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Design of Keratorefractive Surgical 
Procedures: Radial Keratotomy 
By surgically incising a patient's cornea, an ophthalmologist can reduce or eliminate 
the patient's myopia (nearsightedness). Although one such keratorefractive pro-
dure, known as radial keratotomy, is a common practice among some ophthal
mologists, there is presently no comprehensive or universally accepted method that 
a surgeon can use to determine how to perform the operation to exactly eliminate 
a patient's refractive error. In this paper, a general methodology for designing radial 
keratotomy procedures that determines the optimal incision geometry on a patient-
by-patient basis is presented. This approach is based on coupling a transversely 
isotropic finite element model of the human cornea to an optical model of the entire 
eye. The resulting incision geometry obtained from each design formulation not 
only eliminates the myopic error but yields the global minimum of the objective 
function. 

1 Introduction 
When neither glasses nor contact lenses are an acceptable 

means of optical correction, refractive surgery is sometimes 
an option. Refractive surgery refers to any surgical method of 
altering the refractive power of a patient's eye. In particular, 
keratorefractive surgeries are intended to correct refractive 
errors by modifying the cornea, and radial keratotomy (RK) 
is one of the best known and most widely used keratorefractive 
surgeries. As shown in Fig. 1, RK is performed by incising the 
eye in a radial pattern centered around the eye's aperature, or 
optical zone. Driven by the (intraocular) pressure of the fluid 
(aqueous) in the chamber behind the cornea, the deformations 
resulting from the incisions tend to flatten the optical zone, 
reducing the refractive power of the eye and thereby reducing 
the patient's myopia (nearsightedness). 

Since its introduction into this country in the late 1970's 
(Bores, 1983), RK has evolved from an experimental procedure 
into an acceptable surgical practice among some ophthalmol
ogists. However, its lack of predictability remains a significant 
problem; see, for example, Arrowsmith and Marks (1985), 
Deitz et al. (1984), and Sanders and Deitz (1985). Currently, 
surgeons choose the number and geometry of the incisions 
from a combination of personal experience and design charts 
or guides that are based on the statistical results of clinical 
trials; e.g., Sanders et al. (1984). Such an approach can leave 
the patient with significant overcorrection or undercorrection 
(Cross and Head, 1985). 

Analytical models of the cornea and surrounding tissues 
(sclera) have helped put the mechanics of the eye on a firmer 
theoretical foundation. Shell theory was applied by a number 
of researchers; e.g., Taber (1984). Although this approach 
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Fig. 1 Typical eight incision RK procedure, illustrating front-on view 
of cornea (top) and cross sectional view (bottom) 

offers some insight into the structural response of the eye, shell 
theory is not well suited to modeling nonhomogeneity, kera
totomy incisions, and other irregular geometric features of the 
eye. Kobayashi et al. (1971) were apparently the first to apply 
the finite element method (FEM), which overcomes these dif
ficulties, to the analysis of deformations in the corneoscleral 
shell. In Kobayashi et al. (1971), an axisymmetric finite element 
model was used to simulate the structural response of the 
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cornea and sclera to changes in intraocular pressure and to 
tonometry. Later, the same group employed a similar finite 
element model to aid in the experimental determination of 
material property data for the eye (Woo et al., 1972). Both of 
their models were isotropic and neither included keratotomy 
incisions. 

More recently, researchers have begun to model RK. 
Schachar et al. (1980) and Huang et al. (1988) model the cornea 
as an axisymmetric membrane and account for the keratotomy 
incisions by establishing an effective membrane thickness. In 
a concept paper, Bryant et. al. (1987) discuss the use of a fully 
three-dimensional finite element model of the cornea that di
rectly models the incisions. They demonstrate that the defor
mation pattern resulting from the simulation of RK for a 
representative eye corresponds to clinically measured corneal 
topography. Recent work of a similar nature by Vito et al. 
(1989) confirms this. 

