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Abstract:A one-dimensional version of the Koksma-Hlawka inequality is used to obtain auto-
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1 Introduction

Let (Xn)n∈N denote a scalar stochastic process with values in [a, b] ⊂ R (a < b) satisfying Xn = T (Xn−1)
for every n ≥ 1, where T : [a, b] → [a, b] is a nonlinear measurable map and X0 is a random initial state.
Such processes are often called cryptodeterministic, a term which seems to have been proposed originally by
E. T. Whittaker [7] to express the fact that randomness enters the dynamics only through the initial state of
the process. Beside their exotic character, such stochastic processes have attracted the interest of scientists
for two essential reasons; on one side, as emphasized by Hall and Wolff [1], they provide reduced scale
models which can capture some aspects of the dynamics of complex chaotic dynamical systems and give
qualitative insight about their behaviour; on the other side, they arise quite naturally in telecommunications
engineering, most notably in the synthesis of random signals with specific correlational properties, as shown
by Kohda, Lawrance et al. in various papers [3, 5, 6].

An important dynamical characteristic of (Xn)n∈N is the linear dependence of the state at time n on the
initial state X0, which is usually quantified by the autocovariance function

γ0(j) = cov(X0, Xj) = E[X0Xj ]− E[X0]E[Xj ] (j ≥ 0)

where E[·] denotes the mathematical expectation operator.
As a matter of fact, although a cryptodeterministic process (Xn)n∈N is structurally completely dependent

on the initial state X0, there are various examples of cryptodeterministic processes which show only short
range linear dependence on X0, that is

∑
j≥0 |γ0(j)| < ∞.

Before considering some particular cases, let us note that, since (Xn)n∈N satisfies the first-order Markov
property, it is strictly stationary if and only if X1 and X0 are identically distributed, that is, if and only if the
probability distribution of X0 is invariant by T .

For instance, let us consider the cryptodeterministic process defined recursively from the initial condition
X0 ∼ β(1/2, 1/2) and the evolution map

T : [0, 1] 3 x 7→ 4x(1− x) ∈ [0, 1].
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It is a standard result that the probability distribution β(1/2, 1/2) is invariant by T . Hence, this process
is strictly stationary, and a direct application of theorem 2.1 from Hall and Wolff [1] shows that γ0(j) =
0 (j ≥ 1).

Another example is provided by the cryptodeterministic process (Xn)n∈N defined recursively from
X0 ∼ U([0, 1]) and the evolution map

T : [0, 1] 3 x 7→ r x mod 1 ∈ [0, 1]

where r ∈ {2, 3, . . . }. Straightforward computations show that the probability distribution U([0, 1]) is
invariant by T . Thus, (Xn)n∈N is strictly stationary. Moreover, for any j ≥ 1,

γ0(j) = cov(X0, Xj) =
rj−1∑

i=0

∫

βi

(rju− i)udu−
(∫ 1

0
udu

)2

where βi = [ir−j , (i + 1)r−j) for i = 0, . . . , rj − 1. Hence,

γ0(j) = r−2j
rj−1∑

i=0

3i + 2
6

− 1
4

=
r−j

12
.

Other examples of cryptodeterministic processes can be found, for instance, in the work of Kohda, Tsuneda
and Lawrance [3] on Chebyshev maps. It is a remarkable fact that, in these examples, as in the ones
previously exposed, the autocovariances with the initial state can be explicitly computed, for it is not always
the case that explicit formulas can be obtained, due to computational difficulties.

In this paper, this problem is dealt with for a specific class of chaotic maps, without requiring the
strict stationarity of the generated cryptodeterministic process, that is, without requiring that the initial
distribution be invariant. It is shown that, even if explicit computations are intractable, it is possible to use a
one-dimensional version of the well-known Koksma-Hlawka inequality [2, 4] to obtain an upper bound on
the absolute autocovariances, which is of the same order in the stationary and the nonstationary case.

2 A general covariance inequality

Before defining the class of chaotic maps that will be dealt with in the sequel, let us introduce some defini-
tions and notations.
Let h be a continuously differentiable real-valued map defined on [a, b] ⊂ R (a < b). The quantity

V[a,b](h) =
∫ b

a
|h′(x)|dx.

is called the total variation or the variation of h on [a, b]. In this paper, this notion will be used in connection
with the following inequality, which can be seen as a simplified version of the Koksma-Hlawka inequality
[2, 4].

