
Fast Constrained Submodular Maximization:
Personalized Data Summarization

Baharan Mirzasoleiman BAHARANM@INF.ETHZ.CH

ETH Zurich

Ashwinkumar Badanidiyuru ASHWINKUMARBV@GOOGLE.COM

Google

Amin Karbasi AMIN.KARBASI@YALE.EDU

Yale University

Abstract
Can we summarize multi-category data based on
user preferences in a scalable manner? Many
utility functions used for data summarization sat-
isfy submodularity, a natural diminishing returns
property. We cast personalized data summa-
rization as an instance of a general submod-
ular maximization problem subject to multiple
constraints. We develop the first practical and
FAst coNsTrained submOdular Maximization al-
gorithm, FANTOM, with strong theoretical guar-
antees. FANTOM maximizes a submodular func-
tion (not necessarily monotone) subject to the in-
tersection of a p-system and l knapsacks con-
strains. It achieves a (1+ε)(p+1)(2p+2l+1)/p

approximation guarantee with onlyO(nrp log(n)ε)
query complexity (n and r indicate the size of
the ground set and the size of the largest feasi-
ble solution, respectively). We then show how
we can use FANTOM for personalized data sum-
marization. In particular, a p-system can model
different aspects of data, such as categories or
time stamps, from which the users choose. In
addition, knapsacks encode users’ constraints in-
cluding budget or time. In our set of experi-
ments, we consider several concrete applications:
movie recommendation over 11K movies, per-
sonalized image summarization with 10K im-
ages, and revenue maximization on the YouTube
social networks with 5000 communities. We ob-
serve that FANTOM constantly provides the high-
est utility against all the baselines.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

1. Introduction
A tremendous amount of data is generated every second,
every day by tens of social media and millions of users em-
powering them. Recent statistics indicate that every minute
Instagram users post nearly 220,000 new photos, YouTube
users upload 72 hours of video, and Facebook users share
nearly 2.5 million pieces of content. Organizing and mak-
ing sense of big data has become one of today’s major chal-
lenges in machine learning. Data summarization, in the
form of extracting a representative subset of data points, is
a natural way to obtain a faithful description of the whole
data. In general, a representative summary has two require-
ments [Tschiatschek et al., 2014; Dasgupta et al., 2013]:

• Coverage: A good summary is concise so that it con-
tains elements from distinct parts of data. Naturally, a
concise summary minimizes information loss.

• Diversity: A good summary is compact so that it does
not contain elements that are too similar to each other.

Very often, the utility/scoring function f capturing the cov-
erage or diversity of a subset w.r.t. the entire dataset E sat-
isfies submodularity, an intuitive diminishing returns con-
dition [Lin and Bilmes, 2011; Mirzasoleiman et al., 2013].
In words, adding a new element to a smaller summary, adds
more value than adding the same element to its superset.

Note that coverage and diversity could sometimes be con-
flicting requirements: higher coverage usually means se-
lecting more elements whereas higher diversity penalizes
having similar elements in the summary and prevents the
summary from growing too large. Depending on the ap-
plication, a good summary can trade off between cover-
age and diversity by putting more emphasis on one or
the other. By design, utility functions expressing cov-
erage are monotone as it is quit natural to assume that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357326382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Personalized Data Summarization

adding more elements to a summary will only decrease the
information loss. Such monotone submodular functions
have been extensively used for many data summarization
applications including clustering [Dueck and Frey, 2007;
Gomes and Krause, 2010], scene summarization [Simon
et al., 2007], document and corpus summarization [Lin
and Bilmes, 2011; Sipos et al., 2012], recommender sys-
tems [El-Arini and Guestrin, 2011], crowd teaching [Singla
et al., 2014], and active set selection in kernel machines
[Scholkopf and Smola, 2001; Mirzasoleiman et al., 2013].
In contrast, utility functions that accommodate diversity are
not necessarily monotone as they penalize larger solutions
[Tschiatschek et al., 2014; Dasgupta et al., 2013]. Conse-
quently, the functions designed to measure both coverage
and diversity (e.g., combination of monotone submodular
functions and decreasing penalty terms) are naturally non-
monotone.

On top of maximizing a non-monotone submodular util-
ity function, there are often constraints imposed by the un-
derlying data summarization application. For instance, an
individual interested in showing a summary of her recent
trip photos may not intend to include more than a handful
of them (i.e., cardinality constraint). Or, a user interested
in watching representative video clips (with different du-
ration) from a particular category may not wish to spend
more than a certain amount of time (i.e., knapsack con-
straint). In general, we can cast the data summarization
problem as that of selecting a subset of elements S from a
large datasetE while optimizing a submodular utility func-
tion f that quantifies the representativeness of the selected
subset subject to feasibility constraints ξ:

max
S⊆E

f(S) s.t. S ∈ ξ. (1)

