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Abstract. This paper describes the design and development of a software package supporting variable precision arithmetic as
a semantic extension to the Fortran 95 language. The working precision of the arithmetic supported by this package can be
dynamically and arbitrarily varied. The facility exploits the data-abstraction capabilities of Fortran 95 and allows the operations
to be used elementally with array operands as well as with scalars.

The number system is defined in such away as to be closed under all of the basic operations of normal arithmetic; no program-
terminating numerical exceptions can occur. Precision loss situations like underflow and overflow are handled by defining special
value representations that preserve as much of the numeric information asis practical and the operation semantics are defined so
that these exceptional values propagate as appropriate to reflect thisloss of information.

The number system uses an essentially conventional variable precision floating-point representation. When operations can be
performed exactly within the currently-set working precision limit, the excess trailing zero digits are not stored, nor do they take

part in future operations. Thisis both economical in storage and improves efficiency.

1. Introduction

The production of software to provide facilities
to support variable and potentially extreme precision
arithmetic has been an interest for a number of people
for many years[1]. To some extent, this might be said
to be a hobby for those who like playing with numbers
and computers. However, such facilities can be and
have been used in anger to solve real problems where
extremes of precision (accuracy substantially greater
than available with normal real arithmetic) are needed.

The standard languages of the past, with the excep-
tion of Ada and Algol 68, could support these facil-
ities only in the form of procedure libraries. These
were in general cumbersome to use; the comparison
between programming arithmetic in assembler and a
high level language is apt. The MP package by Brent
was made somewhat more usable by the production
of apre-processor front-end that allowed more normal
arithmetic expressions to be translated into the nec-
essary library calls. The author's Algol 68 package,
mlaritha, exploited the capabilities of that language to
provide a numeric datatype and operations in the form
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of an entirely standard-conforming semantic extension,
and this was used for some years for the devel opment
of high-accuracy approximations to many of the spe-
cia functions [2]. The advent of Fortran 90 made it
possibleto provide much of this Algol 68 functionality
in a gtill active language. The feasibility of this was
investigated by this author during the design phase of
Fortran 90 [3]. A Fortran 90 module providing a proof
of concept was subsequently implemented and rel eased
viathe web [4].

This paper describes the design and devel opment of
a more elaborate module that exploits the capabilities
of the current, Fortran 95, definition of the language.
Fortran 95 is arelatively small extension to the Fortran
90 language [5]. It does, however, add some very im-
portant facilities that greatly enhance the ability of the
programmer to produce data-abstraction modules that
are more effective as semantic extensions. The term
“semantic extension” is used here to mean the ability
to provide a package that defines a new datatype and
the operations to manipulate entities of this type that
is so complete that the user of the package can write
programs which employ the new datatype in ways that
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differ very little from programs manipulating intrinsic
datatype objects. Ideally, it should be possible to hide
the details of the data representation and the detailed
semantics of the operationswhile at the same time pro-
viding all the essential facilities necessary for manip-
ulating objects of this new type that would be needed
were the type to be added intrinsically by the core lan-
guage designers. As currently defined, the language
does not enable this ideal to be fully realised but For-
tran 95 does allow one to get significantly closer than
was possible with Fortran 90.

Fortran 90 provided for the definition of a suitable
derived datatypeand all owed the overl oading of the op-
erations that apply between objects of this type. How-
ever, operations on intrinsic numeric types are also de-
fined to apply elementally to conformant arrays of val-
ues. That is, aswell asthe operator plus being applica-
ble between two scalars of typereal, say, plus could be
appliedto real array operandsof the same shape. Inthis
casethe operation appliesto each corresponding pair of
real array elementselement by element. Thiselemental
functionality could not be expressed in any practicable
way in Fortran 90 for derived operations between new
user defined types. Fortran 95 correctsthisand extends
this“elementa” possibility to user-written procedures,
including operations. For this to be alowed, however,
an elemental procedure must satisfy some fairly tight
restrictions. The restrictions are broadly designed to
make the procedure verifiably free of side affects.