Proposition 2.1 Let h be continuously differentiable on [0, 1], and let x1 < · · · < xn ∈ [0, 1]. Then,
∣∣∣∣∣
∫ 1

0
h(x)dx− 1

n

n∑

i=1

h(xi)

∣∣∣∣∣ ≤ V[0,1](h) ·D∗
∞(x1, . . . , xn)

where D∗∞(x1, . . . , xn) is the star-discrepancy of {x1, . . . , xn}, that is

D∗
∞(x1, . . . , xn) = sup

x∈[0,1]

∣∣∣∣∣x−
1
n

n∑

i=1

1[0,x](xi)

∣∣∣∣∣
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Proof. We can write, using integration by parts

∫ 1

0
h(x)dx− 1

n

n∑

i=1

h(xi) = h(1)−
∫ 1

0
xh′(x)dx− 1

n

n∑

i=1

(h(1)−
∫ 1

xi

h′(x)dx)

= −
∫ 1

0
xh′(x)dx +

1
n

n∑

i=1

∫ 1

0
1[xi,1](x)h′(x)dx

= −
∫ 1

0

(
x− 1

n

n∑

i=1

1[xi,1](x)

)
h′(x)dx

hence, ∣∣∣∣∣
∫ 1

0
h(x)dx− 1

n

n∑

i=1

h(xi)

∣∣∣∣∣ ≤ sup
x∈[0,1]

∣∣∣∣∣x−
1
n

n∑

i=1

1[0,x](xi)

∣∣∣∣∣ ·
∫ 1

0
|h′(x)|dx

which is the desired inequality. ¤

Now, for every integer r > 1, define the map

Sr : [0, 1] 3 x 7→ r x mod 1 ∈ [0, 1].

A map T is called φ-conjugated to Sr if there exists an interval [a, b] ⊂ R (a < b) and a diffeomorphism φ
from [a, b] to [0, 1] such that Sr ◦ φ = φ ◦ T . We will say that T and Sr are positively φ-conjugated if φ is
increasing. Conjugacy is a fundamental notion of dynamical systems theory since it can be used to reduce
the study of computationally complex systems to the study of simpler ones, with essentially equivalent dy-
namical properties. To see this, assume that T is φ-conjugated to Sr, and let (yn) be a trajectory of Sr, that
is yn = Sr(yn−1). Then xn = φ−1(yn) satisfies xn = T (xn−1). Thus, (xn) is a trajectory of T and each of
the sequences (xn) and (yn) can be recovered from the other.

Now, let us consider a map T : [a, b] → [a, b] which is positively φ-conjugated to some Sr, and let
(Xn)n∈N be the cryptodeterministic process defined by the recurrence equation Xn+1 = T (Xn) for every
n ≥ 0, and the initial state X0 ∼ µ, where µ is a probability distribution on the borelian σ-algebra of [a, b],
which is assumed to be absolutely continuous with respect to the Lebesgue measure on [a, b]. Let us denote
by f a version of its probability density function, defined everywhere on [a, b]. Additionally, let us define
(Un)n∈N as the cryptodeterministic process generated from the recurrence equation Un+1 = Sr(Un) for
every n ≥ 0, and the initial state U0 = φ(X0). Then, for every n ≥ 0,

Xn = φ−1 ◦ Sn
r ◦ φ(X0) = φ−1(Un).

Moreover, U0 ∼ µφ−1. This is a probability measure which is absolutely continuous with respect to the
Lebesgue measure on [0, 1], and a version of its probability density function is given by f ◦ φ−1(u)/φ′ ◦ φ−1(u).

