of locally invariant manifolds and foliations for semilinear equations in Banach spaces.
As an example, we mention the following result of Chen, Hale, and Tan [12]. Consider an ordinary
differential equation Yt = AY + F (Y ) on a Banach space, with F of class C1, F (0) = 0 and
DF (0) = 0. Assume (1) A generates a C0 semigroup eAt such that the spectrum of eA decomposes
into a part on the unit circle and a part bounded away from the unit circle, and (2) F can be
restricted to a small neighborhood of 0 and then extended to the whole space in such a way as
to have sufficiently small norm. Then there are local center, stable, center-stable, unstable, and
center-unstable manifolds of 0; there is an invariant foliation of the center-stable manifold such
that all solutions that start in one leaf of the foliation converge to the same solution on the center
manifold; and there is a similar invariant foliation of the center-unstable manifold. For other results
on invariant manifolds see for instance [4, 5, 14, 37, 38, 41] and the literature cited therein.

A recent result of the authors (see [22]) states that spectral stability implies linear stability of
fronts and pulses in partly parabolic systems of the form

∂tu = D∂xxu+ Ã∂xu+R1(u, v), (2.4)

∂tv = R2(u, v), (2.5)

with D, Ã constant matrices, D = diag(d1, . . . , dk), all di > 0, and R1 and R2 continuously
differentiable maps. The interesting case is when 1 ≤ k < n, so the equation is partly parabolic.

The linearization of system (2.4)–(2.5) at a traveling wave with velocity c, written in moving
coordinates, takes the form

∂tU = D∂ξξU +A∂ξU +B11(ξ)U +B12(ξ)V,

∂tV = c∂ξV +B21(ξ)U +B22(ξ)V,
(2.6)

where now A = Ã+diag(c, . . . , c). We assume that each Bij(ξ) exponentially approaches a constant
matrix B±ij as ξ → ±∞, which is the case when the traveling wave approaches its end states
exponentially. Consider the linear operator L associated with the differential expression

L =

(
D∂ξξ +A∂ξ +B11 B12

B21 c∂ξ +B22

)
(2.7)
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on one of the standard Banach spaces L2(R)n, H1(R)n, L1(R)n, or BUC(R)n.

Theorem 2.3. [22] Suppose the spectrum of L is contained in Reλ ≤ −ν, ν > 0, except for an
eigenvalue 0 of finite algebraic multiplicity. Let Y be the kernel of the Riesz spectral projection onto
the generalized eigenspace for the 0 eigenvalue, and let 0 < δ < ν. Then there is a number K > 0
such that ‖etL|Y‖ ≤ Ke−δt.

Theorem 2.3 follows from [22, Theorem 3.1]. It allows one to conclude that if a traveling wave
for a partly parabolic problem is spectrally stable, then it is linearly stable. The result of Bates
and Jones can then be used to conclude nonlinear exponential stability with asymptotic phase.

The novelty of Theorem 2.3 is twofold. First, it works not only for pulses but also for fronts.
As an application, we note that spectral stability for fronts that occur in nerve-impulse equations
was proved in [44, 52, 69]. Theorem 2.3 can be used to deduce linear stability from these results;
nonlinear exponential stability with asymptotic phase then follows from the result of Bates and
Jones. Details are in Section 2.3. Second, Theorem 2.3 is true in BUC. A natural space to use in
the stability theory of traveling waves would include the waves themselves and patterns that might
bifurcate from them. Unlike the other spaces, BUC allows perturbations that are only bounded at
infinity; this is sometimes required to capture physically important bifurcating patterns.

We remark that a less traditional class of function spaces that allow bounded perturbations to
fronts is the uniformly local spaces introduced in [18] and studied in detail in [42]. Uniformly
local spaces have been used to study stability of fronts that undergo a Turing or Hopf bifurcation
in the wake of the front in [24, 8]; they allow one to obtain a priori estimates for the periodic
perturbations.

The proof of Theorem 2.3 uses properties of the second-order and first-order operators that
are the diagonal elements of the matrix (2.7) (the second-order operator is sectorial, the first-
order operator is related to an operator that generates an evolutionary semigroup [13]); triangular
factorizations of L; and the Gearhart-Prüss or Greiner Spectral Mapping Theorem [65], for dealing
with Hilbert space and Banach space respectively.

In independent work, Jens Rottmann-Matthes, in his Bielefeld thesis [47] under Wolf-Jürgen
Beyn, proved a similar spectral stability implies linear stability result. Rottmann-Matthes’s ap-
proach applies to a more general class of systems, but the analysis is restricted to H1, since it uses
Laplace transform. His work is based on [35].