Thisis required so as to allow elemental execution
in any order or even in parallel. In practice, these re-
strictions can have somefairly significant ramifications
for program design.

Designing a variable-precision number system to
have operations with strictly no side effects requires
there to be no error exits. The sort of procedure that
could implement multiply, say, can only return infor-
mation to theinvoking programviathe operation result.
For example, a multiply that resulted in some form of
overflow could not set a global error flag or cause an
error exit. These would congtitute a side effect in the
terms of the elemental extension rules. In this context,
to produce a variable-precision number system where
the operations were overloaded both for scalar argu-
ments and were also elementally extended for array ar-
guments, the number system must be closed under the
operations that are defined for it. Return values must
be defined for all possible values of the arguments. Ex-
ceptions must be indicated by suitably defined result
values. These must in turn propagate sensibly through
the operationsiif received by them as operands. In de-

signing avariabl e-precision number representation and
operator semantics which satisfy these criteriain rea
sonably sensible ways, we have tried to define a set of
special “exceptional” values and representations that
retain asmuch of theinformation that can be considered
reasonably reliable, given that anumeric exception has
occurred somewhere in the chain of operations.

It becomes clear to anyone who works with dynam-
ically controllable floating-point number systems for
any length of time that if you have avalue exactly rep-
resentable with afew digits only that iswhat should be
used. It is both wasteful in storage and in processing
to retain a possibly large number of redundant trail-
ing zero digits because the current working precision
permits such a number. Most variable precision pack-
ages normalise results so as to remove both leading
and trailing zerosfor this reason and this packageis no
exception.

2. Thenumber system

The datatype chosen to represent numbers with a
variable precision and large range is entirely conven-
tional. It employs a fixed radix and uses an integer
component to hold the exponent power to that radix.
Themantissaisaninteger array of variablelength; each
element holding a“digit”. The datatype is defined by

TYPE NUMBER
| NTEGER exp=rad+2
! hol ds the base rad exponent
I NTEGER, PO NTER :: sig(: )=>NULL()
! holds the significand
ENDTYPE NUMBER

If Aisavaluein this number representation

A = (rad**exp)*SUMsi g(i )*rad**(-i))
for i=1,N

where r ad is the radix of the number system and N
is the alocated size of the si g array as well as the
number of digits stored.

For convenience in converting between externaly
represented decimal values and such internal numbers,
theradix is chosen to be a power of ten. To providefor
reasonabl e efficiency, we want to have a given decimal
precision implemented by as few (smallest N) digitsin
the significand as possible. This means we want the
highest power of ten representablein an | NTEGER. To
simplify some operations and to enable potentially ex-
act operationsto be performed exactly we need also to
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have the square root of the radix exactly representable.
This further restricts the radix to be an even power of
ten. For atypical machine, such as a PC or a Unix
workstation where default Fortran integers are 32 hit,
thedecimal rangeis9, i.e. thebiggest representableIN-
TEGER isgreater than 10°, but smaller than 109, This
makes a suitable value for rad of 108 or 100,000,000.
Normalised numbers have:

ABS(si g(i )) < rad for i=1,N
sig(1)/ =0

andall si g(i ) havethesamesign, thesign of thevalue.
Digits for i >N are either exactly zero or they have
been truncated because of the limit set by the current
working precision. The system maintainsaglobal limit
for the current working accuracy, which determinesthe
maximum number, ndig, of digits to be retained from
any operation. This can be changed dynamically at any
time.

The value zero is not a properly normalised number
in this representation but it is as usual defined as a
special case, represented by

sig(1)=0, N=1, exp=-rad-2

The value of the exponent is strictly irrelevant but it
isconvenient to useaconventional valueinthiscasefor
the exponent of zero; we choose therefore an exponent
smaller than the smallest allowed normalised exponent,
-rad.