There exist fast and scalable methods to solve problem
(1) for a monotone submodular function f with a variety
of constraints [Badanidiyuru and Vondrák, 2014; Mirza-
soleiman et al., 2015; Badanidiyuru et al., 2014; Mirza-
soleiman et al., 2013; Wei et al., 2014; Kumar et al., 2015].
As a result, monotone submodular maximization subject
to simple constraints (often a cardinality constraint) has
been one of the prototypical optimization problems for data
summarization. In this paper, we aim to significantly push
the theoretical boundaries of constrained submodular max-
imization while providing a practical data summarization
method for far richer scenarios. We develop a FAst coN-
sTrained submOdular Maximization algorithm, FANTOM,
for solving the optimization problem (1) where f is not
necessarily monotone and ξ can be as general as the inter-
section of a p-system and l knapsacks. We show that FAN-
TOM provides a solution with (1+ε)(p+1)(2p+2l+1)/p

approximation guarantee with O(nrp log(n)ε) query com-
plexity (n and r indicate the size of the ground set and
the size of the largest feasible solution, respectively). To

the best of our knowledge, there is no algorithm with such
strong guarantees for maximizing a general submodular
function under the aforementioned constrains. Moreover,
even in the case of a single matroid and a single knapsack
constraint, the best known algorithms suffer from a pro-
hibitive running time that makes them impractical for any
effective data summarization applications (see Section 2).
Last but not least, a p-system contains cardinality, matroid,
and the intersection of pmatroids, as special cases. Thus, it
allows us to easily model various data summarization sce-
narios for which only heuristic methods were known. We
discuss the personalized data summarization in Section 4
with three concrete applications: movie recommendation
on a dataset containing 11K movies, personalized image
summarization on a multi-category dataset with 10K im-
ages, and revenue maximization on the YouTube social net-
work with 5000 communities.

2. Related Work
There has been a recent surge of interest in applying sub-
modular optimization methods to machine learning appli-
cations, including viral marketing [Kempe et al., 2003],
network monitoring [Leskovec et al., 2007], sensor place-
ment and information gathering [Krause and Guestrin,
2011], news article recommendation [El-Arini et al., 2009],
nonparametric learning [Gomes and Krause, 2010; Reed
and Ghahramani, 2013], document and corpus summariza-
tion [Lin and Bilmes, 2011; Dasgupta et al., 2013; Sipos
et al., 2012], crowd teaching [Singla et al., 2014], and MAP
inference of determinental point process [Gillenwater et al.,
2012]. A key reason for such a wide range of applications
is the existence of efficient algorithms (with near-optimal
solutions) for a diverse set of constraints when the submod-
ular function is monotone.

Constrained monotone submodular maximization:
The literature on constrained maximization of monotone
submodular functions is very rich. For this problem, we
know a wide variety of algorithms such as the well-known
greedy [Nemhauser et al., 1978], the continuous greedy
[Vondrák, 2008], and the local search algorithm [Lee et al.,
2009]. We also know algorithms for this problem with
good approximation ratios under a wide variety of con-
straints such as p-system, l-knapsacks [Badanidiyuru and
Vondrák, 2014], and the orienteering problem [Chekuri and
Pál, 2005]. Additionally, very efficient centralized algo-
rithms [Badanidiyuru and Vondrák, 2014; Mirzasoleiman
et al., 2015], scalable algorithms in streaming [Badani-
diyuru et al., 2014; Chekuri et al., 2015a; Chakrabarti and
Kale, 2015], and distributed [Mirzasoleiman et al., 2013;
Kumar et al., 2015] settings have also been developed.

Constrained non-monotone submodular maximization:
While maximizing monotone submodular functions has
been applied to many machine learning applications, the

Personalized Data Summarization

Constraint Previous New
Approximation Running time Approximation Running time

p-system - -

(1 + ε)(p+ 1)(2p+ 2`+ 1)/p O(nrp log(n)ε)

+ l-knapsack
1-matroid e+ ε

poly(n)· exp(l, ε)+ l-knapsack [Feldman et al., 2011]
[Chekuri et al., 2014]

p-matroid p/0.19 + ε poly(n)· exp(p, l, ε)+ l-knapsack [Chekuri et al., 2014]

p-system (p+ 1)(3p+ 3)/p
O(nrp)

(p+ 1)(2p+ 1)/p O(nrp)
[Gupta et al., 2010]

p-matroid p+ 1 + 1/(p− 1) + ε poly(n)· exp(p, ε)[Lee et al., 2010]

Table 1. Comparison of running times and approximation ratios for non-monotone submodular maximization under different constraints.

problem of maximizing non-monotone submodular func-
tions has not found as many applications. Part of the rea-
son is that the existing algorithms for handling generic con-
straints such as both matroid and knapsack constraints are
very slow. A body of work [Feldman et al., 2011; Chekuri
et al., 2014; Gupta et al., 2010; Lee et al., 2010; Feige et al.,
2011; Buchbinder et al., 2015] has found algorithms with
good approximation ratios, albeit with running times of
very high polynomial. A comparison can be found in Table
1. In particular, for l-matroid and l-knapsack constraints, a
(e + ε)-approximation follows from applying results from
[Feldman et al., 2011] to contention resolution techniques
from [Chekuri et al., 2014]. Feldman et al. don’t formalize
this as a theorem but state it in the introduction. Gupta et al.
[2010] and Gupta et al. [2015] further showed a O(p) ap-
proximation for p-matroid and l-knapsack constraints. This
result is summarized in Table 1 of [Chekuri et al., 2014] as
a (p/0.19 + ε)- approximation. For a p-system constraint
without any knapsack constraint, the approximation ratio of
(p+ 1)(3p+ 3)/p can be obtained by substituting α = 1/2
approximation for unconstrained maximization into Theo-
rem 3.3 of [Gupta et al., 2010]. Finally, p-matroid approxi-
mation ratio of p+1+1/(p−1)+ε is provided by Theorem
4 of [Lee et al., 2010].