In this paper, a number of steps are taken to improve upon 
previous work in this area. First, a corneal model employing 
a more general, transversely isotropic constitutive law is im
plemented via the FEM in a formulation that allows for a more 
accurate representation of the corneal geometry. Secondly, to 
more precisely and accurately determine the refractive changes 
that accompany keratotomy incisions, the corneal model is 
coupled to an optical model of the entire eye. An optimization-
based design approach is then developed to determine the 
length, depth, and position of the incisions to eliminate a given 
amount of myopia. It is believed that adopting a design ap
proach to the investigation of RK offers the most direct answer 
to the fundamental question of RK: how should the operation 
be performed to correct the patient's vision? To illustrate the 
procedure, optimal results are presented for a representative 
eye. 

2 The Corneal Model 
The human cornea is inherently a complex structure that is 

composed predominantly of corneal stroma, a composite-like 
material that consists of approximately 200 randomly oriented 
lamellae. Each lamella is actually a sheet of collagen fibers that 
run parallel to one another (Fung, 1981). Additionally, others 
have observed (e.g., Huang et al., 1988) that when a specimen 
of corneal tissue is rubbed between two fingers, the two sur
faces will slide relative to each other quite easily. This could 
suggest that there is very little shear stiffness in the stroma 
and perhaps that the layers of the stroma are sliding relative 
to each other. 

One important issue in modeling soft biological tissues is 
nonlinear constitutive behavior. Soft biological tissues are 
known to behave nonlinearly over their entire load range (e.g., 
Fung, 1981), and corneal tissue in particular has been shown 
to exhibit a stiffening effect in uniaxial stress-strain tests 
(Nyquist 1968; Yamada and Evans, 1970) as well as in tests 
on intact corneas (Jue and Maurice, 1986; Woo et al., 1972). 
However, our simulations of RK demonstrate that the defor
mations due to keratotomy incisions are quite small and that 
the corresponding stresses in the incised cornea do not differ 
greatly from those of the unincised eye. By comparing these 
stress levels to the experimentally derived stress-strain curves 
of Nyquist (1968), Woo et al. (1972), and Yamada and Evans 
(1970), it was concluded that a linear constitutive law is suf
ficient for simulating the effects of keratotomy incisions.2 

It is possible to surmise an appropriate form for the con
stitutive law by considering the in-plane behavior of the corneal 

stroma. The large number and random orientation of the col
lagen sheets which constitute the stroma suggest that on a 
macroscopic scale there will be a plane of isotropy oriented 
with the midplane of the corneal shell. Experimental work by 
Nyquist (1968) and Woo et al. (1972) supports this. Since the 
most general continuum-based constitutive law for linear elas
ticity that is consistent with these observations in transverse 
isotropy (Chung, 1988), the corneal model described below is 
linearly elastic and transversely isotropic. 

2.1 Transverse Isotropy. From the generalized form of 
Hooke's law for small strain linear elasticity, the material 
property tensor can be expressed as a six-by-six, symmetric 
material property matrix. For transverse isotropy this matrix 
contains five independent constants and, as shown by Chung 
(1988), can be written as 
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where the xy plane is the plane of isotropy (i.e., there is material 
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2Of course, this presumes we are not interested in the stresses near the bottoms 
of the incisions, where there may be localized regions of high stress. It is believed 
that such regions are very small and have little effect on the overall deformation 
of the cornea. 

in which Ex is Young's modulus in the xy plane, Gyz is the 
shear modulus in the.yz and xz planes, C = 1 - v\y - 2vxzvzx 

- 2vxyvxzvzx, and vxy, vxz, and v^ are Poisson's ratios defined 
such that vtj relates resultant strain in the j direction to strain 
applied in the i direction. 

2.2 Equations of Equilibrium. The finite element equations 
of static equilibrium can be expressed as 

Kd = F (3) 

where K is the global stiffness matrix, d is the global vector 
of displacements, and F is the global load vector. 