As with any such floating-point number system, the
range of valid exponent valuesiis limited. In perform-
ing operations on normalised values, it is possible to
produceresult values that are too big to be represented,
or aretoo small but not zero. These arethewell-known
overflow and underflow exceptions. When any of these
exceptions occur information is necessarily lost. After
an overflow, we no longer know much except that a
very large number has been produced. However, we
usually do know whether it is a large positive number
or alarge negative number. Similarly, when underflow
occurs we generally know we have produced a very
small value of aknown sign.

Provided the range of normalised numbers is suf-
ficiently great to handle all reasonable problems, we
could essentially treat overflow values as approxima
tionsto plusor minusinfinity. Similarly, we could treat
underflow as approximationsto zero. However, again
the fact that we usually still know the sign of the very
small value, it isbetter to defineunderflow as producing
either aplus or aminusinfinitesimal.

Adding representations coding for these four excep-
tional cases was the first step taken to attempt to de-

fine a number system that was closed under the normal
operations of arithmetic. Given that we are working
with a large radix, the largest even power of ten rep-
resentable in an integer, we can arbitrarily define the
maximum and minimum exponents as plus and minus
radix. Thiswill give avery large range of normalised
values. It will sacrifice arelatively limited set of po-
tentially representable values and will allow some of
these to be used to represent the “exceptional” values.
With theradix r ad=100, 000, 000 the extreme nor-
malised values are roughly ten to the power plus and
minus eight hundred million,

(]_08>-‘,-1OOOOOOOO7 (108>—100000000

These are very, very large and very, very small num-
bers. We can conventionally define arepresentation for
values larger than this denoted as +ovf , - ovf , by

sig(l)=+1 or sig(l)=-1, N=1
and exp=rad+1

We can also define underflowing small values, de-
noted by +unf , - unf , to be represented

sig(l)=+1 or sig(l)=-1, N=1
and exp=-rad-1

By definition, these are specific valuesthat are either
larger or smaller than any normalised values. We can
define the semantics of the operations so that overflow
and underflow result in one or other of these values
being returned.

Unfortunately, once we start trying to define sensi-
ble semantics for the arithmetic operations when these
special values are included within the value set for the
operands, we find this is not sufficient. We have some
operationsthat do not have a defined result of any mag-
nitude. For example, the operation exact-zero divided
by exact-zero,0/ 0, isintrinsically ill determined. Sim-
ilarly, theoperationovf - ovf could produceany value
whatsoever. It is therefore effectively indeterminate.
We must be able to represent the result of such opera-
tions. In practice we have not found any need to dis-
tinguish between these two cases. The same specid
value representation can be used for both situations. A
suitable representation for the “indeterminate” value,
i nd, could be

si g=>NULL() and exp=rad+2

which is aso the representation we have chosen for
the initial value for any object of the datatype; the
significand is disassociated and the exponent is larger
even than that of the overflow value.
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When we look more closely at defining how these
additional special values should propagate through the
arithmetic operations, we find we need further spe-
cia values to obtain a sensible closed number system
that preserves as much information as possible. We
can also generate values whose magnitude is unknown
but where the sign is predictable. The operation of
- ovf *unf , the product of avery large negative value
by a very small positive value, must be negative but
otherwise we have no way of determining the magni-
tude. We therefore need representationsfor, - unk and
+unk, negative and positive unknown. Here,

sig(i)=-1 or sig(i)=+1, N=1
and exp=rad+2

would be suitable representations. The complete set of
values in the number system istherefore

-unk, -ovf, -x, -unf, O,
+unf, +x, +ovf, +unk, ind

where x denotes a properly normalised value.