It is worth mentioning that in addition to the above results,
recently Chekuri et al. [Chekuri et al., 2015b] developed a
continuous-time framework that provides a (1 − 1/e − ε)
approximation for maximizing a submodular function un-
der packing constraints. Although their algorithm gives a
O(n2) runtime for the fractional solution to the multi-linear
extension, converting the fractional solution to an inter-
gral solution requires enumerating sets of size poly(1/ε).
This results in a run time of npoly(1/ε), which is imprac-
tical for most real-world scenarios. In this paper, we de-
velop the first practical algorithm, FANTOM, for maximiz-
ing non-monotone submodular functions with very generic
p-system and l-knapsack constraints.

3. Problem Statement
Let E be the ground set of elements. A set function f :
2E → R+ is submodular if for any two sets S ⊆ T ⊆ E
and any element e ∈ E \ T we have that

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T).

It is monotone if f(S ∪ {e}) − f(S) ≥ 0 for all S ⊆ E
and e ∈ E \ S. A matroid is a pair M = (E, I), where
I is a family of subsets of E (called independent sets)
with the following three properties: 1) ∅ ∈ I, 2) for each
A ⊆ B ⊆ E, if B ∈ I then A ∈ I, and 3) for every
A,B ∈ I if |A| < |B|, then there exists an e ∈ B \ A,
such that A ∪ {e} ∈ I. For a matroid, the size of all max-
imal independent sets are equal (called rank). Two com-
mon matroids are the uniform, and partition matroids. A
uniform matroid is the family of all subsets of size at most
k. In a partition matroid, we have a collection of disjoint
sets Bi and integers 0 ≤ di ≤ |Bi| where a set A is in-
dependent if for every index i, we have |A ∩ Bi| ≤ di.
A p-system is a pair M = (E, I) such that 1) ∅ ∈ I, 2)
for each A ⊆ B ⊆ E, if B ∈ I then A ∈ I, and 3) if
A,B ∈ I are two maximal sets, then |A| ≤ p|B|. It is
useful to note that the intersection of p matroids forms a p-
system. A knapsack constraint is defined by a cost function
c : E → R+. A set S ⊆ E is said to satisfy the knapsack
constraint if c(S) =

∑
e∈S c(e) ≤ 1.

Our goal in this paper is to maximize a (non-monotone)
submodular function f subject to a set of constraints ξ de-
fined by the intersection of a p-system (E, I) and l knap-
sacks. In other words, we would like to find a set S ∈ I that
maximizes f where for each knapsack ci (where 1 ≤ i ≤ l)
we have

∑
e∈S ci(e) ≤ 1. For the ease of presentation, we

use cij to denote the cost of element j ∈ E in the i-th
knapsack. Before explaining how we solve this problem,
we discuss three concrete applications for which we need
to find fast solutions.

Personalized Data Summarization

4. Personalized Data Summarization
In this part, we discuss three concrete applications with
their corresponding utility functions and constraints ξ.

Personalized recommendation: Consider a movie rec-
ommender system, where a user specifies the genres she
is interested in, out of l categories, and the recommender
system has to provide a short list of representative movies
accordingly. To this end, we represent each movie by a
vector consist of users’ ratings. Such a representation can
be easily obtained by using existing low-rank matrix com-
pletion techniques [Candès and Recht, 2009] that provide
a complete rating matrix Mk×n based on few ratings of
k users for n movies in the ground set E. By forming
M , we can measure the similarity si,j between movies i
and j through the inner product between the corresponding
columns. Note that a movie can be a member of differ-
ent categories (e.g., a movie can be both drama and com-
edy). We denote by G(i) the genres of movie i ∈ E . We
also let Eg denote the set of movies from genre g. Clearly,
two genres g, g′ may overlap, i.e., Eg ∩ Eg′ 6= ∅. More-
over, each item has a cost that can represent the monetary
cost, duration, or even accessibility of the movie, among
many other factors. The recommender system has to pro-
vide a short list that meets the user’s constraints, in terms
of money, time, or accessibility. To model this scenario, we
use intersection of l uniform matroids to prevent each cat-
egory from having more than a certain number of movies.
A knapsack constraint is also used to model the user’s lim-
itation in terms of the money she can pay, the time she can
spend, or how much effort she has to make to find such
movies. A sensible submodular utility function that we can
use in order to score the quality of the selected movies is

f(S) =
∑
i∈E

∑
j∈S

si,j − λ
∑
i∈S

∑
j∈S

si,j , (2)

for some 0 ≤ λ ≤ 1. Note that for λ = 1 the above
function is the cut-function. This utility function is non-
negative and non-monotone. The first term is the sum-
coverage function (to capture coverage) and the second
term penalizes similarity within S (to capture diversity).
Such functions have been previously used in document [Lin
and Bilmes, 2011] and scene summarization [Simon et al.,
2007]. Another possible way to compute the similarity
between a movie i and the dataset E is to consider only
movies which have a common genre with i as follows

f(S) =
∑
j∈S

∑
g∈G(j)

∑
i∈Eg

si,j − λ
∑
j∈S

∑
g∈G(j)

∑
i∈Eg∩S

si,j . (3)

This way the utility function emphasizes on movies that
have more common genres with what the user desires.

