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Abstract

Metal–insulator transitions driven by disorder (D) and/or by electron correlations (U) are investigated within the

Anderson–Hubbard model with local binary-alloy disorder using a simple but consistent mean-field approach. The D–U

phase diagram is derived and discussed for T ¼ 0 and finite temperatures.
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If spontaneous symmetry breaking is excluded,
a system of electrons in a non-degenerate half-
filled valence band may undergo a transition from
a normal Fermi liquid to an insulator either due to
Coulomb interaction or due to disorder. Metal–
insulator transitions (MIT) in the presence of
strong electron correlations and disorder are not
well understood—even on the mean-field level. For
the purely correlation-induced (Mott) MIT, the
dynamical mean-field theory (DMFT) has uncov-
ered a rather complex phase diagram [1]. The MIT
to an (alloy) insulator in case of non-interacting
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electrons and strong diagonal binary-alloy disor-
der is described by the coherent-potential approx-
imation (CPA) [2]. While spatial correlations are
neglected in both cases (including effects of
Anderson localization), the residual mean-field
physics at low temperatures T is non-trivial. The
combined problem can be studied within the half-
filled (n ¼ 1) Anderson–Hubbard model (AHM):
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Here the n.n. hopping is set to t ¼ 1; U is the on-
site interaction, m ¼ U=2 is the chemical potential,
and �i ¼ �D=2 with equal probabilities x ¼ 1

2
a

random on-site energy at site i. D measures the
disorder strength. We consider the paramagnetic
phase of the AHM in D ¼ 3 dimensions.
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Fig. 1. U–D phase diagram for T ¼ 0 (insets: U–T phase

diagram for different D). Energy scale: t ¼ 1:
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‘‘DMFT+CPA’’ [3] can be regarded as the
optimum mean-field approach to this model. This,
however, must be supplemented by stochastic [3]
or renormalization-group techniques [4] or by
further approximations, e.g., weak-coupling per-
turbation theory [5]. While parts of the phase
diagram in the U–D–T space are known [3,5], a
comprehensive study is still missing.
Here we employ the self-energy-functional

approach (SFA) [6] and the ns ¼ 2-site dynami-
cal-impurity approximation (2S-DIA) which nicely
reproduces the phase diagram for D ¼ 0 [6]. In
case of disorder, a proper generalization of the
formalism has to be applied [7]. Within the
generalized framework, the 2S-DIA can be re-
garded as a strongly simplified but consistent
DMFTþ CPA approach. In the limit ns ! 1;
one recovers the DMFT for D ¼ 0; the CPA for
U ¼ 0 and the DMFT+CPA for U ;Da0:
Operationally, the Green’s function G 0 of a

single-impurity Anderson model H 0 with two sites
and impurity on-site energies � ¼ �D is obtained
by exact diagonalization and averaged, C0 ¼ hG 0

i;
to get the configuration-independent self-energy
S0

� G 0
0
�1

� C0�1 where G 0
0 is the free (U ;D ¼ 0)

Green’s function. S0
¼ Sðt0Þ depends on the one-

particle parameters of H 0 and is used as a trial self-
energy in a general variational principle, dO½S� ¼
0; which gives the exact averaged grand potential
of the AHM at the physical S: On the subspace
given by Sðt0Þ; the functional can be evaluated
rigorously (see Ref. [7]). We consider the AHM on
a D ¼ 3 s.c. lattice consisting of 103 sites. Phase
boundaries are obtained from the resulting O as a
function of D; U and T. The averaged interacting
local density of states (DOS) of the AHM can be
calculated via rðoÞ ¼ �ImGiiðoþ iZÞ=p and C ¼

ðG�1
0 � S0

Þ
�1; where G0 is the free (U ;D ¼ 0)

lattice Green’s function. Within the mean-field
approach, rðo ¼ 0Þ distinguishes between metallic
and insulating behavior.
Three different phases are identified at T ¼ 0

(see Fig. 1): a paramagnetic metallic phase (PM), a
Mott insulator (MI), and an alloy insulator (AI).
For any disorder strength D; we find the AI at
weak U (and DXDcðUÞ) to be well separated from
the MI at strong U by the PM in between. For
D ¼ 0 the critical interaction for the Mott MIT is
found to be U c ¼ 13:9 � 1:16W (with W ¼ 12 the
free bandwidth) while Dc � 5:4 ¼ 0:46W for the
MIT at U ¼ 0: This agrees well with full DMFT
and CPA estimates, respectively [1,2,6]. For
Uc1pUpU c2; a coexistence of the stable PM
phase with the metastable MI phase is observed
(U c1 ¼ 12:4). This scenario for the Mott MIT is
well known for D ¼ 0 [1] and is shown here to
survive for any finite disorder strength with a D
dependent coexistence region U c1ðDÞpUpU c2ðDÞ
and U cðDÞ ¼ U c2ðDÞ: A discontinuous Mott MIT
with U c1ðDÞpU cðDÞpU c2ðDÞ is found for finite
temperatures 0oTpTcðDÞ: For T4T cðDÞ there
is a smooth crossover only. For D ! 1; the
critical interactions approach a linear depen-
dence, Uc1;2ðDÞ ! Dþ const1;2 while T cðDÞ ! T c

saturates.
The topology of the phase diagram can be

understood by looking at the DOS, see Fig. 2.
Characteristic for the MI at D ¼ 0 and U4U c is
the insulating gap between the lower and upper
Hubbard band (LHB, UHB). For finite D the gap
decreases due to a broadening and, eventually, a
splitting of each of the Hubbard bands (Fig. 2,
D ¼ 6). The closure of the gap is preempted by the
occurrence of a quasi-particle peak (QP) at o ¼ 0
which marks the transition to the PM (see D ¼ 14).
Apart from the QP, the spectrum can be under-
stood as being composed of two Hubbard bands at
o � �D=2� U=2 for each of the two atomic
configurations � ¼ �D=2: This explains the strong
spectral-weight transfer when increasing D ¼ 18 to
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Fig. 2. Average density of states for U ¼ 18 and different D
and Lorentzian broadening with Z ¼ 0:25:
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D ¼ 20: As the � ¼ þD=2-DOS (� ¼ �D=2-DOS)
becomes almost completely unoccupied (occu-
pied), the weight of the UHB (LHB) must
disappear. Finally, a further increase of D induces
a splitting into an upper and lower alloy band
(UAB, LAB) and a MIT to the AI.
Recently, Byczuk et al. [4] have shown that

DMFT+CPA predicts the AHM to exhibit a
Mott MIT also for fillings na1 if x ¼ n: Similar to
the presently considered case n ¼ 1 ¼ 2x; a sharp
QP at o ¼ 0 (even for strong disorder) as well as a
coexistence of the PM and the MI is found close to
the MIT. We like to point out that the phase
diagram for n ¼ xa1 [4] can be understood by an
analysis of the DOS completely analogous to the
n ¼ 1 ¼ 2x case discussed above—although its
topology is quite different.
Concluding, we have proposed a mean-field

scenario for the MIT in the AHM at half-filling
n ¼ 1 ¼ 2x on the basis of a simplified
DMFT+CPA approach. The phase diagram can
be understood by a quasi-atomic interpretation of
the DOS in combination with the Mott MIT
scenario of the pure system. This should be
contrasted with full DMFT+CPA calculations
in the future which may also clarify the importance
of disorder scattering due to a finite self-energy
ImSðo ¼ 0Þ which has been neglected here.
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