There is a superficial similarity between some of
these special values and those added to the set of nor-
mal numbers defined by the |EEE floating point stan-
dard [6]. The values +ovf, - ovf, and ind are sim-
ilar to IEEE +o00, - co and Nan. However, the IEEE
special values do not include analogues of the signed
unknowns, +unk, or the signed underflow, +unf .
The | EEE arithmetic dealswith underflow by first hav-
ing denormalised values for “gradual underflow” and
signed zeros which continue to carry sign information
when eventual underflow “flushesto zero”. Withavari-
able precision system such as here gradual underflow
via denormalised values is not a practical option and
since the Fortran standard does not permit a zero inte-
ger to be signed are underflow values needed to provide
closure. The |EEE specia values were designed not so
much to provideaclosed number system asto form part
of asystem for handling arithmetic exceptions. Fortran
95 does not define an exception handling system so the
special value set defined here is intended to provide a
closed number system that will preserve and propagate
as much numeric information as reasonabl e through a
cal cul ation sequence even where no exception flagging
or handling facility exists.

3. Thearithmetic operations

The algorithms chosen to implement the arithmetic
operations are all entirely conventional. Addition and

subtraction use a working register at least two digits
bigger than that required by theworking precision. The
operand with thelargest exponent is copied into the ap-
propriate place in this register and the smaller operand
added or subtracted depending on the relevant signs.
The resulting register value is then normalised to the
above conventions, removing any trailing zeros. The
multiply and divide algorithms are variations on the
“school” methods for “long-multiplication” and “long-
division”.

A key issue is how the special case values should
propagate if received as values for operands. The fol-
lowing table gives a definition of the semantics for the
operation plus (+) for operands drawn from the ex-
tended set defined above.

The entry Al g denotes the application of the basic
plus algorithm to normalised operands. Of courseg, it is
possible that this algorithm may produce a result that
is zero, overflows (+-ovf ) or underflows (+unf ), as
well as properly normalised values.

The definitions chosen for the special-case opera-
tions need some discussion.

Obviously any operationinvolvingani nd operand,
which indicates a total lack of information about the
value, must produce an i nd result. As we have no
informationat all about theindeterminateval ue, wecan
have no information about the result value.

For operations involving a signed but otherwise un-
known value, we can return a signed unknown result
if we can guarantee that the sign remains predictable.
Otherwise, we must return an indeterminate value.

Since the only information we have about an over-
flow value is that it is very large, the operation of
ovf - ovf hasno predictable value or sign. We there-
fore definethe result hereasi nd. Adding an overflow
to any other value we assume will continue to produce
a similar signed overflow. The only case where this
could be seriously wrong would beovf - x. If theovf
wastheresult of amarginal overflow and x isalsovery
close to the overflow threshold, the true result could
well be areasonably small value and not at al closeto
anoverflow at al. We do know the sign of the overflow
must be preserved. We perhaps strictly should return a
signed unknown in such cases. However, in most cases
the normalised value will be of reasonable magnitude
so the result islikely to be large. The best, or perhaps
least worst, value to propagate in such an operation is
anovf.

In all cases of addition operations involving the un-
derflow (+unf ) values with finite or large values, we
treat the underflow values as if they were zero. Again,
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Exceptional val ue propagati on by addition operation A + B

B A -unk -ovf -X  -unf 0.0 +unf +X  +ovf +unk ind
-unk  -unk -ovf -unk  -unk -unk ind I nd ind ind ind
- ovf - ovf - ovf - ovf - ovf - ovf - ovf - ovf ind ind ind

-X -unk -ovf Al g -X -X -X Alg +ovf ind ind
- unf -unk - ovf -X  -unf -unf 0.0 +X  +ovf ind ind

0.0 -unk -ovf -X  -unf 0.0 +unf +X  +ovf +unk ind

+unf ind -ovf -X 0.0 +unf +unf +X  +ovf +unk ind
+X ind -ovf Al g +X +X +X Alg +ovf +unk ind
+ovf i nd ind +ovf +ovf +ovf +ovf +ovf +ovf +ovf i nd
+unk ind ind ind ind +unk +unk +unk +ovf +unk ind
ind ind ind ind ind ind ind I nd ind ind ind

this could be somewhat erroneousfor an operation like
x- unf if the true values are close to the thresholds.
However, in the vast majority of operations this will
not be the case. The most useful way of propagating
the effect of the exception in such casesis to treat un-
derflow like zero. However, it is well known that for
normal fixed-precision floating-point arithmetic some
algorithms are subject to seriousloss of accuracy if un-
derflow is automatically set to zero. Some care would
therefore be needed in coding such problemsusing this
number system. Thelack of an exception-flagging sys-
tem makes this even trickier.