Personalized image summarization: Here, we have a
collection of images E from l disjoint categories (e.g.,
mountains, bikes, birthdays, etc) and the user is interested
in a summary only from a few categories. For simplicity,
we assume that each image is only a member of a single
category. This assumption lets us define a partition matroid
consisting of l groups. The user basically identifies the set
of desired groups. The size of groups puts a limit on the
number of images that can be chosen from each group. The
cost of an image is chosen as a function of its quality, such
as the resolution, contrast, luminance, etc. For the utility
function, we can use

f(S) =
∑
i∈E

max
j∈S

di,j −
1

|E|
∑
i∈S

∑
j∈S

di,j , (4)

where di,j determines the similarity of image i to image
j. There are many ways to determine the similarity be-
tween images such as cosine similarity or a distance metric.
The first term is the facility location objective function (for
coverage) and the second term is a dispersion function (for
diversity). Facility location has been extensively used for
image summarization in the form of exemplar-based clus-
tering [Dueck and Frey, 2007; Gomes and Krause, 2010].
The above submodular function is non-negative and non-
monotone.

Revenue maximization with multiple products: In this
application, we consider revenue maximization on a social
network G = (V,W) when multiple products from a bas-
ket Q that can be offered to each user i ∈ V . Here, we
assume that W = [wij] represents the weight of edges.
The goal is to offer for free or advertise some of the prod-
ucts to a set of users S ⊆ V such that through their influ-
ence on others, the revenue increases. Following Hartline
et al. [2008] model, a user’s value vqi for a product q is
determined by the set of other users that own the product,
i.e., vqi : 2V → R+. The function vqi (S) usually takes a
concave graph model [Hartline et al., 2008; Babaei et al.,
2013], i.e., for all i ∈ V and S ⊆ V \ {i}, we have
vqi (S) = gqi (

∑
j∈S∪{i} wij), where gqi : R+ → R+ is a

concave function (depending on the product q ∈ Q) and
wij are chosen independently from a distribution µ. The
revenue of a set S for a product q ∈ Q is defined as

fq(S) =
∑
i∈V \S

vqi (S) =
∑
i∈V \S

gqi (
∑

j∈S∪{i}

wij). (5)

Note that fq is a non-monotone submodular function. Each
product q ∈ Q can be advertised to a potentially different
subset Sq ⊆ V . The total revenue, that we try to maximize,
is
∑
q∈Q f

q(Sq) which is again a non-monotone submod-
ular function. Now, users in a social network may want
to see only a small number of advertisements. This re-

Personalized Data Summarization

quirement can be modeled by a partition matroid. More-
over, nodes with higher (weighted) degrees are usually
more influential and harder to get. So we also define a cost
ci = ci(

∑
j∈V wij) for including a node i to a set of users

targeted for advertising any product. Again, the total cost
cannot exceed a threshold modeled by a knapsack.

5. Our Algorithm: FANTOM

In this section, we describe a very fast algorithm for maxi-
mizing a non-monotone submodular function subject to the
intersection of a p-system and l-knapsack constraints. Our
algorithm is a novel combination of two algorithms: an al-
gorithm for maximizing non-monotone submodular func-
tion subject to a p-system [Gupta et al., 2010], and an
algorithm for maximizing monotone submodular function
subject to a p-system and l-knapsack constraints [Badani-
diyuru and Vondrák, 2014]. Additionally we tighten the
analysis of [Gupta et al., 2010] to get a better approxima-
tion ratio even for the case of l = 0.

Our algorithm is split into three parts. In the first part we
take the most natural algorithm for maximizing submodular
functions, i.e., the celebrated greedy algorithm. We restrict
the greedy algorithm to only pick elements with enough
"density" for knapsack constraints. In general, greedy algo-
rithms don’t tend to work well for non-monotone submod-
ular functions. We prove that the algorithm either picks a
good enough of a solution, or if we throw away the greedy
solution, the optimal solution in the remaining elements is
not too bad. Based on this observation, in the second part
we iterate the greedy algorithm multiple times on the re-
maining elements to generate multiple solutions and pick
the best among them. In the third and final part, we dis-
cretize and iterate over all possible values of "density" as
defined in the first part.

5.1. Greedy with Density Threshold (GDT)

In the first part, we consider a natural variant of the greedy
algorithm, where we pick elements in a greedy manner
while simultaneously restricting it to pick elements with
enough "density" for knapsack constraints. I.e., GDT (out-
lined in Alg. 1) does not pick elements if the ratio of the
marginal value of the element to the sum of its costs for
each knapsack is below a given threshold.

Theorem 5.1. For any set C ∈ I, GDT outputs a set S ∈
I such that

f(S) ≥ min

(
ρ

2
,

1

p+ 1
f(S ∪ C)− lρ

p+ 1

)
.

5.2. Iterated Greedy with Density Threshold (IGDT)

While greedy tends to perform well for monotone func-
tions, it can pick really bad solutions for non-monotone

Algorithm 1 GDT - Greedy with density threshold

input f : 2E → R+, a membership oracle for p-system
I ⊂ 2E , and ` knapsack-cost functions ci : E → [0, 1],
density threshold ρ.

output A set S ⊆ E satisfying S ∈ I and ci(S) ≤ 1∀i.
1: Run greedy and at each step pick the element if and

only if fS(j)∑l
i=1 cij

≥ ρ, where fS(j) = f(S∪{j})−f(S)
2: Let z = argmax{f(j)|j ∈ E}
3: Return argmax(f(S), f({z}))

functions. In this part, we run GDT multiple times, each
time on remaining elements to get multiple solutions. We
prove that this process produces at least one reasonable so-
lution.