Rottmann-Matthes studies the nonlinear system

∂tu = D∂xxu+
(
g(u, v)

)
x

+R1(u, v), (2.8)

∂tv = C∂xv +R2(u, v), (2.9)

where u ∈ Rk, v ∈ Rn−k, D and C are constant real matrices, D+D> > 0, C = diag(c1, . . . , cn−k),
and g,R1, R2 are C3; cf. (2.4)–(2.5). He assumes the existence of a steady state solution Y∗ of
(2.8)–(2.9), and proves that a Cauchy problem for this system has a unique weak solution that is
in fact is a strong solution. The solution exists on 0 ≤ t < T ∗ for some T ∗ ≤ ∞. For any T < T ∗,
(u, v) ∈ C([0, T ], Y∗ +H1) ∩H1((0, T ), Y∗ + L2), and u is also in L2((0, T ), Y∗ +H2) [47, Theorem
4.7]. The solution is global in the sense that if T ∗ < ∞, then the H1-norm of (u, v) blows up as
t→ T ∗.

In addition to the nonlinear system (2.8)–(2.9), Rottmann-Matthes considers the linear system

∂tU = D∂ξξU +A11(ξ)∂ξU +A12(ξ)∂ξV +B11(ξ)U +B12(ξ)V,

∂tV = C∂ξV +A22(ξ)∂ξV +B21(ξ)U +B22(ξ)V,
(2.10)

where D and C are as above, Aij , Bij are bounded continuously differentiable matrix valued func-
tions having the limits Aij,±, Bij,± as ξ → ±∞, and, in addition, A22,± = 0, while the diagonal
elements of B22,± are strictly negative; see [47, Assumption 4.24]. Compare (2.6). This system is
more general than that obtained by linearizing (2.8)–(2.9) about the steady state.
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Assuming spectral stability inH1 for the linearization of (2.8)–(2.9) at the steady state, Rottmann-
Matthes proves linear stability [47, Theorem 4.34] and nonlinear stability with asymptotic phase
[47, Theorem 4.39]. The spectral stability implies linear stability result also holds for the more
general linear operator (2.10).

In addition to [47], see [48]–[51].

2.3. Application of Theorem 2.3 to FitzHugh–Nagumo fronts. Consider the FitzHugh–
Nagumo equation

ut = uxx + f(u)− v, (2.11)

vt = ε(u− γv), (2.12)

with x ∈ R, f(u) = u(1 − u)(u − a), a ∈ (0, 1) fixed. This equation is a simplification of the
Hodgkin-Huxley equation, which models propagation of electrical waves along nerve axons.

The existence of various traveling fronts (u∗, v∗), for which limξ→±∞(u∗(ξ), v∗(ξ)) both exist but
are different, has been shown by Yanagida [69] and Deng [15]. The fronts travel at nonzero speeds
and approach their limits exponentially as ξ → ±∞.

Let (u∗, v∗) be a traveling front solution of (2.11)–(2.12), that is, a stationary solution of the
following system obtained from (2.11)–(2.12) by passing to a moving coordinate frame ξ = x− ct:

ut = uξξ + cuξ + f(u)− v, (2.13)

vt = cvξ + ε(u− γv). (2.14)

Writing
(
u(ξ, t), v(ξ, t)

)
=
(
u∗(ξ), v∗(ξ, t)) +

(
U(ξ, t), V (ξ, t)

)
and then W (ξ, t) = (U(ξ, t), V (ξ, t)),

system (2.13)–(2.14) becomes

Wt = LW +N (W ) (2.15)

with

LW = L(U, V ) =

(
∂ξξ + c∂ξ + f ′(u∗(ξ)) −1

ε c∂ξ − εγ

)(
U
V

)
,

N (W ) = N (U, V ) =

(
f(u∗(ξ) + U(ξ))− f(u∗(ξ)− f ′(u∗(ξ))U(ξ)

0

)
.

One can associate with L a densely defined unbounded linear operator L on E20 , E0 = BUC(R),
L2(R), or H1(R). The natural domain is the direct sum of the domains of the operators ∂ξξ and
∂ξ. The nonlinear operator N is C1 on E20 for E0 = BUC(R) or H1(R).

For E0 = BUC(R) or L2(R), Yanagida [69], Nii [44], and Sandstede [52] show that L is spectrally
stable. With the aid of [21], it follows that the same is true for E0 = H1(R). Theorem 2.3 and the
result of Bates and Jones are used in [22] to obtain the following result.

Theorem 2.4. ([22]) Let E0 = BUC(R) or H1(R). Then each of the traveling front solutions
(u∗, v∗) for (2.11)–(2.12) whose existence was shown in Yanagida [69] or Deng [15] is nonlinearly
exponentially stable with asymptotic phase in E20 .

2.4. Marginally unstable spectrum and exponential weight functions. Returning to the
general discussion of (2.1), we note that if the spectrum of L− or L+ touches or passes through
the imaginary axis then none of the results mentioned in Section 2.2 can be used. However, these
spectra sometimes can be shifted to the left of the imaginary axis if a space with a weighted norm
is used. For c > 0, an exponential weight with positive (resp. negative) growth rate shifts the
essential spectrum to the left (resp. right).

