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Abstract Nonintrusive load monitoring (NILM), sometimes referred to as load
disaggregation, is the process of determining what loads or appliances are running
in a house from analysis of the power signal of the whole-house power meter. As
the popularity of NILM grows, we find there is no consistent way researchers are
measuring and reporting accuracies. In this short communication, we present a
unified approach that would allow for consistent accuracy testing.
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1 Introduction

Nonintrusive (appliance) load monitoring (NILM or NIALM) is the process of
determining what loads or appliances are running in a house from analyzing the
power signal of the whole-house power meter. NILM, which is sometimes called
load disaggregation, can be used in systems to inform occupants about how energy
is used within a home without the need of purchasing additional power monitoring
sensors. Once occupants are informed about what appliances are running, and how
much power these appliances consume, they can then make informed decisions
about conserving power, whether motivated by economic or ecologic concerns (or
both).

A review of NILM algorithms and research has led us and others [6,15,10] to
the conclusion that there is no consistent way to measure performance accuracy.
Although some researchers still use the most basic forms of accuracy measure,
there has been discussion concerning more sophisticated measurements. The most
basic accuracy measure used by a majority of NILM researchers (e.g. [2,14,12]) is
defined as

Acc. =
correct matches

total possible matches
=

correct

correct + incorrect
. (1)
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Kim et al. [6] point out that accuracy results are “very skewed because using an
appliance is a relatively rare event .... appliances [that] are off will achieve high
accuracy”. Better accuracy performance measures must be considered. Expanding
on our previous work [10], we present a unified approach that would allow for
consistent accuracy testing amongst NILM and load disaggregation researchers.

The rest of our short communication is organized as follows. We first define
data noise (Section 2), then discuss strategies using ground truth (Section 3).
Next, we focus on classification accuracy testing (Section 4) and estimation test-
ing (Section 5). We end the discussion with a look at why researchers need to
report accuracies with respect to both the overall performance and appliance spe-
cific performance (Section 6). Finally, we demonstrate some of the issues that we
discussed previously by examining the results from an experiment (Section 7).

2 Data Noise

Data noise can be understood as unexpected or unaccounted for anomalies that
can appear in the stream of data that an algorithm analyzes. Noise can take a
number of forms when looking at disaggregation. There can be readings that are
missing, leaving gaps in a time series of data. There can be data streams that
have timestamps that are out of sync. There can be corrupted data where data
measurements within the reading are missing or measured wrongly due to sensor
miscalculation or malfunction. Aside from miscalculation or malfunction, data can
contain Gaussian noise due to small fluctuations in sensor/ADC (analog-to-digital
converter) precision and the consumption of power by an appliance. Specifically for
disaggregation, noise can be unmetered appliances that create large unexpected
patterns of energy consumption. For our purpose, we define noise as the amount of
power remaining in the observed aggregate power reading once the disaggregated
appliance power readings (in ground truth) have been subtracted. Mathematically
defined as

noise = yt −
M∑

m=1

y
(m)
t , (2)

where yt is the total ground truth or observed value at time t, M is the number of

appliances, and y
(m)
t is the ground truth power consumed at time t for appliance

m.

3 Ground Truth and Bias

NILM researchers need to describe in detail the data they are using to build
models, train, and test their NILM algorithms. If researchers are using data from
publicly available datasets such as REDD [7] or AMPds [12], they need to discuss
the method used to clean the data. For instance, discussing how they dealt with
incomplete or erroneous data, and with different meters having different sample
rates.

There also needs to be a clear statement on whether the testing included noise
or was denoised. In denoised data, the whole-house power reading is equal to
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the summation of all appliance power readings – which we often refer to as the
unmetered load or appliance. Using denoised data for testing will cause higher
accuracies to be reported. Denoised data does not reflect a real-world application
because there would be a significant amount of noise due to unmetered loads
running in the home. Furthermore, what needs to be reported is the percentage
of noise in each test. This percent-noisy measure (%-NM) would be calculated on
the ground truth data as such:

%-NM =

∑T
t=1|yt −

∑M
m=1 y

(m)
t |∑T

t=1 yt
, (3)

where yt is the aggregate observed current/power amount at time t and y
(m)
t is

the ground truth current/power amount for each appliance m to be disaggregated.
For example, a denoised test would result in 0%; whereas, a %-NM of 0.40 would
mean that 40% of the aggregate observed current/power for the whole test was
noise.

Finally, researchers should use standard methods to minimize any effects of
bias. Bias occurs when some data used for training is also used for testing, and
when present, results in the reporting of higher accuracies. A well-accepted method
used by the data mining community to avoid bias is 10-fold cross-validation [9, pp.
109]. This simple method splits the ground truth data into 10 subsets of size n

10 .
NILM algorithms can then be trained on 9 of the subsets and accuracy testing is
performed on the excluded subset. This is repeated 10 times (each time a different
subset is used for testing) and the mean accuracy is then calculated and reported.