Algorithm 2 IGDT: Iterated greedy with density threshold

input f : 2E → R+, a membership oracle for p-system
I ⊂ 2E , and ` knapsack-cost functions ci : E → [0, 1],
density threshold ρ.

output A set S ⊆ E satisfying S ∈ I and ci(S) ≤ 1∀i.
1: Ω = E
2: for i = 1; i ≤ p+ 1; i+ + do
3: Si = GDT(f,Ω, ρ)
4: S′i = Unconstrained-Maximization(Si)
5: U = U ∪ {Si, S′i}
6: Ω = Ω− Si
7: end for
8: Return argmax{f(S)|S ∈ U}

Theorem 5.2. For any set C ∈ I, IGDT (outlined in
Alg. 2) outputs a set S ∈ I such that

f(S) ≥ min

(
ρ

2
,

p

(p+ 1)(2p+ 1)
f(C)− lρ

2p+ 1

)

5.3. FANTOM

In this section, we consider the final piece of the puzzle.
In the previous two algorithms, we consider the density
threshold to be a given number. In our final algorithm we
discretize the set of density thresholds into log(n)/ε differ-
ent possible values and run the previous algorithm on each
of them. We finally show that for at least one of the dis-
cretized density thresholds we should get a good enough
solution.

Theorem 5.3. FANTOM (outlined in Alg. 3) has an approx-
imation ratio (1 + ε)(p + 1)(2p + 2l + 1)/p with running
time O(nrp log(n)ε).

Without any knapsack constraints (l = 0), each call to
IGDT (Alg. 2) in FANTOM returns the same solution.
Hence, for the case of l = 0, we obtain an improved ap-

Personalized Data Summarization

Algorithm 3 FANTOM

input f : 2E → R+, a membership oracle for p-system
I ⊂ 2E , and ` knapsack-cost functions ci : E → [0, 1].

output A set S ⊆ E satisfying S ∈ I and ci(S) ≤ 1∀i.
1: M = maxj∈E f(j), γ = 2·p·M

(p+1)(2p+1) , U = {}
2: R =

{
γ, (1 + ε)γ, (1 + ε)2γ, (1 + ε)3γ, . . . , γ · n

}
3: for ρ ∈ R do
4: S = IGDT(f,Ω, ρ)
5: U = U ∪ {S}
6: end for
7: Return argmax{f(S)|S ∈ U}

proximation guarantee of (p+ 1)(2p+ 1)/p, with a similar
running time O(nrp) to [Gupta et al., 2010].

Proposition 5.4. For the case of l = 0, FANTOM has a
(p + 1)(2p + 1)/p-approximation ratio with O(nrp) run-
ning time.

As we noted in Table 1, even for the special case of 1-
matroid and 1-knapsack constraints, all the existing algo-
rithms have exorbitant running times and cannot be imple-
mented in any reasonable time in practice. There are two
main reasons for this. The first is due to an expensive enu-
meration step running over all subsets of very large size,
and the second is due to running the continuous greedy al-
gorithm. To compare our algorithms against practical base-
lines in Section 6, we consider two heuristics based on clas-
sical methods for maximizing submodular functions.

Greedy: Our first baseline starts with an empty set S = φ
and keeps adding elements one by one greedily while the
p-system and l-knapsack constraints are satisfied.

Density Greedy: Our second baseline starts with an empty
set S = φ and keeps adding elements greedily by their
value to total-knapsack cost ratio while the p-system and
l-knapsack constraints are satisfied.

The above heuristics do not have provable performance
guarantees as shown by the following examples.

Bad example for Greedy. Let n = |E| be the number
of elements in the ground set and let m = n/2. Define
sets Ti = {yi, zi} for 1 ≤ i ≤ m. Let E = ∪mi=1Ti.
Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm}. Let
ε > 0 be a small constant. Define the submodular function

∀S ⊆ E, f(S) = (1 + ε) · |S ∩ Y |+ |S ∩ Z|

and the following two constraints.

1. A partition matroid constraint where S is a feasible
solution if for 1 ≤ i ≤ m, |S ∩ Ti| ≤ 1.

2. A knapsack constraint where cost is defined as fol-
lows. For any e ∈ Y, c(e) = 1 − 1

2m and for any

e ∈ Z, c(e) = 1/m.

Then, it is easy to see that Baseline 1 picks a set S = {yi}
for some i and gets value 1 + ε, while the optimal solution
is Z of value m = n/2.

Bad example for Density Greedy. Let T1 = {y1, z1}
and T2 = {y2, z2} and E = T1 ∪ T2. Let Y = {y1, y2}
and Z = {z1, z2}. Let ε > 0 be a small constant. Define
the submodular function

∀S ⊆ E, f(S) = ε · |S ∩ Y |+ |S ∩ Z|

and the following two constraints.

1. A partition matroid constraint where S is a feasible
solution if for 1 ≤ i ≤ 2, |S ∩ Ti| ≤ 1,

2. A knapsack constraint where cost is defined as fol-
lows. For any e ∈ Y, c(e) = ε/2 and for any
e ∈ Z, c(e) = 1/2.

Then, it is easy to see that Baseline 2 picks a set S = Y for
some i and gets value 2ε, while the optimal solution is Z of
value 2. Hence the approximation ration is at least 1/ε and
as ε→ 0 we get unbounded approximation ratio.

6. Experiments
In this section, we evaluate FANTOM on the three real-
world applications we described in Section 4: personal-
ized movie recommendation, personalized image summa-
rization, and revenue maximization. The main goal of this
section is to validate our theoretical results, and demon-
strate the effectiveness of FANTOM in practical scenarios
where existing algorithms are incapable of providing desir-
able solutions.