In the study of traveling waves for viscous conservation laws and related equations, one encounters
marginally stable equilibria that cannot be stabilized by any exponential weight. There is now a
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large body of work by Zumbrun and collaborators on this situation, based on detailed estimates
for the semigroup generated by the linearized equations; see, for example, [70].

The idea of using weights was introduced by Sattinger [55]. The weight functions used are of
exponential type: for α = (α−, α+) ∈ R2, the weight function γα(ξ) is a smoothed version of the
function

γα(ξ) =

{
eα−ξ if ξ ≤ 0,

eα+ξ if ξ ≥ 0.
(2.16)

In this context we denote the original unweighted Banach space H1 or BUC by E0, with norm ‖ ‖0,
and let

Eα = {Y (ξ) : γα(·)Y (·) ∈ E0},

with norm ‖Y ‖α = ‖γα(·)Y (·)‖0. Associated with L is a linear operator Lα on Eα. Via the operator
of multiplication by γα(·), the operator Lα is similar to the operator associated with γαLγ

−1
α on E0;

spectral information for Lα can be more readily calculated for the latter operator. In particular, Lα−
(respectively Lα+) denotes the operator similar to the constant-coefficient operator eα−ξL−e

−α−ξ

(respectively eα+ξL+e
−α+ξ), where L± are defined by (2.2).

If α− ≤ 0 and α+ ≥ 0, then Eα is a space of bounded functions (since H1(R) ↪→ L∞(R)), R
defines a smooth mapping on Eα, and Henry’s result or the result of Bates and Jones can be used
to prove nonlinear stability. If α− < 0 (respectively α+ > 0), using the space Eα amounts to
restricting the allowed perturbations to those that approach Y− (respectively Y+) like a multiple
of e−α−t (respectively e−α+t) or faster. This may well be a mathematically natural restriction: if
one of the end states of the wave is marginally stable or unstable, we may have to restrict our
attention to perturbations that approach it at some exponential rate in order to have any chance
of a stability result. In some cases, as we shall see, the restriction may also be physically natural.

If α− > 0 or α+ < 0, then Eα contains unbounded functions, and one cannot use the results of
Henry or Bates and Jones to prove stability, since the requirement that R define a C1 mapping on
Eα is violated. Indeed, such weighted space are not suited to the study of nonlinear problems, since
they are not closed under multiplication.

On the other hand, the use of an exponential weight function with α− > 0 is attractive on
physical grounds. With such a weight, a perturbation of a traveling wave that in the sup norm
does not decay, or even grows, but lags further and further behind the traveling wave, does not
prevent stability. If the state behind the wave is marginally stable, or even unstable, this may well
be appropriate.

In physics, a convective instability occurs when perturbations grow in time but are simultaneously
transported to the left or right of a traveling wave (but not both) faster than they grow, so that,
in a coordinate frame that moves with the wave, they eventually die out at each point in space.
By contrast, an absolute instability occurs when perturbations grow at each spatial location in a
coordinate frame that moves with the wave. These concepts originated in plasma physics [10].

From the mathematical point of view, convective instability is captured by using exponential
weights; see [53, 54] for references and examples. Indeed, if a perturbation grows while being
convected to, for example, −∞, then the perturbation may stay bounded or even decay in an
exponentially weighted norm with a weight that decays at −∞.

Such a wave, which is unstable in the space E0 but stable in the space Eα, has been called both
convectively unstable and convectively stable in the literature. We prefer to call the wave convectively
stable, since this terminology stresses the pointwise stability of the wave.

The term “convective” can be informally explained as follows. Suppose that (1.2) has a solution

of the form Y∗(ξ) + Ỹ (ξ − c1t) with c1 < 0; thus the traveling wave Y∗(ξ) has a perturbation that
moves left relative to the wave, and does not decay in an unweighted norm. We ask whether the
perturbation decays exponentially in ‖ ‖α, where for simplicity α− = α+ > 0. (We need α− > 0 to
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get any sort of decay.) We have

‖eα−ξỸ (ξ − c1t)‖ = ‖eα−(η+c1t)Ỹ (η)‖ = eα−c1t‖eα−ηỸ (η)‖.

Therefore ‖Ỹ (· − c1t)‖α = eα−c1t‖Ỹ ‖α. This is exponential decay because α−c1 < 0.

Definition 2.5. We say that a traveling wave Y∗ is spectrally convectively stable in the space E0
provided the wave Y∗ is spectrally unstable in E0 due to the essential spectrum, but there is a pair
α = (α−, α+) 6= (0, 0), with α−, α+ ≥ 0, such that the wave Y∗ is spectrally stable in E0 ∩ Eα.

Next we propose a corresponding nonlinear definition modeled on Definition 2.2 (v) of nonlinear
stability with asymptotic phase.

Definition 2.6. We say that a traveling wave Y∗ is nonlinearly convectively stable with asymptotic
phase in the space E0 provided (1) it is stable in E0, (2) it is spectrally convectively stable in E0,
with α = (α−, α+), and (3) any solution of (1.2) that starts near Y∗ in Y∗ + (E0 ∩ Eα) converges in
Eα to a particular shift Y∗(·+ q0) of Y∗ as t→∞.