Theremaining exceptional propagationisunf - unf ;
this must produce an underflowing value but one that
has an indeterminate sign. In a sense this is an ap-
proximation to zero, and as we are not distinguishing
between exact and approximate values, a reasonable
result is zero.

The algorithm used to perform the addition opera-
tion for normalised operands is designed to produce a
result with the maximum potential precision, subject
to the constraint that no more significant digits will
be retained than are permitted by the current working
precision setting. If both operands and the “exact” re-
sult can be accommodated within the current working
precision, an “exact” result will be returned with only
significant digits included; neither leading nor trailing
zerodigitswill beretained. If the number of potentially
correct digitsisgreater than the number required by the
current working precision, theresult istruncated to this
length.!

ITheradix islarge. Each digit corresponds to anumber of decimal
digits. For atypica system using |EEE arithmetic where default
integers are 32-bit this number is eight. However, the first digit may
contain only one decimal digit. Thus to guarantee a given decimal
accuracy, nD say, the number of digits retained must be at least
CEILING(n/8) + 1. For a particular working precision, the actual
number of decimal digits stored for any given value can vary by 8D.
There is a trade-off between fine granularity precision control, that
needs a small radix, and efficiency that requires alarge radix.

Thedefinitionsfor exception value behaviour andthe
operation of the subtraction algorithm follow directly
from the above.

The definitions that have been used for multiplica-
tion are shown by the table below. Zeroistreated asan
exact valueeventhoughit may have arisen merely asan
approximation. In this number system as in most con-
ventional floating-point systems, we do not distinguish
these cases. Therefore, if either operand is a zero the
result is returned as zero. This is the case even when
the other operand is indeterminate. In most cases an
indeterminate value will merely be avalue of unknown
sign and unknown magnitude. For al other caseswhen
either operand is indeterminate the only possible result
isindeterminate. If either operandisasigned unknown
(£unk), the result is adso a signed unknown. The
product of an overflow value with another overflow or
anormalised value should result in an overflow result
of the appropriate sign. Of course, there will be oc-
casions when this can produce rather seriously wrong
results, For example, a product of a nearly underflow-
ing normalised value with a barely overflowing one
could produce a finite value of almost any magnitude.
However, on the assumption that most normalised val-
ues will be of relatively finite range and all we know
about an overflow is that it is very large, propagating
the overflow appearsto be sensible. An operation such
as (ovf )*(funf ) has no predictable magnitude but
awell-determined sign and the appropriate signed un-
known is the required result.

The product of normalised values, indicated by Al g
for agorithm, uses a version of the common school-
room long-multiplication algorithm. Each digit is mul-
tiplied by each other digit and the result accumulated
into a register the size of which is na+nb+1, where
na and nb are the sizes of the argument significands.
The multiplication and accumulation processisdonein
such away that the accumulator is normalised, modulo
rad, at all times. In order to ensurethat no integer over-
flow occurs while multiplying two digits that could be
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by multiplication operation A* B

B A -unk -ovf -X  -unf 0.0 +unf +X  +ovf +unk ind
-unk +unk +unk +unk +unk 0.0 -unk -unk -unk -unk ind
- ovf +unk  +ovf +ovf +unk 0.0 -unk -ovf - ovf -unk ind

-X +unk +ovf Alg +unf 0.0 -unf Alg -ovf -unk ind
- unf +unk  +unk  +unf +unf 0.0 -unf - unf -unk -unk ind