Personalized movie recommendation: Our personal-
ized recommendation experiment involves FANTOM ap-
plied to a set of 10,437 movies from the MovieLens rat-
ings database [Mov, 2015]. Each movie is associated with
a 25 dimensional feature vector calculated from user rat-
ings. There are 19 genres in total, and each movie is as-
sociated with at most 8 genres. We used the inner product
of the non-normalized feature vectors to compute the sim-
ilarity si,j between movies i and j (this idea was inspired
by Lindgren et al. [2015]). The costs ci are drawn from
the Beta(10, 2) cumulative distribution ci = FBeta(10,2)(ri),
where ri ∈ (0, 1) is the normalized average rating of movie
i. The Beta distribution lets us differentiate the highly rated
movies from those with lower ratings and can be used as a
proxy for the cost of watching different movies.

Fig. 1a compares the performance of our approach to the
benchmarks using Eq. 2 with λ = 1 for three genres: ad-
venture, animation, and fantasy. A total of l = 19 uniform

Personalized Data Summarization

Knapsack limit (c)
0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
va

lu
e

#104

1

1.5

2

2.5

FANTOM

Greedy

Density Greedy

(a) Movies

Matroid limit (m)
1 2 3 4 5 6 7

O
bj

ec
tiv

e
va

lu
e

#104

0

0.5

1

1.5

2

2.5

3

FANTOM

Density Greedy

Greedy

(b) Movies

Knapsack limit (c)
0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e
va

lu
e

#104

1

1.5

2

2.5

3

3.5

FANTOM

Greedy

Density Greedy

(c) Movies

Matroid limit (m)
1 2 3 4 5 6 7

O
bj

ec
tiv

e
va

lu
e

#104

0

1

2

3

4

5

6

7

Greedy

FANTOM

Density Greedy

(d) Movies

Knapsack limit (c)
0.05 0.1 0.15 0.2

O
bj

ec
tiv

e
va

lu
e

0

20

40

60

80

100

120

140

160

180

FANTOM

Greedy

Density Greedy

(e) YouTube

Matroid limit (m)
1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

30

40

50

60

70

80

90

100

FANTOM

Greedy

Density Greedy

(f) YouTube

User constraint (u)
1 2 3 4 5

O
bj

ec
tiv

e
va

lu
e

40

60

80

100

120

140

160

FANTOM

Greedy

Density Greedy

(g) YouTube

Number of items per product (x)
20 40 60 80 100

O
bj

ec
tiv

e
va

lu
e

0

20

40

60

80

100

120

140

160

180

200

FANTOM

Greedy

Density Greedy

(h) YouTube

Figure 1. Performance of FANTOM compared to the benchmarks for movie recommendation from a set of 10,437 movies from Movie-
Lens, and revenue maximization on top 5000 communities of YouTube with 39,841 nodes and 224,235 edges. a) shows the performance
of FANTOM based on Eq. 2 for recommending movies from three genres: adventure, animation, and fantasy for m = 3, and varying
knapsack limit c. b) shows the same quantity for c = 1, and varying the matroid limits m. c) shows the solution value based on Eq. 3
with m = 3, and varying c. d) shows the same quantity for c = 1, and varying m. e) shows the performance of FANTOM for selling
q = 10 product types, with x = 50 available items per product, matroid limit m = 5 for all communities, user constraint u = 3, and
varying knapsack limit c. f) shows the same quantity for c = 0.1, q = 10, x = 50, u = 3 and varying m. g) shows the solution value
for c = 0.2, q = 10, x = 50, m = 3, and varying u. h) shows the same quantity for c = 0.2, q = 10, m = 5, u = 3 and varying x.

matroid constraints are considered to limit the number of
movies chosen from each of the 19 genres. The limits for
all the matroid constraints are set to 3. We also consid-
ered an additional uniform matroid constraint to restrict the
size of the final solution to 10 movies. Moreover, a knap-
sack constraint is considered to model the total available
budget. It can be seen that FANTOM significantly outper-
forms the benchmarks for different knapsack limits. Fig.
1b shows similar qualitative behavior for a fixed knapsack
limit c = 1, and varying matroid limits m associated with
each of the 19 genres. Again, FANTOM is able to show a
good performance in scenarios where Greedy and Density
Greedy perform arbitrary poorly. Fig. 1c and 1d show the
same qualitative behavior using Eq. 3. Table 2 summarized
the movies recommended by different methods, along with
their average rating and associated genres. We can see that
by using Eq. 3 the recommended movies have more com-
mon genres with what the user requested.

Revenue maximization with multiple products: Our
larger scale experiment involves applying FANTOM to max-
imize the revenue function defined in Eq. 5. We performed
our experiment on the top 5000 largest communities of
the YouTube social network consists of 39,841 nodes and

Knapsack limit (c)
0.16 0.18 0.2 0.22 0.24

O
bj

ec
tiv

e
va

lu
e

#105

6.2

6.22

6.24

6.26

6.28

6.3

6.32

6.34

6.36

FANTOM

Greedy

Density Greedy

(a) Images

Matroid limit (m)
1 2 3 4 5

O
bj

ec
tiv

e
Va

lu
e

#105

5.2

5.4

5.6

5.8

6

6.2

6.4

Greedy

FANTOM

Density Greedy

(b) Images

Figure 3. Performance of FANTOM compared to the benchmarks
for personalized image summarization: a) shows the solution
value for summarizing three categories airplane, automobile, and
bird for m = 3, and varying the knapsack limit c. b) shows the
same quantity for c = 0.1, and varying the matroid limits m.