Since a normal, unincised eye is loaded by its intraocular 
pressure, the deformations due to RK are relative to this loaded 
state, and these are the only deformations of direct interest. 
For this reason, the loaded configuration of the eye is taken 
as the reference state for the FEM analysis. This is necessary 
as well since the unloaded geometry of the eye (i.e., without 
intraocular pressure) cannot be determined under normal cir
cumstances, whereas a patient's cornea in its normal, unincised 
state can be measured quite accurately using recently developed 
technology, such as the Corneal Modeling System3. Conse
quently, this approach allows for a more accurate represen
tation of the corneal geometry than other formulations (e.g., 
Bryant etal., 1987 or Huang etal., 1988) in which the measured 

'Computed Anatomy Inc. 

Journal of Mechanical Design JUNE 1991, Vol. 113/151 Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 2 Finite element mesh of one quarter of cornea. Top: Before in
troduction of simulated incisions. Bottom: Deformed configuration, 
highlighting one incision of an eight incision procedure (deformations 
magnified 3x) 

geometry of the cornea is used to represent the unloaded con
figuration of the eye. 

In the reference configuration, the intraocular pressure is in 
equilibrium with the initial state of stress in the cornea that 
results from the application of the intraocular pressure to the 
corneal shell. Consequently, the load term in equation (3) 
contains contributions from both the intraocular pressure and 
the initial state of stress, and can be written as (Cook et al., 
1989) 

F = E [ \Se
NTPdSe- \v^o dVe (4) 

where N is the matrix of shape functions, Be is the element 
strain-displacement matrix, p is the intraocular pressure, o^ is 
the element initial stress vector, Se and Ve are the element 
surface area and volume, respectively, and the summation over 
the number of elements, n, represents the usual FEM assembly 
process. 

As shown in Fig. 2, incisions are represented in the finite 
element mesh by allowing elements to separate along interele-
ment boundaries. Extra nodes are added to the global structure 
at existing node locations on the desired incision surfaces to 
achieve this. The resulting node pairs define the incision ge
ometry. During the optimization, in which parameters defining 
the incision geometery are iteratively changed, it may happen 
that a given incision requires fewer extra nodes to define its 
geometry than have been added to the mesh initially. In this 
case, the node pairs that are not needed are constrained to 
move together via penalty constraints, effectively closing that 
part of the incision. 

These penalty constraints can be expressed as simple element 
stiffness matrices, so that the global stiffness matrix of equa
tion (3) can be written as 

K=IX+£K . (5) 
pn = 1 

where Kc is the usual element stiffness matrix that, in this case, 
defines a 20 node, -isoparametric, solid element, Kc

pn is the 
element defining the penalty constraint between nodes of a 
constrained node pair, npn is the number of penalized node 
pairs, and the summations represent the FEM assembly pro
cess. 

The matrices Kc are written in the usual manner, except that 
the material property matrix, E, which is given in equation (1) 
for a coordinate system oriented with the plane of isotropy, 
must be transformed to the global coordinate system at each 
integration point in the numerical integration process. Thus, 
E is replaced by T rET, where T is the transformation matrix 
(Cook et al., 1989). As implemented, T is defined by utilizing 
a solid geometric model of the cornea to determine the ori
entation of the plane of isotropy (Bryant, 1989). This same 
solid model is used to generate the finite element mesh. 

If the degrees of freedom for the penalty constraint "ele
ment" are ordered d,„ d. \x> "u» • • 
ness matrix can be expressed as 

' l 0 0 -
1 0 

,d2z, then the penalty stiff-

1 

symm. 

(6) 

where a is the penalty number, and the two nodes of the 
"element" are the nodes that define the node pair being pe
nalized. Generally, a is taken to be two or three orders of 
magnitude higher than other elements of K. 

2.3 Material Constants. To approximate incompressible 
material behavior, a value of 0.49 was chosen for ua, which 
relates strain applied in the z direction to the resulting strain 
in the x direction. As long as the stresses in the z direction are 
compressive, this value is probably reasonable. However, it 
seems unlikely that the stromal material is incompressible with 
respect to the other two directions of loading. In fact, if the 
collagen sheets do not interact, then it is likely that the Pois-
son's effects due to strain applied in the x direction, for ex
ample, would be due to only those layers whose fibers are more 
or less aligned with the x direction. Thus, much smaller values 
would be expected for vxy and vxz. This reasoning led to values 
for vxy and vxz of 1/200 (where 200 comes from assuming only 
one layer out of 200 contributes to the Poisson's effect) of the 
incompressible value (0.5), yielding a value of 0.0025 for these 
constants. 