Thus Definition 2.6 requires at the linear level instability in E0 due to essential spectrum (Def. 2.2
(ii)) and nonlinear stability with asymptotic phase in E0 ∩ Eα in the sense of Definition 2.2 (v).
This definition is not standard, but it includes several results in the literature.

Note that the norm of E0 ∩ Eα is defined as max(‖ ‖0, ‖ ‖α); smallness in E0 ∩ Eα is equivalent to
smallness in both ‖ ‖0 and ‖ ‖α. Also, the norm of E0 ∩ Eα is equivalent to the norm of Eβ with
β = (0, α+).

The idea of using an exponential weight function with α− > 0 together with an unweighted
norm to prove stability results for traveling waves goes back to a paper of Pego and Weinstein on
traveling waves in a dispersive equation [45].

Kunze and Schneider [36] proved a similar type of nonlinear stability of a trivial solution in a
model problem with marginally stable equilibria. They assume that perturbations are small in
three norms—unweighted (H1 or BUC), weighted, and L1—and show that such perturbations
stay small in the unweighted norm and L1, and converge—exponentially in the weighted norm and

algebraically (like t−
1
2 ) in the sup norm—to a particular shift of the wave. A part of what Kunze

and Schneider show is called diffusive stability with asymptotic phase. A traveling wave is diffusively
stable with asymptotic phase if perturbations that are small in both the sup norm and L1 stay

small in L1 and decay like t−
1
2 in the sup norm to a particular shift of the wave. It is reasonable

to expect diffusive stability in parabolic problems with a marginally stable equilibrium. The term
“diffusive” is used since the time decay is related to the decay of heat semigroup.

Passing to the exponentially weighted space Eα creates difficulties in applying the results of Henry
or of Bates and Jones to derive nonlinear stability from linear stability. Indeed, unless some severe
restrictions are imposed, the reaction term R on Eα is no longer C1. There is no reason to believe
that spectral convective stability implies nonlinear convective stability in general. In all examples
that we know of, the passage to nonlinear convective stability requires some additional property of
the system. In the work of Pego and Weinstein [45] a Hamiltonian structure is used. In [9, 36] a
specific reaction term with DR(Y±) = 0 is considered. In work on Turing and Hopf bifurcation of
the left state [8, 24] the stability of the bifurcating Turing patterns is used. In the paper [68] on a
scalar nonlocal reaction-diffusion equation, properties of the bifurcating periodic pattern are used.
In [19, 21, 23] convective stability is derived using an assumption that the left state has stability
for some components of the solution (see Hypotheses 3.1 and 3.2 below).

We shall discuss [23] in more detail, since it applies to a class of partly parabolic systems.
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3. Nonlinear convective stability with asymptotic phase in a class of parabolic
and partly parabolic problems

3.1. Nonlinear results. The paper [23] studies a commonly encountered class of problems that
includes both parabolic and partly parabolic cases. Somewhat more than nonlinear convective
stability with asymptotic phase is proved, as we shall see.

Consider a traveling wave Y∗ of (1.1), which may be either a front or a pulse. Without loss of
generality we take Y− to be 0. Let E0 = H1(R) or BUC(R).

Hypothesis 3.1. Let α− > 0, and let α+ ≥ 0. We assume that α+ is small enough so that Y ′∗ ∈ Eα,
and we assume that Y∗ is spectrally stable in Eα. In appropriate variables we write Y = (U, V ),
where U ∈ Rk, V ∈ Rn−k, and we assume that the reaction term R in (1.1) satisfies R(U, 0) = 0.

Many combustion problems satisfy this hypothesis. For example, in a combustion problem with
n − 1 independent reactants, let y1 denote temperature and let (y2, . . . , yn) denote reactant con-
centrations. Suppose the left state of a combustion front with positive velocity has temperature
y1 = y1− > 0 and reactant concentrations (y2, . . . , yn) = (0, . . . , 0) (i.e., behind the front tempera-
ture is high and the reactants are all burned). Let U = u and V = (v1, . . . , vn−1) with u = y1−y1−
and (v1, . . . , vn−1) = (y2, . . . , yn). Then Y− = 0. Since the reaction rate is 0 when the reactant
concentrations are all 0, the reaction term will have the appropriate form R(U, 0) = 0 mentioned
in Hypothesis 3.1.

Referring to the general equation (1.1), for Y = (U, V ) ∈ Rn, where U ∈ Rk, V ∈ Rn−k, and the
splitting is such that R(U, 0) = 0, equation (1.1) takes the form

Ut = D1Uxx +R1(U, V ), (3.1)

Vt = D2Vxx +R2(U, V ), (3.2)

with D1 and D2 nonnegative diagonal matrices, and R1(U, 0) = R2(U, 0) = 0. Linearizing (1.2) at
Y− = (0, 0), we obtain

Ut = L(1)U +D2R1(0, 0)V := D1Uξξ + cUξ +D2R1(0, 0)V,

Vt = L(2)V := D2Vξξ + cVξ +D2R2(0, 0)V.

