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Abstract— The present paper introduces an evaluation of
the manipulation performance of a cooperating robotic ma-
nipulator with respect to task accuracy, taking into consid-
eration the effects of the dynamic process between inputs
and outputs in the manipulation system. A measure based
on the output controllability of the manipulation system is
proposed, which shows the relationship between the object’s
position and orientation and the joint driving force. Computer
simulations show the validity of the task accuracy measure
and the difference between the proposed measure and the
conventional manipulability measure.

I. INTORDUCTION

The concepts of kinematic manipulability measure and
dynamic manipulability measure were proposed for evalu-
ation of kinematic and dynamic performance for a single
manipulator in a task space [17], [18]. Performance criteria
related to the manipulability are the generalized inertia ellip-
soid [1], the task compatibility [5], the acceleration radius [7]
and the dynamic isotropy conditions [11]. The basic idea of
the manipulability measure has been applied to cooperating
manipulation systems, which consists of multiple robotic
manipulators and a grasped object [2], [3], [4].

Typical task examples of cooperating robotic manipulators
are manipulating an object from one position and orientation
to another, or are mating mechanical parts in gravitational
fields. In such a manipulation task, control accuracy of the
object’s position and orientation is important issues. The
above-mentioned manipulability measures, however, take
into consideration not the task accuracy but the task effi-
ciency for given joint velocities or joint driving forces. In
this paper, we consider the task accuracy of the cooperating
manipulation system as manipulation performance.

From the viewpoint of the linear system theory [9], the
relationship between inputs and outputs in the cooperating
manipulation system shown in Fig.1 is discussed. A system
is said to be a static process when the current output is
determined only by the current input at the moment. The
conventional kinematic (dynamic) manipulability is regarded
as the measure of the static process, since the relationship
between joint velocities (torques) and arm tip velocities
(accelerations) is considered to be instantaneous.

On the other hand, a system is said to be a dynamic process
when the current output is affected by not only the current in-
puts but also the past inputs. It is required to take the dynamic
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Fig. 1. Concept of dynamic process and static process in cooperating
manipulation system

process of a system into consideration in order to evaluate the
control accuracy of the system [9]. Therefore, considering the
dynamic process of the cooperating manipulation system, we
discuss the task accuracy of the system from the viewpoint of
the output controllability between the object’s position and
orientation (outputs) and the joint driving forces (inputs).

In the present paper, the relationship between inputs and
outputs in the cooperating manipulation system is recon-
sidered from the viewpoint of a dynamic process, and the
evaluation for the manipulation performance from the aspect
of task accuracy is proposed. We present a novel ellipsoid
expressing the set of output controllable displacements of
the object in terms of the given joint driving forces, which
completely differs from the conventional manipulability el-
lipsoids. The volume, shape, and orientation of the ellipsoid
can yield the performance evaluation of the task accuracy
quantitatively. Computer simulations show the validity of the
task accuracy measure and the difference between the pro-
posed measure and the conventional manipulability measure.

II. LINEARIZED MODEL

A. Kinematic constraints

A cooperating manipulation system consists of an object
and multiple cooperating robot manipulators in the three
dimensional space, as shown in Fig. 2. It is assumed that each
manipulator has three joints in order to generate forces in an
arbitrary direction at each contact point [15]. The object is
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Fig. 2. Cooperating manipulation system

manipulated by multiple rigid manipulators through contacts
on the distal link of each manipulator.

Let xO ∈ �6 denote the position and orientation of the
object, whose frame is fixed to the object mass center. Let
θ ∈ �3nf be the vector of the joint angle of the nf -
manipulators. Assuming that sliding does not occur at any
contact points by applying appropriate contact forces, the
velocity constraints between ẋO and θ̇ can be described as

W T
O(xO, ξ) ẋO = J(θ, ξ) θ̇ (1)

where W O = T T W ∈ �6×3nf , W is the wrench matrix
and T is the matrix that transforms ẋO into the vector of
the linear and angular velocity of the object (vO, ωO). The
matrix J ∈ �3nf×3nf is the manipulator Jacobian matrix.
The vector ξ ∈ �4nf is the local coordinate, which represents
the position of the contact point on the surface of the object
and the link of the manipulator [12].