The shear and Young's moduli were chosen so that the FEM 
model matches Woo's experimental data (Woo et al., 1972). 
Woo measured the horizontal displacement at a point 2 mm 
from the apex of intact corneas as a function of intraocular 
pressure. To utilize these data we chose different values of the 
shear modulus and, for each one, adjusted Young's modulus 
so that the horizontal displacement calculated by the FEM 
solution matched that measured experimentally by Woo at the 
corresponding pressure. By using these pairs of moduli to 
simulate RK, a value for the shear modulus of 5 percent of 
the isotropic value (Ex/2(l + v^j) was chosen to provide good 
qualitative agreement with clinical results. The corresponding 
Young's modulus is £^ = 2.01 X 107 dyn/cm2. 

2.4 Example. Figure 2 illustrates a finite element mesh of 
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Number of Cuts 
Fig. 3 Effect of number of cuts on dioptic error for example eye D = 90 
percent of apical value, P - 0.15 cm, pressure = 15 mmHg, and L is from 
the optical zone to the limbus. 

a quarter of the first author's left eye. Geometric data were 
obtained from the Corneal Modeling System, which provides 
a complete topographical map of the cornea. These data were 
used to create a solid model of the cornea from which the 
finite element mesh was generated (see Bryant, 1989). The 
cornea was assumed to possess quarter symmetry, and enough 
sclera was included in the model to allow fixing the nodes 
along the sclera's periphery. (Because the sclera is much stiffer 
than the cornea, if the model includes enough sclera, the de
grees of freedom at the boundary of the sclera can be fixed.) 
Material constants were taken as above, and the intraocular 
pressure was set at 2.0 x 104 dyn/cm2 (15 mmHg). To be con
sistent with Woo's results, moduli in the sclera were defined 
to be 3.784 times those in the cornea, and the Poisson's ratios 
were taken to be the same as those in the cornea. The initial 
state of stress, as in equation (4), was generated from static 
equilibrium of the unincised mesh according to equation (3). 

As an example of the type of results that can be generated 
with this approach, Fig. 3 depicts the results of modeling four, 
eight, and 16 incisions with this model. The vertical axis is a 
measure of the amount of optical correction achieved, where 
a diopter is a measure of refractive power, defined as the 
reciprocal of focal length in meters. To demonstrate the ad
vantages of a complete optical model (described below) in 
predicting the effects of RK, the data are displayed in terms 
of both the change in corneal refractive power and the change 
in refractive power of the whole eye. For eight incisions, the 
corneal power, given by the upper curve (labeled cornea), 
overpredicts the true optical correction (lower curve) by about 
0.9 diopters—a significant amount. The corneal powers were 
calculated by treating the cornea as a single refracting surface, 
roughly approximating the clinical measure of corneal power 
and the technique employed elsewhere in corneal modeling 
(Bryant et al., 1987; Huang et al., 1988). This discrepancy 
between corneal refractive power and ocular refractive power 
has been observed clinically as well (see, for example, Waring 
et al., 1985) and clearly suggests that corneal geometry alone 
is insufficient in predicting the optical correction due to RK. 

The amount of correction achieved by these simulated RK 
procedures is well in line with reported results; e.g., Myers 
(1985). It can also be determined from Fig. 3 that 62 percent 
of the total correction of a 16 incision procedure is achieved 
with the first four incisions, while 86 percent is achieved with 
the first eight. These results compare very closely with those 
reported by others (see, for example, Deitz et al., 1984). How
ever, it should be noted that healing effects are not considered 
here, so that these results represent the immediate, and not 
necessarily long term, effects of RK. A possible way to account 
for healing in the design process is discussed in the next section. 
Finally, although the results described here are encouraging, 
it is recognized that detailed experimental studies are needed 
to verify the corneal model on a specific case basis. Only then 
are clinical applications feasible. 