224,235 edges [Yang and Leskovec, 2015]. We consider
the settings where we are to advertise |Q| = q different
types of product across all communities of the same social
network. For simplicity, we assume that there are x units
available from each product, and the influence of individ-
uals on each other is the same for all product types. The

Personalized Data Summarization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Eq. FANTOM Greedy Density Greedy
Movie Average rate Genres Movie Average rate Genres Movie Average rate Genres

2

1 3.99 1,2,15 6 4.20 2,3,9 11 1.16 3,4
2 3.98 3,4,5,9 7 4.21 1,2 12 1.16 2,4
3 4.00 2,3,4,9,19 8 3.26 1,2,8,14 13 1.25 2,4,5,9
4 3.08 9,11 9 2.66 2,5,12 14 1.34 2,3,4,9
5 2.53 3,4,5 10 1.96 1,2,4 15 1.39 1,2,4

3

16 3.91 2,3,5,9,14 21 3.78 1,2,3,4,5,9 12 1.16 2,4
17 3.70 2,3,4,8,9 22 3.75 1,2,3,4,5,9 13 1.25 2,4,5,9
18 3.78 1,2,5,12,14,16 23 4.06 1,2,3,4,9,15 14 1.34 2,3,4,9
19 3.53 1,2,3,4,5 24 3.82 2,5,8,9,13,15,16 11 1.16 3,4
20 3.16 1,2,5,9,11,16 25 2.08 1,2,4,5,9,15 15 1.39 1,2,4

Table 2. Movies recommended by FANTOM vs. Greedy and Density Greedy using Eq. 2, and Eq. 3 for m = 5 and c= 1. There are 19
genres in total: Action(1), Adventure(2), Animation (3), Children (4), Comedy (5), Crime (6), Documentary (7), Drama (8), Fantasy (9),
Film-Noir (10), Horror (11), Musical (12), Mystery (13), Romance (14), Sci-Fi (15), Thriller (16), War (17), Western (18), IMAX (19).
The user is interested in adventure, animation, and fantasy movies (genres 1,2,9). See the Appendix for a complete list of movie names.

edge weights are assigned according to a uniform distribu-
tion U(0, 1), and the cost of selecting each node ci is deter-
mined according to an exponential cumulative distribution
function of the normalized sum of its edge weights. For the
exponential distribution, we chose the parameter λ = 0.2
to scale the costs to the interval [0, 1]. To model differ-
ent characteristics of the products, we model the revenues
by the concave function vqi (S) = αq

√∑
j∈S wi,j , where

αq depends on the type of the product. We used q = 10
different values αq ∈ [0.8, 1.3] to model the revenue of dif-
ferent product types. Finally, we modeled user constraints
by a partition matroid that puts a limits u on the number of
products that can be offered to each user. Another partition
matroid is employed to restrict the number of products m
offered for free to users in each community.

Fig. 1e shows the revenue obtained by FANTOM versus
the budget c when there are x = 50 free items available
from each product, the number of individuals that can be
selected from each community is limited to m = 5, and
the number of products that can be offered to each user is
at most u = 3. We note again that FANTOM significantly
outperforms the other benchmarks. Fig. 1f shows the same
behavior for varying the matroid limitm, when x = 50 and
budget c = 0.1. Similarly, Fig. 1g shows the performance
of FANTOM for m = 5, x = 50, c = 0.2, and varying the
user constraints u. Finally, Fig. 1h shows the performance
of FANTOM for m = 5, u = 3, c = 0.2, and varying the
number of available items x from each product type.

Personalized image summarization: Our personalized
recommendation experiment involves FANTOM applied to
Eq. 4. We performed our experiments on a set of 10,000
Tiny Images [Krizhevsky and Hinton, 2009]. The images

belong to 10 classes, with 1000 images per class. Each 32
by 32 RGB pixel image was represented by a 3,072 dimen-
sional vector. We used the inner product to compute the
similarity si,j between image i and j. The costs are chosen
proportional to the normalized variance of the image pix-
els as a simple technique to calculate image qualities. This
way, we assign a higher cost to images with higher contrast
and a lower cost to blurry images.

A partition matroid constraint is considered to limit the
number of images chosen from each of the specified cat-
egories. Moreover, a knapsack constraint is employed to
model the limited available budget. Fig. 3a compares the
performance of our approach to the benchmarks for sum-
marizing images from three categories: airplane, automo-
bile, and bird. The results are shown for varying knap-
sack limit c, while the maximum number of images allowed
from each category is set tom=3. Similarly, Fig. 3b shows
the results for fixed c= 0.1, and varying m. We find again
that FANTOM significantly outperforms the benchmarks.

7. Conclusion
We have developed the first efficient algorithm FANTOM
for maximizing non-monotone submodular functions sub-
ject to a p-system and l-knapsack constraints. We have also
showed its applications to various personalized data sum-
marization problems. Given the importance of submodular
optimization to numerous data mining and machine learn-
ing applications, we believe our results provide an impor-
tant step towards addressing various constrained discrete
optimization problems.

Acknowledgments. This research was supported by a
Google Faculty Research Award.

Personalized Data Summarization

References
Grouplens. movielens 20m dataset. http://
grouplens.org/datasets/movielens/20m/,
2015.