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+unf -unk -unk -unf -unf 0.0 +unf +unf +unk +unk Ind
+X -unk -ovf Alg -unf 0.0 +unf Alg +ovf +unk Ind
+ovf -unk  -ovf - ovf -unk 0.0 +unk +ovf +ovf +unk Ind
+unk -unk -unk -unk -unk 0.0 +unk +unk +unk +unk Ind
ind ind ind ind ind 0.0 ind ind ind ind ind

aslargeasr ad- 1, the digits are decomposed modulo
SQRT(r ad), and the multiply and accumulation done
using these components.

If the operands are exact and the current working
precision is such that the result can be accommodated
without truncation, the result remains exact. Other-
wise the result will be truncated to the current working
precision.

Divisionisdefined to propagate the exception values
in an entirely analogousway. The algorithmis also an
analogue of the schoolroom long division. Rea arith-
metic isused to make an estimate of thefirst digitin the
guotient and anew dividend produced by multiplication
and subtraction. This makes use of the same modulo
SQRT(r ad) decomposition and accumulate procedure
as for multiplication so as to ensure normalisation at
all times without the risk of integer overflow. Division
of any value by zero results in an indeterminate val ue,
i nd, being returned.

4. Logical comparisons

Thetreatment of thelogical relationsin the presence
of these exception values needs some thought. In re-
ality such a number system needs a trivalent logic to
properly express comparisons. What is the result of
an i nd<ovf comparison? Sincei nd represents an
indeterminate value of unknown sign or magnitude the
answer could be either true or false, perhaps maybe!
However, overloads of the “less-than” operator must
return true or false — there is no available representa-
tion in the LOG CAL datatype value set for “maybe”.
Therefore we need to define a conventional set of re-
sponses. What we have done is to simply use the spe-
cific representations and performed the comparisons as
if these were normalised values. We have aso said
that since an indeterminate value is basically an inex-
act zero (unknown sign and very high uncertainty of
magnitude) for logical comparisonswe will treat these

also aszero. Thesigned exception valuesare compared
strictly according to their representation. This makes
+unk > +ovf > +x >+unf, etc. The following
table shows the detailed results for the operation <.

It should be noted that we need elemental overloads
of these logical relation operators producing simple
LOGICAL results since such array comparisons are
likely to be used to produce mask arrays for WHERE
statements or other similar array contexts. Again in
the absence of an exception handling system we must
define valid outcomes for all possible operand values,
no matter how strange the result.

Similar tables are availablefor each of the other rela-
tional operations and these are included in the module
documentation [7].

5. Additional facilities

A small number of the basic relevant intrinsic func-
tions are al so provided as generic elemental overloads.
The functions, ABS and SI GN extend the obvious op-
erations to NUVMBER values.

Input conversions are provided by one of two
generic versions of afunction NUM If invoked with an
| NTEGER argument the equivalent NUMBER value is
returned. If invoked with a character string argument
where the string denotes a real value in either fixed-
or floating-point form, the equivalent NUVBER valueis
returned.

Output is performed by three procedures, CHAR,
EFCHAR, and FFCHAR. An overload for the CHAR
function for a NUMBER argument produces a charac-
ter string denoting a floating-point real. This function
performs an exact conversion regardless of the current
working precision. The other two functions produce
character stringsdenctingthe NUMBER value, thefirst
in E-format and the second in F-format; the width and
number of decimal places retained are provided as ad-
ditional arguments.
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Exceptional val ue conparison by relational operation <

A<B -unk - ovf -6.86 - unf 0.0 +unf +2. 50 +ovf +unk ind
-unk FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
- ovf FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

-6.86 FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
-unf FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

0.0 FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

+unf FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
+2.50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
+ovf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
+unk FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
ind FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

A version of the | NT function converts from a
NUMBER value to the equivalent | NTEGER by trunca-
tion toward zero.