3 Design of RK 
There is little doubt that before incising a patient's eye the 

refractive surgeon would like to know how much optical cor
rection the procedure will achieve. An accurate corneal model 
could solve this problem, although even more critical is the 
converse problem: how should the procedure be performed to 
achieve a specific optical correction? The answer to this ques
tion entails surgical design. Keratorefractive surgical design 
can be viewed as an optical design problem coupled to an 
elasticity problem. For RK, the principal goal is to determine 
the geometry of the incisions that will deform the center of 
the cornea (optical zone) into a flatter shape that will in turn 
eliminate the myopia. In this work, the design of RK is posed 
as an optimization problem. 

Our formulation is based on the following assumptions: 
9 The cornea has quarter symmetry. 
9 The incisions have uniform depth. 
• The incisions are straight and radial. 
8 The width of the incisions is infinitesimal. 
9 All incisions are identical. 
9 The incisions are uniformly spaced around the optical zone. 

These assumptions are consistent with the usual clinical prac
tice of RK which generally consists of either four, eight, or 16 
incisions. This parameter is assumed to be given. It should be 
noted that the assumption of quarter symmetry is primarily 
for computational efficiency; the following methods could eas
ily be extended to a full corneal model. 

A typical incision is shown in Fig. 4, and with the above 
assumptions, it can be completely described by its length, L, 
depth, D, and position, P. Thus, the design vector can simply 
be written as 

(7) 

where L, D, and P are the same for all incisions. Note that 
since optical zone size is generally given as a diameter, it is 
2P. 

Five constraints are imposed on the incisions to prevent them 
from entering the optical zone, extending beyond the limbus, 
penetrating the anterior chamber, and to ensure that their 
lengths and depths have nonnegative values. These constraints 
can be expressed as follows: 

1 0 0 \ / 0 
0 1 0 \ / 0 
0 0 1 1 x > § R07 9 (8) 
0 - 1 
1 0 

•Dm 

Re 

where Roz is the radius of the smallest allowable optical zone, 
Rc is the radius of the cornea, and Dmax is the maximum incision 
depth allowed, which is usually defined so that Dmax< Tc, the 
thickness of the cornea at its apex. 

The eye's optical system is shown in Fig. 5, in which the 
cornea and lens provide the refracting surfaces, and the retina 
is the surface on which the image forms. Since the goal of 
keratorefractive surgery is to eliminate optical errors in the 
eye, the objective function for RK is based, in part, on an 
analysis of an optical model of this system. To facilitate the 
ray tracing procedure that is developed in Luettgen (1988) for 
analyzing the optical model, the various refracting surfaces in 
the eye are modeled by analytic functions (hyperboloids, pa
raboloids, and ellipsoids). In particular, the refracting surfaces 
of the cornea are defined by ellipsoids that are fit to the de
formed configuration of the finite element model in the optical 
zone, providing the required coupling between the elasticity 
problem and the optical model. 

In a normal (or emmetropic) eye, rays of light entering the 
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Fig. 4 Design variables for a typical incision 

eye converge to a point on the retina; this is the focal point 
for the eye, and the plane normal to the optic (z) axis containing 
this point is the focal plane. On the other hand, the ray tracing 
in Fig. 5 illustrates myopia, in which the light rays tend to 
form a focal point in front of the retina. (For comparison, in 
hyperopia, or farsightedness, the focal point is behind the 
retina.) Note, however, that, as shown in the figure, this focal 
point is not necessarily a point, but rather the location along 
the optic axis where the "diameter" of the bundle of rays is 
a minimum. (If after the eye is corrected for myopia the focal 
point is truly a point, then the eye has no astigmatism.) 

If the ;th ray intersects the z = z' plane at the point 
(Xj(z'),yj(z')), as shown in Fig. 5, then the distribution of 
ray intersection points can be characterized by its "radius of 
gyration," given by 

/ 1 m 

<yjnrft 
(9) 

where nr is the number of rays. The focal plane, then, is located 
at z such that z' = Z/p, which occurs when k0(z) is a minimum. 

