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Abstract

We report on the absolute cosmic-ray proton spectrum in the energy range 1 to 120 GeV as measured by
the ’98 balloon flight of the BESS spectrometer, which was launched from Lynn Lake, Manitoba, Canada.
The rigidity of the cosmic-ray was measured reliably by continuous tracking in a uniform magnetic field of
1 Tesla. Background-free particle identifications were achieved by the combination of redundantdE=dx and
TOF measurements. The interaction loss was corrected by using Monte Carlo simulations. Atmospheric
secondary protons were subtracted by adopting the calculation of Papini et al..

1 Introduction:
Protons are the most abundant component among primary cosmic-ray particles. Their absolute flux and

spectrum shape are fundamental data in cosmic-ray physics. Precise determination of the primary proton
spectrum is also needed to calculate the secondary anti-proton and positron spectra, which will provide infor-
mation about particle propagation in interstellar space. The absolute energy spectra of primary cosmic-rays is
also important for studying atmospheric neutrinos.

The energy spectrum of cosmic-ray protons has been measured in various experiments. However, their
resultant absolute fluxes show discrepancies up to a factor of 2 at 50 GeV.

We report here a new precision measurement of the cosmic-ray proton spectrum over the energy range 1
to 120 GeV based on the BESS-’98 flight data. In ’98, a new trigger mode was prepared to record all protons
above 6 GeV instead of recording only 1/60 sample of protons as done in the previous flights. It drastically
improved statistics in the proton spectrum measurement as reported here.

2 BESS spectrometer:
The BESS detector is a compact, high-resolution spectrometer with a large acceptance to perform sensitive

searches for rare cosmic-ray components, as well as precision measurements of the absolute fluxes of various
particles (Orito, 1987; Yamamoto, 1998).

All the detector components of the BESS spectrometer are allied in a simple cylindrical shape, as shown
in Figure 1. In the central region, a uniform magnetic field of 1 Tesla is produced by a thin super-conducting
solenoidal coil. The magnetic field fills a large tracking volume of 0.84 m� � 1 m. The geometrical accep-
tance is precisely determined due to the simple cylindrical shape and the uniform magnetic field.

The outermost detector is TOF (Time-Of-Flight) scintillator hodoscopes. A simple coincidence of the top
and bottom TOF hodoscopes initiates the data acquisition sequence. The energy loss (dE=dx) information in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357327409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the scintillation counters is used to identify the single charged particles. The absolute rigidity is determined
by fitting up-to 28 hit points, each with 200�m spatial resolution.

Figure 1: Cross-sectional views of the BESS instrument.

3 Analysis:
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Figure 2: Proton band indE=dx vs rigidity plane (a) and (b)
1/� vs rigidity plane.

3.1 Proton selection: In off-line anal-
ysis, we selected the events with a single track
fully contained inside the fiducial region of
the tracking volume. This selection elimi-
nates rare interacting events. In order to ver-
ify this selection, we scanned five hundred
events randomly and confirmed that 99.2% of
single track events passed this selection crite-
ria and interacting events are fully eliminated.

In order to assure the accuracy of rigidity
measurements, event quality such as�2 was
required. The extrapolated track was checked
to ensure that it traversed a correct TOF scin-
tillation counter. This quality-cut efficiency
was as high as 94%.

Protons were selected by requiring proper
dE=dx and 1/� as a function of rigidity. Pro-
ton bands in this identification are shown in
Figure 2. This proton selection efficiency
was 98 %. The contamination of double
charged particles was negligiblly small. A
very pure proton sample was obtained below
3 GV. Deutrons start to come in the proton
band around 4 GV.
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Figure 3: The geometrical acceptance and efficiencies:
(a) geometrical acceptance of the BESS detector in this
analysis and (b) efficiency of single track selection ob-
tained by Monte Carlo simulation; (c) track- and (d)
TOF- quality-cut efficiencies resulted from flight data
analysis.

3.2 Corrections: In order to determine the
cosmic-ray proton spectrum at the top of the atmo-
sphere, the following corrections and normalizations
were applied to the measured spectrum in the BESS
detector.

The total ionization energy loss both in the detec-
tor and the residual atmosphere was calculated for
each event by summing up the energy losses along
the particle trajectory.

The geometrical acceptance of the BESS instru-
ment (S
) and the efficiency of single track se-
lection ("single track) were calculated using Monte
Carlo simulations by GEANT code as shown in Fig-
ure 3(a) and (b). On the other hand, the quality-
cut efficiencies ("Track Quality � "TOF Quality) were
evaluated from actual flight data to be 94%. The en-
ergy dependence of these quality-cut efficiencies are
shown in Figure 3(c) and (d).

The atmospheric proton contribution, which is
produced by interactions of cosmic-rays with resid-
ual atmosphere of 5g/cm2, was to be subtracted.
Both analytic calculation (Papini, Grimani, and
Stephens, 1996) and GEANT Monte Carlo simu-
lations estimate that the ratio of atmospheric sec-
ondary protons to primary cosmic-ray protons is a
few percents at 1 GeV and less than 1.5 % above
10 GeV. This effect was subtracted based on the
calculation by Papini et al. According to the same
Monte Carlo studies as above, the probability that
primary cosmic-ray protons can penetrate the resid-
ual atmosphere of 5g/cm2 is about 95 % over the
entire energy range.

4 Results:
Figure 4 shows the proton spectrum at the top of the atmosphere obtained from the BESS-’98 flight data

together with the results of previous experiments (Barbiellini, G. et al., 1997; Menn, W. et al., 1997; Papini,
P. et al., 1993; Seo, E.S. et al., 1991; Webber, W.R., Golden, R.L., and Stephens, S.A., 1987). The solid line
in Figure 4 (HKKM) is the primary proton flux assumed in the calculation of atmospheric neutrino fluxes by
Honda et al.(1995).

The analysis of helium flux and proton/helium ratio are being carried out in a same manner, and to be
reported.
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Figure 4: Absolute differential proton spectrum obtained by the BESS-’98 experiment, along with the spectra
obtained by previous experiments and assumed in the atmospheric neutrino flux calculation.
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