Note the triangular structure of the linearization at Y−.

Hypothesis 3.2. We assume that the operator associated with L(2) on E0 has its spectrum in the
half-plane Reλ ≤ −ρ for some ρ > 0.

On the other hand, the spectrum of L(1) on E0 is the set of curves λ = djν
2+ciν, ν ∈ R, j = 1,...,

k. Each curve touches (if dj > 0) or equals (if dj = 0) the imaginary axis, so the equilibrium Y−
is marginally stable. Note, however, that in E0 the operator associated with L(1) generates a
semigroup that is uniformly bounded for t ≥ 0. (For dj > 0 this can be seen by explicitly writing
the semigroup using the heat kernel; for dj = 0 the semigroup preserves the norm.)

Theorem 3.3. Assume Hypotheses 3.1 and 3.2. Then the wave Y∗ is nonlinearly convectively stable

in the sense of Def. 2.6, with α given by Hypothesis 3.1. Thus if the perturbation (Ũ(·, 0), Ṽ (·, 0))
of the traveling wave is initially small in E0 ∩ Eα, then the corresponding solution of (1.2) decays
exponentially in Eα as t→∞ to a particular shift of the wave. The solution can be written as

(U, V )(ξ, t) = (U∗(ξ + q(t)) + Ũ(ξ, t), V∗(ξ + q(t)) + Ṽ (ξ, t))

where, for each t, the function (Ũ(·, t), Ṽ (·, t)) belongs to a fixed subspace of E0∩Eα complementary

to the the span of Y ′∗(·). Ũ(·, t) stays small in E0, while Ṽ (·, t) decays exponentially in E0 as t→∞.

Thus in the unweighted norm the U -component of a perturbation stays small and the V -
component decays. More can be said about the U -component if the diagonal entries of D1 are
all positive.
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Theorem 3.4. In addition to the assumptions in Theorem 3.3, let us suppose that the linear
equation Ut = L(1)U is parabolic, i.e., the diagonal entries of D1 are all positive. If the initial

perturbation of the traveling wave is also small in L1, then Ũ(·, t) stays small in the L1-norm and

decays like t−
1
2 in the L∞-norm as t→∞.

This sort of decay (diffusive stability) is typical for the heat equation.
These theorems are useful for both parabolic and partly parabolic systems. We will discuss

applications to partly parabolic systems only.
The proofs of Theorems 3.3 and 3.4 use Theorem 2.3 in order to include the possibility that D1

and D2 may have some diagonal entries equal to 0.

3.2. Application to gasless combustion [21]. Theorems 2.3, 3.3, and 3.4 are applicable to the
following simple combustion model in one space dimension, which originally motivated our work:

∂ty1 = ∂xxy1 + y2ρ(y1), (3.3)

∂ty2 = −βy2ρ(y1), (3.4)

where

ρ(y1) =

{
e
− 1

y1 if y1 > 0,

0 if y1 ≤ 0.

In this system, y1 is temperature, y2 is concentration of unburned fuel, ρ is unit reaction rate, and
ε and β > 0 are constant parameters. Our motivation for looking at this well-studied problem,
in which the reactant does not diffuse, was heat-enhanced methods of oil recovery in which the
reactant is coke contained in the rock formation [1].

The value y1 = 0 represents ignition temperature and is also taken to be the background tem-
perature, at which the reaction does not take place. If one looks for traveling waves (y1∗, y2∗) such
that (y1∗(−∞), y2∗(−∞)) = (y1−, 0) with y1− > 0, (y1∗(∞), y2∗(∞)) = (0, 1), and (y1∗(ξ), y2∗(ξ))
approaches its ends states exponentially as ξ → ±∞, then one finds that for each β there is a
unique c > 0 for which such a wave exists. This wave represents a combustion front that leaves
behind it high temperature y− = 1/β and no fuel, while in front of it temperature is 0 and there is
fuel, with concentration normalized to 1.

The lack of diffusion in the second equation inspired the linear Theorem 2.3, and the form of the
nonlinear term in this and related problems inspired Theorems 3.3 and 3.4.

Both equilibria (1/β, 0) and (1, 0) are marginally stable, but the left equilibrium has stability of
one component, as Theorem 3.3 requires. More precisely, the linearization about (1/β, 0), in the
frame ξ = x− ct that moves with the front, is

∂ty1 = ∂ξξy1 + c∂ξy1 + ρ(1/β)y2,

∂ty2 = c∂ξy2 − βρ(1/β)y2.

Note that the second equation is decoupled from the first, and the differential operator defined by
the second equation on an unweighted space has its spectrum strictly to the left of the imaginary
axis.