Once the focal plane is found, the myopic error (in diopters) 
is given by 

where 

Merr— \Dret L)con) Ua, 

LJQ T " 1 Z^-g^ I 

D„, 
Z„+ IZ: 

(10) 

(11) 

(12) 
•fp[ 

and where Dcorr is the amount of overcorrection ( + ) or un-
dercorrection ( - ) desired postoperatively, and zc, zKi, and zfp, 
measured in diopters, are as shown in Fig. 5. Note that although 
the corneal model does not account for healing, Dcorr could 
be used to "design in" some overcorrection to compensate for 
the regressive effects of wound healing.4 

Since Derr is a function of the incision geometry, represented 
by the design vector x, it may seem that the objective function 
should contain Derr(x) in such a way that when the objective 
function is minimized, Derr(x) = 0. However, an examination 
of the design space reveals that Derr(\) = 0 is satisfied not just 
for one point x but for some set of points x. For example, 

'Strictly speaking, of course, one would expect Dcon to be a function of x (as 
well as other variables not considered here), but the form of this function is 
beyond the scope of this work. 
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Fig. 5 The eye's optical system 

long, shallow incisions have the same effect (on Derr) as short, 
deeper ones. Similarly, short incisions placed close to the op
tical zone have the same effect as longer ones placed farther 
away. This suggests that Derr(\) = 0 represents a manifold in 
the design space and is thus properly a constraint rather than 
part of the objective function. 

While this accounts for the optical design goals, there are 
other considerations in the design of keratorefractive surgeries. 
For example, the ophthalmologist might want to use an optical 
zone that is as large as possible in order to minimize the pos
sibilities of glare and "starburst," attributed to incisions that 
directly interfere with the patient's vision (Cross and Head, 
1985). Similarly, it might be desirable to minimize the "in
vasiveness" of the procedure in an attempt to reduce tissue 
trauma and fluctuation of vision; e.g., Cross and Head (1985). 
These kinds of design considerations can be termed surgical 
design goals and are represented here by a scalar function S(x). 

Accordingly, the optimization problem for RK can be stated 
as follows: 

min S(x) 
x 

subj ect to: Derr (x) = 0 

Ax>b 

(13) 

where Ax>b is the set of linear geometric constraints, as in 
(8). Two different cases are now considered for the surgical 
design functions, S(x). 

3.1 Minimizing Invasiveness. The "invasiveness" of a 
keratorefractive surgery can be defined as the amount of cor
neal tissue that is cut, and this can be represented by the area 
of the incision surfaces (i.e., the area of the surfaces that define 
the incisions). If S(\) is defined to be incision area, then an 
RK solution that minimizes invasivness can be found by solving 
the following problem: 

min L •£> 
x ( = incision area) 

subject to: Derr(x) = 0 

Ax>b 

(14) 
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Fig. 6 Monotonicity of incision area over feasible region with respect 
to depth of cut. Myopia = -3 .4 diopters; there are eight incisions 

where incision area is approximated by L'D. 
Although equation (14) is a nonlinear optimization problem 

with both linear and nonlinear constraints, the global mini-
mizer is obtained by utilizing the monotonicity of L'D to 
identify the active constraints and reduce the dimensionality 
of the problem to zero (see Papalambros and Wilde, 1979). 
The resulting constraint bound solution is the global minimizer. 

To demonstrate this, the constraint Derr(x) = 0 is implicitly 
substituted into the objective function S(x). Specifically, if 
dDerr(x)/dL7±0, then Derr(L,D,P) = 0 can be written as 
L =f(P,D), where / is some undetermined function of P and 
D. Since the incision length clearly affects the optical error, 
the derivative condition is satisfied. The objective function can 
therefore be expressed as 

S(x)=f(P,D)>D (15) 

By implicitly differentiating Derr(x) with respect to P the 
following expression is obtained: 

D*=D„ (18) 

df(P,D) 
dP 

BD„(x) 
dP 

fdDerr(x)\ 
(16) 

which relates the monotonicity of f(P,D) with respect to P to 
the monotonicities of Derr(x). 