B. Dynamics of Manipulation System

The equation of motion for the manipulator are given by

MH(θ)θ̈ + hH(θ, θ̇) + gH(θ) = τ − JT fC (2)

where MH ∈ �3nf×3nf is the inertia matrix, hH ∈ �3nf ,
gH ∈ �3nf , τ ∈ �3nf and fC ∈ �3nf are the vectors of
the Coriolis term, the gravitational term, joint torques, and
components of the contact forces exerted by the manipulators
at their contact points, respectively.

The equation of motion for the object are described as

MO(xO)ẍO + hO(xO, ẋO) + gO(xO) = W (xO, ξ)fC

(3)
where MO ∈ �6×6 is the inertia matrix of the object, and
hO ∈ �6 and gO ∈ �6 are the vectors of the Coriolis and
gravitational terms, respectively.

The contact forces generating the acceleration of the object
can be derived from (3), which are

fC = W �(MOẍO + hO + gO) + Nf I (4)

where W � is the pseudo inverse of W , the vector Nf I

represents the internal force, and f I ∈ �(3nf−6) denotes its
magnitude.

The acceleration constraints are obtained by differentiat-
ing the velocity constraint (1). Therefore, the joint angular
acceleration θ̈ can be given by

θ̈ = J−1(W T
OẍO + Ẇ

T

OẋO − J̇ θ̇) (5)

Substituting (4) and (5) into (2) yields the dynamic equations
for the whole manipulation system, which are

M sys

[
ẍO

f I

]
= τ − gsys(xO, θ, ξ)− hsys (6)

where

M sys =
[

MV JT N
] ∈ �3nf×3nf

MV = MHJ−1W T
O + JT W �MO ∈ �3nf×6

gsys = gH + JT W �gO

hsys = hH + JT W �hO + MHJ−1(Ẇ
T

OẋO − J̇ θ̇)

Solving for [ẍT
O fT

I ]T on the left-hand side of (6) yields

ẍO = ΛO(τ − gsys − hsys) (7)
f I = Λf (τ − gsys − hsys) (8)

where

M−1
sys =

[
ΛO

Λf

]
Consequently, the dynamics of the manipulation system can
be divided into two properties. Equation (7) represents the
relationship between the applied joint torque τ and the
generated acceleration of the object ẍO, and equation (8)
represents the relationship between the applied joint torque
τ and the generated internal force f I .

C. State Equation and Output Equation

By applying the linear system theory, we derive the lin-
earized dynamic model of (7), which shows the relationship
between the object’s position and orientation and the joint
torques.

Linearizing (7) with respect to the equilibrium points
xO = xOe, θ = θe, ξ = ξe, τ = τ e and p = pe, which
satisfy ẍO = ẋO = 0, θ̈ = θ̇ = 0, and ξ̈ = ξ̇ = 0, yields
the linear time-invariant state equation and output equation
as follows:

δż = Aδz + Bδτ (9)
δp = Cδz (10)

where δz =
[

δxT
O δẋT

O

]T
is state variables, δτ = τ −

τ e is input variables and δp = p − pe is output variables
expressing the object’s position and orientation. Coefficient
matrices in (9) and (10) can be written by

A =
[

0 I6

−ΛOG 0

]
xO=xOe

θ=θe
ξ=ξe

, B =
[

0
ΛO

]
xO=xOe

θ=θe
ξ=ξe

C =
[
I6 0

] (11)

where the matrix I6 is a 6× 6 identity matrix and G is the
Jacobian matrix concerning the gravitational force gsys with
respect to xO.
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Fig. 3. Output controllability ellipsoid (OCE)

III. TASK ACCURACY MEASURE

A. Output Controllability Ellipsoid

A system is said to be output controllable if it is possible to
construct inputs that will transfer any given initial output to
any final output until a finite time [10]. When a cooperating
manipulation system is output controllable, there exist joint
torques which move the object to arbitrary position and
orientation until a finite time. The necessary and sufficient
condition for output controllable is that an output control-
lability matrix is non-singular. The output controllability
matrix N of the cooperating manipulation system can be
obtained using the matrices A, B and C of (11) as follows:

N =
[

0 ΛO 0 (−ΛOG)ΛO · · ·
· · · (−ΛOG)11ΛO

]
(12)

As seen from (12), the matrix N consists of the matrices
ΛO and G. The output controllability depends on not only
the configuration and dynamic parameters of the cooperating
manipulation system but also the gravity load.