Mahmoudreza Babaei, Baharan Mirzasoleiman, Mahdi
Jalili, and Mohammad Ali Safari. Revenue maximiza-
tion in social networks through discounting. Social Net-
work Analysis and Mining, 3(4):1249–1262, 2013.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algo-
rithms for maximizing submodular functions. In SODA,
2014.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman,
Amin Karbasi, and Andreas Krause. Streaming submod-
ular maximization: massive data summarization on the
fly. In KDD, 2014.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy
Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. SIAM Journal
on Computing, 2015.

Emmanuel J Candès and Benjamin Recht. Exact matrix
completion via convex optimization. Foundations of
Computational mathematics, 2009.

Amit Chakrabarti and Sagar Kale. Submodular maximiza-
tion meets streaming: Matchings, matroids, and more.
Mathematical Programming, 2015.

Chandra Chekuri and Martin Pál. A recursive greedy algo-
rithm for walks in directed graphs. In FOCS, 2005.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Sub-
modular function maximization via the multilinear relax-
ation and contention resolution schemes. SIAM J. Com-
put., 2014.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud.
Streaming algorithms for submodular function maxi-
mization. In Automata, Languages, and Programming.
2015a.

Chandra Chekuri, TS Jayram, and Jan Vondrák. On mul-
tiplicative weight updates for concave and submodular
function maximization. In Proceedings of the 2015 Con-
ference on Innovations in Theoretical Computer Science,
pages 201–210. ACM, 2015b.

Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. Summa-
rization through submodularity and dispersion. In ACL,
2013.

Delbert Dueck and Brendan J Frey. Non-metric affinity
propagation for unsupervised image categorization. In
ICCV, 2007.

Khalid El-Arini and Carlos Guestrin. Beyond keyword
search: discovering relevant scientific literature. In
KDD, 2011.

Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos
Guestrin. Turning down the noise in the blogosphere. In
GKDD 2009, 2009.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximiz-
ing non-monotone submodular functions. SIAM Journal
on Computing, 2011.

Moran Feldman, Joseph Naor, and Roy Schwartz. Non-
monotone submodular maximization via a structural
continuous greedy algorithm - (extended abstract). In
ICALP (1), pages 342–353, 2011.

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-
optimal MAP inference for determinantal point pro-
cesses. In NIPS, 2012.

Ryan Gomes and Andreas Krause. Budgeted nonparamet-
ric learning from data streams. In ICML, 2010.

Anupam Gupta, Aaron Roth, Grant Schoenebeck, and
Kunal Talwar. Constrained non-monotone submodu-
lar maximization: Offline and secretary algorithms. In
WINE, 2010.

Anupam Gupta, Viswanath Nagarajan, and R Ravi. Ro-
bust and maxmin optimization under matroid and knap-
sack uncertainty sets. ACM Transactions on Algorithms
(TALG), 12(1):10, 2015.

Jason Hartline, Vahab Mirrokni, and Mukund Sundarara-
jan. Optimal marketing strategies over social networks.
In WWW. ACM, 2008.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Maxi-
mizing the spread of influence through a social network.
In KDD, 2003.

Andreas Krause and Carlos Guestrin. Submodularity
and its applications in optimized information gathering.
ACM TIST, 2011.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images, 2009.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and
Andrea Vattani. Fast greedy algorithms in mapreduce
and streaming. ACM Transactions on Parallel Comput-
ing, 2015.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and
Maxim Sviridenko. Non-monotone submodular max-
imization under matroid and knapsack constraints. In
STOC, 2009.

http://grouplens.org/datasets/movielens/20m/
http://grouplens.org/datasets/movielens/20m/

Personalized Data Summarization

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodu-
lar maximization over multiple matroids via generalized
exchange properties. Math. Oper. Res., 2010.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos
Faloutsos, Jeanne M. VanBriesen, and Natalie S. Glance.
Cost-effective outbreak detection in networks. In KDD,
2007.

Hui Lin and Jeff A. Bilmes. A class of submodular func-
tions for document summarization. In ACL, 2011.

Erik M Lindgren, Shanshan Wu, and Alexandros G Di-
makis. Sparse and greedy: Sparsifying submodular fa-
cility location problems. 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and
Andreas Krause. Distributed submodular maximization:
Identifying representative elements in massive data. In
NIPS, 2013.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier
than lazy greedy. In AAAI, 2015.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An anal-
ysis of approximations for maximizing submodular set
functions - i. Math. Prog., 14:265–294, 1978.

Colorado Reed and Zoubin Ghahramani. Scaling the indian
buffet process via submodular maximization. In ICML,
2013.

Bernhard Scholkopf and Alexander J Smola. Learning with
kernels: support vector machines, regularization, opti-
mization, and beyond. MIT press, 2001.

Ian Simon, Noah Snavely, and Steven M Seitz. Scene sum-
marization for online image collections. In ICCV, 2007.

Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Kar-
basi, and Andreas Krause. Near-optimally teaching the
crowd to classify. ICML, 2014.

Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy,
and Thorsten Joachims. Temporal corpus summarization
using submodular word coverage. In CIKM, 2012.

Sebastian Tschiatschek, Rishabh Iyer, Haochen Wei, and
Jeff Bilmes. Learning mixtures of submodular functions
for image collection summarization. In NIPS, 2014.

Jan Vondrák. Optimal approximation for the submodular
welfare problem in the value oracle model. In STOC,
2008.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage
submodular maximization. In ICML, 2014.

Jaewon Yang and Jure Leskovec. Defining and evaluat-
ing network communities based on ground-truth. Knowl-
edge and Information Systems, 42(1):181–213, 2015.