For the full system in the moving frame, the spectrum of the linearization on an unweighted space
at (y−, 0) is a parabola in the left-half plane that touches the origin (caused by the first equation),
together with a vertical line to the left of the imaginary axis (caused by the second equation). At
(0, 1) the spectrum is the same parabola and the imaginary axis.

To move the spectrum of the linearization at these points to the left, one needs a weight function
γα(ξ) as in (2.16) with α− and α+ both positive. We simply use the function γα(ξ) = eαξ with α
positive but not too big.

An a priori upper bound for the modulus of isolated eigenvalues was obtained in [67]. With the
aid of this bound, a numerical Evans function calculation in [2] shows that for small β there are
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no eigenvalues in the right half-plane other than 0, which was shown numerically to be simple. For
larger β the traveling wave apparently loses stability when a pair of complex eigenvalues crosses the
imaginary axis (see numerical evidence in [6]). In [21] we verified analytically that the 0 eigenvalue
is simple for all β.

After the change of variables u = y1 − y1−, v = y2, one can apply the nonlinear theorems
formulated above. The conclusion is that if one makes a perturbation of the wave that is small
in both the unweighted norm (H1 or BUC) and the corresponding weighted norm with weight
function eαξ, then the perturbed initial condition will decay in the weighted norm to a shift of the
wave, while in the unweighted norm the u-component of the perturbation will remain small, and the
v-component of the perturbation will decay exponentially. If the u-component of the perturbation

is in addition small in L1, it will decay in the sup norm like t−
1
2 as t→∞.

All these conclusions have natural physical interpretations, which we will now briefly discuss.
(1) Since α > 0, we restrict ourself only to perturbations that decay in space exponentially ahead

of the front. In BUC, some restriction of this sort is clearly necessary, since (3.3)–(3.4) admits
fronts that decay in space very slowly to the right state; they cannot be allowed as perturbations.
Nor can perturbations be allowed that approach a right state (0, y2+) with y2+ 6= 1.

(2) Physically natural initial conditions have (y1, y2) = (0, 1) on an interval x0 ≤ x < ∞. On
this interval they constitute an exponentially small perturbation of the front. Hence we can expect
that physically natural initial conditions will produce the front that converges to its rest states
exponentially, not one of the fronts that converge more slowly. This is in fact what is seen in
simulations.

(3) Since α > 0, perturbations can be left behind the traveling wave without decay in the
unweighted norm; in the moving variable ξ, in the weighted norm, they are gradually killed by
multiplication by eαξ. For example, imagine initial conditions in which the fuel y2 is 0 for x < −ε
and 1 for x > ε, and there is some heat just near x = 0. If there is enough heat, combustion will
start near x = 0 and a combustion wave will propagate to the right, where the fuel is. The heat
produced will gradually diffuse. Such a solution will eventually look like our traveling wave at the
right but not far to the left (where the y1-component of the traveling wave approaches 1

β but the

y1-component of the solution approaches 0). This is convergence in the weighted norm. The initial
heat perturbation of the traveling wave was not in L1, so Theorem 3.4 does not apply.

(4) If a bump of heat is added behind the traveling wave, where there is no fuel to burn, it will
diffuse according to the heat equation. This is consistent with Theorem 3.4.

(5) On the other hand, if a bump of fuel is added behind the traveling wave, where the tempera-
ture is high, it will immediately burn. This is consistent with the exponential decay of v predicted
by Theorem 3.3.

Thus Theorems 3.3 and 3.4, applied to the combustion model (3.3)–(3.4), do not just “make
rigorous” the formal argument for stability of the traveling wave based on the spectrum of the lin-
earization. In addition, they use the spectral calculations commonly done in science and engineering
to obtain detailed, physically natural information about the stability of the wave.

The results can be viewed as an example of “front propagation into unstable states” [66]. In a
wave traveling to the right, the left state gradually takes over from the right state. It is natural
to expect that for stability, the left state must be stable, but the right state need not be. In the
combustion example, the left state has a sort of stability (its spectrum touches the imaginary axis),
and the right state has less (its spectrum includes the imaginary axis). The lack of stability of
the right state is taken into account by only allowing certain perturbations at the right, which
nevertheless constitute a physically important class of perturbations. The marginal stability of the
left state translates into the actual behavior of the allowed perturbations.

3.3. Application to exothermic-endothermic chemical reactions [23]. Theorem 3.3 is also
applicable to a model in which two chemical reactions occur at rates determined by temperature
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[58, 59, 60]. One reaction is exothermic (produces heat), the other is endothermic (absorbs heat).
In the original model, both reactants and heat can diffuse.

The system considered in [58, 59, 60] reads

∂tz1 = ∂xxz1 + z2f2(z1)− σz3f3(z1), (3.5)

∂tz2 = d2∂xxz2 − z2f2(z1), (3.6)

∂tz3 = d3∂xxz3 − τz3f3(z1). (3.7)

Here z1 is temperature, z2 is quantity of an exothermic reactant, and z3 is quantity of an endother-
mic reactant. The parameters σ, and τ are positive, and there are positive constants ai and bi such
that

fi(u) =

{
aie
− bi

u for u > 0,

0 for u ≤ 0.