It can be concluded from typical numerical results (e.g., Fig. 
7) that dDerr(x)/dP<0. Similarly, it is clear that dDerr(x)/ 
BL>0 (see Bryant, 1989). Consequently, equation, (16) indi
cates that 

BAP.D) 
dP 

>0 

From (15), then, 

dS(x) df(P,D) 

dP dP 
•D>Q 

which demonstrates that incision area is monotonically in
creasing with respect to P. 

Thus, to minimize incision area, it is necessary to take the 
smallest allowable value of P, which from equation (8) is 

P*=Roz (17) 

Applying the same monotonicity analysis with respect to D 
leaves the monotonicity (if any exists) of incision area with 
respect to incision depth indeterminate based on this approach 
(Bryant, 1989). To resolve this problem, the computationally 
intensive approach of utilizing the corneal model to calculate 
incision area versus incision depth is applied (Fig. 6). 

It can be seen that incision area is monotonically decreasing 
with respect to depth, so that the minimum incision area is 
obtained at the maximum depth of cut. The active constraint 
that represents this bound is provided by the fourth row of 
Ax>b, which implies that the optimal incision depth is 

Taken together, equation (17) and equation (18) reduce the 
number of degrees of freedom in the original problem equation 
(14) by two. Initially, however, there were three variables and 
one equality constraint and therefore only two degrees of free
dom. Consequently, the optimal solution is constraint bound, 
and the remaining variable, L, can be found by solving the 
equality constraint, Derr(L,D*,P*) = 0. In summary, then, the 
solution to equation (14) can be written as 

D* =D 

P*=Rn (19) 

L* = {L\Derr(L,D*,P*) =0 , A x > b ] 

Intuitively, this solution says that minimum incision area is 
obtained when the incision area is concentrated as close to the 
center of the eye as possible. Since an incision placed close to 
the center of the eye is more effective than the same one placed 
farther away, this might be expected. 

Thus, as a consequence of the monotonicity of incision area, 
the solution to the original nonlinear constrained optimization 
problem is reduced to the solution of equation (19). From this, 
L* can be found by solving the nonlinear equation Den(L) = 0 
within the limits defined by the linear constraints Ax > b, which 
specify that 

0sL*^Rc-Ro (20) 

Since Derr(L,D*,P*) is found to be almost linear, a modified 
bisection algorithm is used to solve (19) (see Bryant, 1989, for 
details). Starting with the endpoints given by equation (20), 
the resulting algorithm generally converges to within 0.125 
diopters in no more than five or six iterations. The error tol
erance of 0.125 diopters was chosen based on the fact that few 
people can detect less than 0.25 diopters of myopia. Results 
for this formulation of RK are presented in the next section, 
where they are compared to the results of the method developed 
next. 

3.2 Maximizing Optical Zone Size. The most common sur
gical technique for RK involves cutting the cornea so that the 
incisions extend from the edge of the optical zone to the limbus 
(the corneal periphery). Accordingly, the size of the optical 
zone is an important parameter in this type of surgery, and 
RK surgeons often design their procedures with an optical zone 
that is as large as possible. This tends to minimize optical 
complications, such as glare and starburst, that are caused by 
incisions that appear in the patient's field of vision (Cross and 
Head, 1985). For example, the published design guides of 
Arrowsmith, Deitz, and Sawelson (Sanders et al., 1984) are 
based largely on this principle. To be more consistent with this 
clinical approach, an alternative formulation for the design of 
RK is developed in this section based on maximizing optical 
zone size. 

This is accomplished quite simply by setting S(x)= —P, so 
that (13) assumes the following form: 

mm 
x 

subjectto: Derr (x) = 0 

Ax>\> 

(21) 

where the constraint -L-P> —Rc of Ax>b is set active to 
create incisions that extend to the limbus; thus, L = RC-P. 
Note that now there is only one degree of freedom in the 
problem, since there are three design variables and two equality 
constraints. 