4 Classification Accuracy

Researchers need to measure how accurately NILM algorithms can predict what
appliance is running in each state. Classification accuracy measures, such as f-
score (a.k.a. f-measure), are well suited for this task. F-score, often used in infor-
mation retrieval and text/document classification, has also been used by NILM
researchers [4,1,6]. It is the harmonic mean of precision and recall :

F1 = 2· precision· recall
precision + recall

, precision =
tp

tp + fp
, recall =

tp

tp + fn
,

where precision is the positive predictive values and recall is the true positive
rate or sensitivity, tp is true-positives (correctly predicted that the appliance was
ON), fp is false-positives (predicted appliance was ON but was OFF), and fn is
false-negatives (appliance was ON but was predicted OFF). Note these measures
(tp, fp, fn) are accumulations over a given experimental time period. However,
f-score is generally used for binary classification purposes.

Kim et al. [6] showed how f-score could be modified to account for non-binary
outcomes, such as a power signal (we call M-fscore). Their approach combined
appliance state classification and power estimation accuracies together even though
in many instances classification and estimation are two distinct functions of NILM
algorithms. Combining classification and estimation hides important diagnostic
information as to what parts of NILM algorithms have low accuracy. Furthermore,
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functions, such as classification and estimation, require a specific type of accuracy
measure that is suited for measuring their performance. Matching function with
accuracy measure provides more detailed diagnostic and performance information.

To calculate the accuracies of non-binary classifications we now define finite-
state f-score (FS-fscore). We introduce a partial penalization measure called inac-
curate portion of true-positives (inacc) which converts the binary nature of tp into
a discrete measure. The inacc of a given experimental test is

inacc =
T∑

t=1

|x̂(m)
t − x

(m)
t |

K(m)
, (4)

where x̂
(m)
t is the estimated state from appliance m at time t, x

(m)
t is the ground

truth state, and K(m) is the number of states for appliance m. In other words,
we penalize based on the distance (or difference) of the estimated state and the
ground truth state. Precision and recall can now be redefined to account for these
partial penalizations:

precision =
tp− inacc

tp + fp
and recall =

tp− inacc

tp + fn
. (5)

The definition of f-score remains the same. A summation over all appliances M
for each tp, inacc, fp, and fn (including a recalculation of precision, recall, and
f-score) would allow for the overall classification accuracy of the experimental test
to be reported.

5 Estimation Accuracy

Accuracies based on power estimation also need to be reported to show how accu-
rately the NILM algorithm can estimate how much power is being consumed com-
pared to actual consumption. This is important because systems that use NILM
need to report to occupants what portion of the power bill can be attributed to
each appliance. Additionally, when dealing with time-of-use billing (charging more
per kWh at peak times), occupants need to know how much might have been saved
if certain appliances (e.g. a clothes dryer) were not used during the peak period.

There are different accuracy measures that have been used to compare con-
sumption estimation. Parson [13] has used root mean square error (RMSE) for
reporting estimation accuracy. However, these measures are not normalized, and
it is hard to compare how the disaggregation of one appliance performed over
another. This becomes a bigger problem when you try to compare an appliance
that consumes a large amount of power (e.g. heating) versus an appliance that
consumes very little power (fridge).

Normalized disaggregation error (NDE) [8,13,3] has also been used to measure
the estimation accuracy of an appliance. With this measure, we would subtract
the summation of all T estimations by the summation of all T ground truths.
However, subtracting the summations would tend to report inflated accuracies
because it is possible for errors to cancel each other out. For example, suppose we
had an estimation of 2A and a ground truth of 0A at time t1 and an estimation
of 0A and a ground truth of 2A at time t2, the NDE would be 0% when in fact
100% would be the correct error score. The Kolter and Johnson [7,5] estimation
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accuracy measure calculates the correct value of 0% accurate (or 100% error). We
have chosen this estimation accuracy method to use and is defined as

Est. Acc. = 1−
∑T

t=1

∑M
m=1|ŷ

(m)
t − y

(m)
t |

2 ·
∑T

t=1

∑M
m=1 y

(m)
t

(6)

where T is the time sequence or number of disaggregated readings, M as the

number of appliances, ŷ
(m)
t is the estimated power consumed at time t for appliance

m, and y
(m)
t is the ground truth power consumed at time t for appliance m.

This method allows for overall estimation accuracy reporting. By eliminating the
summations over M , we can then report estimation accuracy for each appliance

Est. Acc.(m) = 1−
∑T

t=1|ŷ
(m)
t − y

(m)
t |

2 ·
∑T

t=1 y
(m)
t

. (7)

6 Overall and Appliance Specific Accuracies

Both classification accuracy and estimation accuracy need to be reported in overall
scores and appliance specific scores. Reporting how each appliance scores is impor-
tant for identifying strengths and weaknesses of different NILM algorithms. With
this more detailed accuracy information, one could imagine a system that would
select different algorithms depending on the context (including specific history)
of the disaggregation task. It is important also to keep in mind when reporting
accuracies the result needs to be normalized. Normalized results allow readers to
understand the relative standings from one appliance to another and from each
appliance to the overall accuracy. Finally, although more detailed information has
its advantages, reporting specific scores for appliance states is not necessary be-
cause different makes/models of appliances will have a different number of states
at different power levels.