Theorem 2.1 If there is w ∈ C1([0, 1]) such that

w(u) =
f ◦ φ−1(u)
φ′ ◦ φ−1(u)

(λ− a.e)

where λ denotes the Lebesgue measure on [0, 1], then

|cov(X0, Xj)| ≤ r−j · V[0,1](wφ−1) ·
∫ 1

0
|φ−1(v)|max(v, 1− v)dv

+r−j · V[0,1](w) ·
∣∣∣∣
∫ 1

0
φ−1(v)w(v)dv

∣∣∣∣ ·
∫ 1

0
|φ−1(v)|max(v, 1− v)dv.
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Proof. First, let us note that for every j ≥ 0,

E[X0Xj ] = E[φ−1(U0)φ−1(Uj)] =
∫ 1

0
φ−1(u)φ−1(Sj

ru)w(u)du

=
rj−1∑

i=0

∫

βi

φ−1(u)φ−1(rju− i)w(u)du,

where βi = [ir−j , (i + 1)r−j). Accordingly,

cov(X0, Xj) = E[X0Xj ]− E[X0]E[Xj ] = cov(φ−1U0, φ
−1Uj)

=
rj−1∑

i=0

∫

βi

φ−1(u)φ−1(rju− i)w(u)du

−
(∫ 1

0
φ−1(u)w(u)du

) 


rj−1∑

i=0

∫

βi

φ−1(rju− i)w(u)du




=
rj−1∑

i=0

∫

βi

φ−1(rju− i)w(u)
(

φ−1(u)−
∫ 1

0
φ−1(t)w(t)dt

)
du

=
rj−1∑

i=0

∫ 1

0
φ−1(v)w(

v + i

rj
)(φ−1(

v + i

rj
)−

∫ 1

0
φ−1(t)w(t)dt)r−jdv

where v = rju− i. Now, set W (φ−1) =
∫ 1
0 φ−1(t)w(t)dt. Then,

cov(X0, Xj) =
rj−1∑

i=0

∫ 1

0
φ−1(v)w(

v + i

rj
)
(

φ−1(
v + i

rj
)−W (φ−1)

)
r−jdv

= r−j

∫ 1

0
φ−1(v)

rj−1∑

i=0

{
w(

v + i

rj
)φ−1(

v + i

rj
)− w(

v + i

rj
)W (φ−1)

}
dv

=
∫ 1

0
φ−1(v)


 1

rj

rj−1∑

i=0

w(
v + i

rj
)φ−1(

v + i

rj
)−

∫ 1

0
φ−1(t)w(t)dt


 dv

−W (φ−1)
∫ 1

0
φ−1(v)


 1

rj

rj−1∑

i=0

w(
v + i

rj
)−

∫ 1

0
w(t)dt


 dv

since, by definition,
∫ 1
0 w(t)dt = 1. Hence,

|cov(X0, Xj)| ≤
∫ 1

0
|φ−1(v)| ·

∣∣∣∣∣∣
1
rj

rj−1∑

i=0

w(
v + i

rj
)φ−1(

v + i

rj
)−

∫ 1

0
φ−1(t)w(t)dt

∣∣∣∣∣∣
dv

+|W (φ−1)| ·
∫ 1

0
|φ−1(v)| ·

∣∣∣∣∣∣
1
rj

rj−1∑

i=0

w(
v + i

rj
)−

∫ 1

0
w(t)dt

∣∣∣∣∣∣
dv

But, according to proposition 2.1, we have, by setting vi = v+i
rj for i = 0, . . . , rj − 1,

∣∣∣∣∣∣
1
rj

rj−1∑

i=0

w(
v + i

rj
)φ−1(

v + i

rj
)−

∫ 1

0
φ−1(t)w(t)dt

∣∣∣∣∣∣
≤ V[0,1](wφ−1) ·D∗

∞(v0, . . . , vrj−1)

and ∣∣∣∣∣∣
1
rj

rj−1∑

i=0

w(
v + i

rj
)−

∫ 1

0
w(t)dt

∣∣∣∣∣∣
≤ V[0,1](w) ·D∗

∞(v0, . . . , vrj−1)
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where the discrepancy D∗∞(v0, . . . , vrj−1) is given by

D∗
∞(v0, . . . , vrj−1) = sup

x∈[0,1]

∣∣∣∣∣∣
x− 1

rj

rj−1∑

i=0

1[0,x](vi)

∣∣∣∣∣∣

= sup
x∈[0,1]

∣∣∣∣∣∣
x− 1

rj

rj−1∑

i=0

1[0,x](
v + i

rj
)

∣∣∣∣∣∣
.