The parameters d2, d3 in [58, 59, 60] are assumed to be positive, but the nonlinear stability
results formulated below hold if either or both of d2, d3 are 0.

Let Z∗ be a traveling wave solution of (3.5)–(3.7) with speed c > 0, Z− = (1 − σ
τ , 0, 0), and

Z+ = (0, 1, 1). In [58], Simon, et al., show numerically that in certain parameter regimes, such
traveling waves exist for which both end states are approached at an exponential rate.

Making the change of variables y1 = z1 − (1 − σ
τ ), y2 = z2, y3 = z3, and passing to the moving

coordinate frame ξ = x− ct, converts (3.5)–(3.7) to the system

∂ty1 = ∂ξξy1 + c∂ξy1 + y2f2(z + y1)− σy3f3(z + y1), (3.8)

∂ty2 = d2∂ξξy2 + c∂ξy2 − y2f2(z + y1), (3.9)

∂ty3 = d3∂ξξy3 + c∂ξy3 − τy3f3(z + y1). (3.10)

Applying Theorem 3.3 to this system yields the following detailed stability result. Suppose the
constants d2, d3, σ, τ , ai, bi, and c > 0 are chosen so that there is a traveling wave Y∗ that approaches
0 exponentially as ξ → −∞ and approaches Y+ = (−z, 1, 1), z = 1− σ

τ > 0, exponentially as ξ →∞.
Assume also that this wave has no unstable isolated eigenvalues. Let α = (α−, α+), α− > 0 and
α+ > 0; β = (0, α+), and E0 = H1(R) or BUC(R). Let Y 0 ∈ Y∗ + E3β with ‖Y 0 − Y∗‖β small, and

let Y (t) be the solution of the system (3.8)–(3.10) in Y∗ + E3β with Y (0) = Y 0. Then:

(1) Y (t) is defined for all t ≥ 0.

(2) Y (t) = Ỹ (t) + Y∗(ξ − q(t)) with Ỹ (t) in a fixed subspace of E3β complementary to the span

of Y ′∗ .

(3) ‖Ỹ (t)‖β + |q(t)| is small for all t ≥ 0.

(4) ‖Ỹ (t)‖α decays exponentially as t→∞.
(5) There exists q∗ such that |q(t)− q∗| decays exponentially as t→∞.

(6) There is a constant C independent of Y 0 such that ‖ỹ1(t)‖0 ≤ C‖Ỹ 0‖β for all t ≥ 0.
(7) ‖(ỹ2, ỹ3)(t)‖0 decays exponentially as t→∞.

The conclusions of this theorem can be interpreted physically as in Section 3.2. This is another
example in which a numerical study of the Evans function can be coupled with a rather routine
check of the hypotheses of Theorem 3.3 to produce quite detailed information on the kind of stability
that the traveling wave enjoys.

3.4. Application to gasless combustion with heat loss [57]. The following model is an ex-
tension of (3.3)–(3.4):

∂ty1 = ∂xxy1 + y2ρ(y1 − ȳ1)− γy1, (3.11)

∂ty2 = κ∂xxy2 − βy2ρ(y1 − ȳ1), (3.12)
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with β and ρ as before. Here κ ≥ 0 is the diffusion constant of the reactant, ȳ1 ≥ 0 is ignition
temperature, y1 = 0 is background temperature, and −γy1, γ ≥ 0, represents heat loss to the
environment due to Newton’s law of cooling.

There is an extensive literature on this system in the case κ > 0; see [61] for a review. Equilibria
must have y1 = 0. If y2 is normalized to be 1 ahead of a possible combustion front, so the right
state of the front is (0, 1), then it turns out that the left state of the front is (0, y∗1), where y∗1 > 0
represents the unknown concentration of reactant left unburned. For fixed (κ, β) and small γ > 0,
there are two combustion fronts, a somewhat mysterious one with speed near 0 (mysterious in the
sense that its speed goes to 0 as γ → 0, but the bifurcation at γ = 0 has not been successfully
analyzed), and one that is related to the known combustion front for γ = 0. Existence of the two
waves has been proved for some values of (κ, β) by Leray-Schauder degree, and is known numerically
[7, 46]. In addition, “high activation-energy asymptotics” has been used to study the limit β →∞,
i.e., the limit in which the reaction produces less and less heat. As γ increases, the two waves
appear to join and disappear in a saddle-node bifurcation [57]. Spectral stability of the waves has
been studied for κ > 0 [57] and κ = 0 [25] by identifying the essential spectrum and, via numerical
Evans function calculations, the eigenvalues.

In [25], geometric singular perturbation theory (instead of Leray-Schauder degree or asymptotics)
is used to show existence of traveling waves with speeds near the speeds of the waves that exist for
γ = 0. In some parameter regimes numerical Evans function calculation shows that the waves are
spectrally unstable due to essential spectrum only.