7 Experiment Example

We investigated how basic accuracy can be misleading by reporting high confidence
numbers that do not accurately reflect inaccuracies in predicting rare events. This
would be the case for most loads that are sporadically used. We also show why
modified f-score, which combines classification and estimation, is not a detailed
enough measure. We used the more detailed AMPds [12], rather than REDD [7]
to illustrate the issues with these different measurements, using our own NILM
algorithm [11]. Current draw (I) values were rounded up to the nearest whole-
Ampere and 10-fold cross-validation was used on the entire one year of data.
The whole-house current draw measurement was denoised so that it equalled the
summation of the current draw from the 11 loads chosen for disaggregation (a
%-NM of 0.00). The classification and estimation results are listed Table 2. We
have also provided other basic measures in Table 1. Additionally, we include true-
negatives tn counts, and the accurate/inaccurate true-positives (atp and itp) using
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Table 1 Basic Accuracy Measures

Load Acc TP Inacc APT ITP TN FP FN

Overall Score 97.28% 86398 78.44 82280 4111 474850 9108 6610

Basement 96.34% 5590 0.00 4710 879 44942 947 973

Clothes Dryer 99.35% 647 0.10 647 0 51461 43 300

Clothes Washer 97.88% 76 2.50 19 57 51265 130 980

Dishwasher 98.80% 863 4.52 845 17 50959 335 294

Kitchen Fridge 88.23% 17429 12.97 17388 41 28847 4587 1588

HVAC/Furnace 99.90% 52376 35.67 50893 1482 25 36 15

Garage 99.93% 0 0.00 0 0 52413 7 31

Heat Pump 99.70% 4622 22.27 4395 226 47672 51 107

Home Office 94.68% 492 0.00 487 4 49171 1173 1615

Ent/TV/DVD 95.43% 4188 0.00 2782 1405 45866 1762 636

Wall Oven 99.79% 115 0.42 114 0 52229 37 71

Table 2 Classification and Estimation Accuracy Results

Load F-Score M-fscore FS-fscore RMSE NDE Est Acc

Overall Score 91.66% 87.30% 91.58% 4.9293 1.18% 91.87%

Basement 85.34% 71.92% 85.34% 0.4134 6.86% 83.06%

Clothes Dryer 79.05% 79.05% 79.03% 0.5750 5.79% 96.17%

Clothes Washer 12.05% 3.01% 11.65% 0.4041 79.60% 46.89%

Dishwasher 73.29% 71.82% 72.91% 0.5459 22.68% 76.06%

Kitchen Fridge 84.95% 84.75% 84.89% 0.4480 12.75% 82.57%

HVAC/Furnace 99.95% 97.12% 99.88% 0.2127 2.43% 98.40%

Garage 0.00% 0.00% 0.00% 0.1102 92.14% 46.17%

Heat Pump 98.32% 93.51% 97.85% 0.9178 0.50% 97.05%

Home Office 26.09% 25.83% 26.09% 0.2501 24.32% 34.53%

Ent/TV/DVD 77.75% 51.65% 77.75% 0.3018 9.02% 68.55%

Wall Oven 68.05% 67.86% 67.80% 0.7503 6.03% 75.67%

in M-fscore, where atp+ itp = 1 and can be seen as assigning partial accuracy and
avoiding the binary nature of the true-positive tp score.

In all cases, basic accuracy scores far better than FS-fscore. This is most noted
for the garage results. The inacc results show partial penalization, and this is
apparent when comparing f-score with FS-fscore. When we examine M-fscore we
see that it scores less than either f-score and FS-fscore, but it is hard to understand
why. When examining the RMSE scores it is hard to compare how appliances
performed to each other or to the overall results as this score is not normalized.
When comparing NDE with estimation accuracy, we see in most instances NDE
scores better. This is most apparent in the ent/tv/dvd load. Overall the FS-fscore
and estimation of our test scores high, but this masks the fact some loads (clothes
washer, garage, and home office) did not score well. Furthermore, the home office
and garage results shows there can be a higher score for estimation but a lower
classification score, and the ent/tv/dvd results shows there can be a higher score
for classification and a lower score for estimation.
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8 Conclusion

We presented a unified approach that allows for consistent accuracy testing amongst
NILM researchers. Our approach takes into account classification performance and
estimation performance – not one or the other. Additionally, we include perfor-
mance reporting at both the overall level and an appliance level. This evaluation
strategy has been incorporated into our research, and we look forward to continued
discussion and refinement of this framework as other NILM researchers continue
to address the issue of inconsistent accuracy reporting.
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