But
v + i0 − 1

rj
≤ x <

v + i0
rj

if and only if
xrj − v < i0 ≤ xrj − v + 1

hence
v − 1

rj
≤ x− 1

rj

rj−1∑

i=0

1[0,x](
v + i

rj
) = x− i0

rj
<

v

rj

and ∣∣∣∣∣∣
x− 1

rj

rj−1∑

i=0

1[0,x](
v + i

rj
)

∣∣∣∣∣∣
≤ max(v, 1− v)

rj
.

Thus,

D∗
∞(v0, . . . , vrj−1) ≤

max(v, 1− v)
rj

and

|cov(X0, Xj)| ≤ r−j · V[0,1](wφ−1) ·
∫ 1

0
|φ−1(v)| ·max(v, 1− v)dv

+r−j · V[0,1](w) ·
∣∣∣∣
∫ 1

0
φ−1(v)w(v)dv

∣∣∣∣ ·
∫ 1

0
|φ−1(v)| ·max(v, 1− v)dv

which completes the proof. ¤

The previous inequality holds for example if the following properties are satisfied

(i) f is continuously differentiable on [a, b]

(ii) φ is twice continuously differentiable on [a, b]

(iii) inf [a,b] φ
′ > 0.

Then, we can take

w(u) =
f ◦ φ−1(u)
φ′ ◦ φ−1(u)

.

The quantities V[0,1](w), V[0,1](wφ−1) and the other integrals appearing in the previous inequality can be
approximated numerically, or computed analytically in some cases.

3 The strictly stationary case

In the stationary case, µT−1 ≡ µ, thus µφ−1S−1
r ≡ µφ−1. Since the uniform distribution on [0, 1] is the

unique absolutely continuous invariant probability distribution for every r-adic map, we have necessarily

µφ−1 ≡ U([0, 1])

and in this case, the probability distribution function of µ is necessarily φ; hence, its probability density
function is φ′.

Thus, w ≡ 1 and V[0,1](w) = 0. Then, one can deduce the following result.

IJNS email for contribution: editor@nonlinearscience.org.uk



S. Lardjane: On Linear Dependence to the Initial State for a Class of Nonstationary · · · 207

Theorem 3.1 Under the previous assumptions and notations, if (Xn) is strictly stationary, then

|cov(X0, Xj)| ≤ r−j · (b− a) ·
∫ 1

0
|φ−1(v)| ·max(v, 1− v)dv.

Proof. The result is a straightforward consequence of theorem 2.1. Note that since φ is increasing, it is
also the case of φ−1, hence V (φ−1) = b− a. ¤

In the case of the cryptodeterministic process obtained by iterating the r-adic map from X0 ∼ U([0, 1]),
we have seen that

γ0(j) =
r−j

12
, j ≥ 1.

Let us compare this result to the bound obtained in our inequality.
We have here φ−1 = Id[0,1], hence

|cov(X0, Xj)| ≤ r−j · (1− 0) ·
∫ 1

0
v ·max(v, 1− v)dv

≤ r−j · (
∫ 1/2

0
v(1− v)dv +

∫ 1

1/2
v2dv) =

3 r−j

8

Hence, our bound is 36/8 = 4.5 times the true value of the covariance and, thus, has the correct order of
magnitude.

If we denote by Bj(w) the bound obtained in the general case, we can denote by Bj(1) the bound
obtained in the strictly stationary case, and we see that

Bj(w)
Bj(1)

=
V[0,1](wφ−1) + V[0,1](w) ·

∣∣∣
∫ 1
0 φ−1(v)w(v)dv

∣∣∣
b− a

.

Thus, the ratio between the two bound depends only on the conjugacy map and the probability density
function of the initial condition. Both bounds can be computed analytically in some cases, and approximated
numerically if a direct computation is not feasible.
In the special case of the r-adic maps, the inequalities above show that if the stationary case is taken as
reference, then the rate of convergence of γ0(j) to 0 cannot be decreased by a random perturbation of the
initial state which has a smooth probability density function, which is an interesting stability result.
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