The base module does not provide overloads for
the elementary mathematical functions such as SQRT,
LOG, EXP, etc.. These are being provided via a sepa-
rate dependent module that is under development [8].
This base module plus additional facilities provided by
separate but dependent modules was a deliberate de-
sign. Since, it isvery much easier to produce efficient
dependent modulesif these can accessthe detail s of the
number representati on directly the component structure
of the datatype and the parametersof the representation
are al PUBLI C. Fortran 95 only supports two levels
of access contral, fully private to the module or public
to all using programs. It would be useful in situations
likethisto have anintermediaterestricted accesswhich
would make representation details visible to dependent
modul es but hidden from normal user programs.

6. Performance

The performance of the package is difficult to pre-
dict in detail because of the large number of factors
involved. The performance of the various operationsis
in general dependent on the current working precision.
However, if operations are performed with operands
that do not require the full length of storage, the algo-
rithms used will automatically adjust. The time taken
to performan operation will depend on theactual stored
length of the operands as well as the working preci-
sion. In the case of addition and subtraction it will
also depend to some extent on the relative magnitudes
of the operands; if the two operands have very differ-
ent exponents the “shift” to align the significands will
possibly reduce the number of digit sums that need to
be done. Nevertheless, for alarge number of uses the
package will be employed with primarily “full-length”
values. Timing tests have been done using such full-

length operands of commensurate magnitudes. There-
sults are presented as functions of the working preci-
sion. These show the expected theoretical behaviour.
Theaddition/subtraction performanceisessentialy lin-
ear in its dependence on precision, and multiplication
and division are quadratic.

The tests consisted of timing two loops that differ
only by the second including an additional operation
of the sort being tested. An array of possible operands
is constructed with the digits chosen as random inte-
gerslessthanr ad in magnitude. Each number so con-
structedisof full length but all have the same exponent.
The control loop generates a random index, which is
used to select the operand and thisisassigned to another
array element, also selected at random. This stops any
clever optimiser avoiding actually executing the loop.
The main timing loop is identical to the control loop
except that the assignment now includes an additional
execution of the chosen operation. The essential code
fragment for atest of multiplicationis shownin Fig. 1.

These loops are repeated for a number of different
precisions. Thetests were run on anumber of different
PCswith different clock speeds but using the same NA-
Software Fplus compiler. The results normalised for
clock speed are quite reproducible. Timingswere done
for samples of sufficient size to provide approximately
10% accuracy for the measured operation times. In
units of “clock-ticks’ the performance measured was,
for addition/subtraction,
Cost per operation 760 + 7.4 *acc
for multiplication

760 + 75*acc

Cost per operation
+ 3.9*%acc**2

for division

Cost per operation 1800 + 110*acc

+ 4. 4*acc**2
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type(NUMBER) :: A(20),B(20),C
I fill Aand Cwth full precision random val ues

call TIMER(t1)

DO j =1, count
k=1 RAND( 1, 20)
mel RAND( 1, 20)
B(k) =A(m

ENDDO

call TIMER(t2)

td = t2-t1

call TIMER(t1)

DO j =1, count
k=1 RAND( 1, 20)
el RAND( 1, 20)
B(k)=A(m*C

ENDDO

call TIMER(t2)

tp=t2-t1

t=(tp-td)/count

where acc is the current working precision in decimal
digits. This meansthat on a400 MHz PC at 200D one
multiplication takes approximately 430 microseconds.

It should be noted that although the preci se val ues of
the coefficients in such timings are quite reproducible
over a range of clock speeds, they are likely to be
somewhat compiler dependent. A processor system
that does not support garbage collection is likely to
have unreliable performancesincelong runtimes could
be caused by memory problems. However, the form
of precision dependence is entirely a function of the
algorithms used.

If both operands are “exact”, the time taken to per-
form the operation is going to depend on the effective
lengths of the operands, na and nb, and separately on
the current precision. In fact, if the result is also ex-
act within the current precision, the current precision
will be all but irrelevant. In particular, in the impor-
tant special case of multiplication by a simple integer
the dependence automatically revertsto being linear in
current precision.