In this case linear and nonlinear results from [22] and [23] can be applied to prove stability for
both κ = 0 and κ > 0.

One interest of this work is that, when applying Theorems 3.3 and 3.4, the variables that play
the roles of u and v are reversed in the case γ > 0 from their previous roles in the case γ = 0.
Hence these results say that if a little heat is added behind the wave, it will quickly vanish, but
if a little reactant is added behind the wave, it may not. The reason is that in the case of heat
loss to the environment, the temperature far back in the wave is near 0; added heat is lost to the
environment, and added reactant does not burn.

4. Some open problems in the stability analysis of waves in partly parabolic
systems

4.1. Porous medium combustion. The following well-known, simplified model of combustion in
a porous medium is due to Sivashinsky; see the review paper [26] for references.

Tt − (1− γ−1)Pt = εTxx + Y G(T ), (4.1)

Pt − Tt = Pxx, (4.2)

Yt = εLe−1Yxx − γY G(T ). (4.3)

Here P , T and Y are the appropriately scaled pressure, temperature, and concentration of the
deficient reactant, γ > 1 is the specific heat ratio, ε is the ration of thermal to molecular diffusivities,
and G(T ) is a function of combustion type with ignition temperature. More precisely, G(T ) = 0
for 0 ≤ T < Tign and is an increasing Lipschitz continuous function for T ≥ Tign , except for a
possible discontinuity at the ignition temperature T = Tign. For ε = 0, it is known that there is
a unique combustion front that connects the completely burned state to the state in which all of
the fuel is present. It is also known that for small ε > 0, this front perturbs to a unique front with
nearby speed. In both cases the stability properties of the front are not known.
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For ε > 0, the system can be put into a more standard form by means of the linear transformation

T =
−γ + γε+ µ(γ, ε)

2γε
T̃ +

−γ + γε− µ(γ, ε)

2γ
P̃ , µ(γ, ε) =

√
γ2 + 2γ2ε+ γ2ε2 − 4γε,

P = T̃ + εP̃ ,

Y = Ỹ .

The resulting system is

T̃t =
(γ + γε+ µ(γ, ε))

2
T̃xx +

γ(γ + γε+ µ(γ, ε))

2µ(γ, ε)
G(T̃ , P̃ , Ỹ ), (4.4)

P̃t =
(γ + γε− µ(γ, ε))

2
P̃xx −

γ(γ + γε− µ(γ, ε))

2εµ(γ, ε)
G(T̃ , P̃ , Ỹ ), (4.5)

Ỹt =
ε

Le
Ỹxx − γG(T̃ , P̃ , Ỹ ), (4.6)

where

G(T̃ , P̃ , Ỹ ) = Ỹ G(
−γ + γε+ µ(γ, ε)

2γε
T̃ +

−γ + γε− µ(γ, ε)

2γ
P̃ ).

For ε > 0 fixed and Le � 1, the diffusion coefficient in (4.6) is small. In the limit Le = ∞,
(4.4)–(4.6) is partly parabolic.

On the other hand, (4.1)–(4.3) is often simplified by taking ε = 0. In this case, introducing a
new variable R = T − (1− γ−1)P leads to the equivalent, partly parabolic system,

Rt = Y G(R+ (1− γ−1)P ), (4.7)

Pt = γPxx + γY G(R+ (1− γ−1)P ), (4.8)

Yt = −γY G(R+ (1− γ−1)P ), (4.9)

where the first two equations are decoupled from the third.
Both systems (4.4)–(4.6) and (4.7)–(4.9) satisfy the assumption on the reaction term in Hypoth-

esis 3.1, provided U is the first two variables and V is the third. With this splitting, Hypothesis
3.2 is also satisfied. However, it is not known whether there is a region in parameter space where
the spectral stability condition of Hypothesis 3.1 holds. The essential spectrum is not a problem,
but it is not known whether discrete eigenvalues always prevent stability.

4.2. Simplified Model of Calcium Dynamics. In [64] a simplified model of intracellular calcium
dynamics is proposed:

∂tu = D∂xxu+ F (u,w) + ε(Jin − kmu),

∂tw = −γF (u,w),

with

F (u,w) = f(u)(w − u)− ksu := f(u)w − g(u),

f(u) = α+ kf
u2φ2

(u2 + φ21)(u+ φ2)
,

g(u) = f(u)u+ ksu,

where Jin is a bifurcation parameter, and D, ε, km, kf , ks, φ1, φ2 and γ are positive constants with
appropriate physical meanings. A variety of traveling waves has been found, and their spectral
stability has been studied in [64] using the Evans function. There are parameter regimes where the
wave is spectrally unstable due to the essential spectrum. It is not known what kind of instability
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is created. As written, the system does not satisfy the assumption on the reaction term in Hypoth-
esis 3.1.
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