As in the previous section, the monotonicity of the objective 
function can be used to identify an active constraint which 
indicates that the solution to equation (21) is constraint bound. 
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Fig. 7 Optimal results for maximum optical zone method (a) Compar
ison with Deitz nomogram, (b) Incision area at optimum compared with 
minimum area formulation 

In particular, it can be shown that optical zone size, subject 
to the constraints Derr(x) = 0 and L = Rc-P, is monotonically 
increasing with respect to incision depth, so that the maximum 
optical zone size is obtained at the maximum depth of cut 
(Bryant, 1989). Thus, the solution to equation (21) can be 
written as 

D* =D 

P*={P\Derr(L,D",P*)=0,L = Rc-P; Ax>b) (22) 

L*=RC-P* 

Here as before, the solution to the original optimization 
problem is reduced to the solution of nonlinear, algebraic 
equations: in this case, Derr(L,D*,P)=0 and L = Rc-P. In 
practice, these equations are effectively combined, and a so
lution algorithm similar to the one described previously is 
applied towards their solution. Additionally, monotonicity im
plies that this solution, as in the previous formulation, rep
resents the global minimizer of the original optimization 
problem (21). 

In Fig. 7, optimal results are displayed for the same eye 
considered previously. For Fig. 7(a), the model simulates an 
eight incision procedure with an incision depth of 100 percent 
of the apical value (Tc). It compares the Deitz nomogram 
(Sanders et al., 1984; Sanders and Deitz, 1985), a widely avail
able design guide for RK that is based on a statistical analysis 
of clinical data, to the optimal results of the method of this 
section. Although the two curves are quite close overall, their 
shapes are somewhat different. Whereas the curve plotted from 
the Deitz nomogram is nearly linear, the solution to equation 
(21) indicates that greater increases in optical zone size are 
required at lower levels of myopia. It should be stated that the 
Deitz nomogram was chosen for comparison because it is based 

on a surgical technique that closely matches the present for
mulation (21). 

As a means of comparing the maximum optical zone for
mulation to the minimum incision area formulation, incision 
area at the optimum is plotted in Fig. 1(b) versus the number 
of incisions for both methods. The data are for an intraocular 
pressure of 15 mmHg, - 3 . 4 diopters of myopia, and 90 percent 
depth of cut. At four incisions, the different methods yield 
the same result only because the maximum incision geometry 
is required to correct — 3.4 diopters of error with four incisions. 
At eight incisions for this eye, the maximum optical zone 
formulation requires incisions that are about 30 percent longer 
than those of the minimum incision area method. Also, it can 
be seen that the four incision procedure generates the smallest 
incision area in each case. This seems to suggest that if four 
incisions will eliminate the myopia, then no more than four 
should be used. However, this is only strictly true for eyes with 
perfect axial symmetry, whereas in practice, RK is typically 
performed on corneas with some astigmatism. In this case, the 
astigmatism should also be taken into account (see, for ex
ample, Bryant and Velinsky, 1989). 

4 Conclusions 
A general methodology has been presented for the design 

of the surgical procedure radial keratotomy that relies on cou
pling a finite element model of the cornea to an optical model 
of the eye. The following advantages of this approach over 
previous analytical formulations have been demonstrated: 
(1) Adopting a design approach to the investigation of RK 
allows for the direct determination of the surgical parameters 
required for optical correction. 
(2) The three-dimensional finite element model provides a 
more accurate representation of corneal geometry, which, 
among other things, establishes a foundation for extending the 
approach to astigmatism. 
(5) With an optical model of the entire eye, the refractive 
changes due to keratotomy incisions can be more accurately 
determined. 

The design of RK was formulated as an optimization prob
lem, and two objective functions were considered. In the first 
formulation, the invasiveness of the procedure was minimized 
by defining the objective function to be incision area. Optical 
zone size was maximized in the second formulation. In each 
case, the monotonicity of the objective function yielded a con
straint bound solution, and optimal results were presented for 
a representative eye. 

The results demonstrate that the corneal model is able to 
replicate clinical trends in RK. Moreover, it is clear that the 
effects of various parameters on the surgical outcome for a 
specific eye can be identified, and different RK designs can be 
compared. Of course, before this can be clinically useful, the 
corneal model must be experimentally verified. Nonetheless, 
the results suggest that this approach offers the potential to 
perform detailed analysis and design of RK on a patient-by-
patient basis without the need for statistically derived formulae 
or nomograms. 
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