It should be noted that for this representation for
NUMBER values the package will leak memory. As
aresult it can cause problems on a system that does

I sinple assignnment

Fig. 1.

! assignnment with extra operation

! time in seconds of adding one extra * operation

not support garbage collection. This problem virtually
disappearson asystem supporting the proposed Fortran
2000 extension that allows allocatable components. In
this case the pointer significand component is replaced
by an allocatable array component, and there are some
minor consequent changes to the algorithm code. The
package has an almost identical user interface in this
versionand, aswell asbeing morerobust inits memory
management it issomewhat moreefficient in execution.

7. Example use

An exampleof the use of the moduleis shown below.
This merely employs the scalar versions of the opera-
tors and is neither the most sophisticated of algorithms
nor a particularly robust or efficient implementation.
It does illustrate how easy it is to work with variable
precision quantitiesusing afacility of thissort. The ex-
ampleisthe classic one of calculating 7 to an arbitrary
user-selected number of decimal places. The value of
m is calculated using the well-known Machin identity,

m/4 = 4arctan(1/5) — arctan(1/239)
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PROGRAM EXAMPLE_PI
I calculates Pl
! the Machin identity PI/4 =

to a user requested nunber of decinal
4 arctan(1/5)
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digits using
- arctan(1/239)

! the arctan values are obtained by sunm ng the Tayl or series

USE VARI ABLE_PREC! SI ON_ARI THVETI C
I MPLICI T NONE

t ype( NUMBER)

I NTEGER :: acc,n

pi, at b5, at b239, nzsq, rn

WRI TE( *, ADVANCE=' NO , FMT=' (A)"' ) "I nput the desired nunmber of digits for PI?"

READ(*, FMI=' (110)') acc

n=PRECI SI ON(acc) !
I at

! cal culate arctan(1/5)

rn=NUM " 0. 2")

nmesq=NUM " - 0. 04")

at b5=rn

n=1

DO !

until sum converges

rn = (NUM 2*n- 1) *nesq) *r n/ NUM 2* n+1)
remai ning terms too small

| F(at b5%xp-rn%xp > ndig) EXIT

atb5=atb5 + rn
n=n+1
ENDDO
! cal cul ate arctan(1/239)

rn=NUM 1) / NUM 239) at b239=rn
n=1
DO ! until sum converges

rn =

wor ki ng preci sion set to provide
| east acc deci mal

digits

to

effect the sum

NUM 2% n- 1) *r n/ NUM_ - 57121* (2*n+1)) !

| F(at b239%exp-rn%exp > ndig) EXIT !

at b239=at b239 + rn
n=n+1
ENDDO

pi =NUM 16) *at b5 - NUM 4) *at b239

57121= 239*239
remaining terms too small
the sum

to effect

WRI TE(*, FMr=' (A) ') FFCHAR(pi , acc+5, acc-1)

END PROGRAM EXAMPLE_PI

The arctan values can be conveniently calculated to
any desired accuracy by summing the necessary num-
ber of termsin the Taylor series

N
arctan(z) = Z Rn+E
n=0

where
_ n_2n+1
Rp=(-1)"z /2n+ 1
and
E < [Ry;1]

The code implementing this example is shown in
Fig. 2.

It should be noted that the output is quite smple and
will cause a buffer overflow on most systems if the
accuracy requested is too large. The FFCHAR proce-
dure produces a result that is the value expressed as a
character string in Fw. d format wherew=acc+5 and
d=acc- 1. A more complex and robust method of out-
put could be produced but this would only make for a
more obscure example.

Fig. 2.

Ona400 MHz PC this program produces 1000 digits
in 5 seconds and 2000 in 25 seconds, further indicat-
ing that the algorithms are dominated by the times for
multiply/divide which are O(ndi g?).
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