The subspace of the output-controllable object’s position
and orientation p steered by the input joint torque τ is
equivalent to the range space of the matrix N , which is

Range N = {p | p = Nτ̂ , ∀τ̂} (13)

where

τ̂ = [ τ̂T
1 , τ̂T

2 , . . . , τ̂T
3nf

]T ,

τ̂i =
∫ tf

0

qi(−t)τ (t)dt,

qi(t) is some scalar function of time, and tf > 0 is an
arbitrary time.

The set of the output-controllable p, which is realizable by
the input normalized as τ̂T τ̂ ≤ 1, forms an ellipsoid in the
6-dimensional output space, as shown in Fig. 3. The ellipsoid
is referred to the Output Controllability Ellipsoid (OCE). The
shape and size of the OCE reflect the characteristic of the
output controllability, which can be found by the singular
value decomposition of the matrix N as follows:

N =
6∑

i=1

σNiuNiv
T
Ni (14)

Fig. 4. Sensitivity to the direction of each coordinate axis

where σN1 ≥ σN2 ≥ . . . ≥ σN6 > 0 are the singular values,
and uNi and vNi are corresponding singular vectors. The
OCE can be described as 6-dimensional ellipsoid, which has
principal axes σN1uN1, σN2uN2, . . ., σN6uN6, where σNi

and uNi show the radius and direction of the ith principal
axis, respectively.

The magnitudes of the singular values represent the
strengths of the effects of input on output [6], [8], [13].
Therefore, when the object is steered in the direction of the
major axis of the OCE shown in Fig. 3, the effect of the joint
driving force (input) on the object’s position and orientation
(output) is maximized. Since the manipulation system has
high-sensitivity in this direction, even a small input error,
such as noise, greatly affects the motion of the object.

In contrast, the effect of the joint driving torque (input) on
the object’s position and orientation (output) is the lowest in
the direction of the minor axis of the OCE. Therefore, the
control accuracy is the highest since the manipulation system
has low sensitivity in this direction.

In the above discussion based on the output controllability
matrix N in (13), we have assumed that there is no constraint
imposed on the maximum joint driving torques, τ̂ , and that
the weights of the components related to the translational
and rotational motion of the object, p, are the same. When
these assumptions do not hold, normalization of inputs and/or
outputs variables is needed.

B. Relative Sensitivity

In order to evaluate the task accuracy of cooperating
manipulation systems quantitatively, this section proposes a
performance measure obtained from the output controllabil-
ity ellipsoid (OCE). As shown in Fig. 4, the length of the
line segments, Sη and Sζ , which is given by the orthographic
projection of the OCE onto each η and ζ axis, implies the
sensitivity to the direction of each coordinate axis. Based
upon the theory of error propagation of linear systems [16],
the accuracy can be determined by the sensitivity ratio
between each coordinate. Thus, the relative sensitivity of
the coordinate ζ to the coordinate η is defined as the task



accuracy, which is

Sζη =
Sζ

Sη
(15)

The task accuracy of cooperating manipulation systems is
given by the sensitivity ratio between each object’s coordi-
nate. Note that the task accuracy is independent from the
dimensionality since that is given by the sensitivity ratio
between the object’s coordinates.

C. Comparison with Conventional Manipulability

As seen from (13) and (12), the output controllable ob-
ject’s position and orientation (output) are determined by the
joint driving forces (input) as well as the gravitational loads
that are applied to the cooperating manipulation system from
the past to the present. The output controllability shows a
dynamic process between input and output in the system.
It is required to take the dynamic process of a system into
consideration in order to evaluate the control accuracy of
the system [9]. Therefore, we can evaluate the task accuracy
of the cooperating manipulation system by using the output
controllability.

On the other hand, the conventional manipulability consid-
ers not the task accuracy but the task efficiency. For example,
in the case of a cooperating manipulation system, the object’s
accelerations (output) for given joint torques (input) can be
given by the following algebraic equation [18]

ẍO = ΛO diag
(
1/τ̃1max, · · · , 1/τ̃3nf max

)−1
τ̂ (16)

where

τ̂i = (τi − gsysi(θ))/τ̃i max

τ̃i max = τi max − |gsysi(θ)| > 0

The relationship between joint torques and object’s acceler-
ations is considered to be instantaneous. The conventional
manipulability is regarded as the measure of the static
process.

IV. SIMULATION EXAMPLES
In order to verify the proposed task accuracy measure,

simulations are conducted by employing the robotic hand
with two two-jointed fingers in a plane with grasping a
circular object as shown in Fig. 5.

The physical parameters of the manipulation system are
as follows: Each of the links of the finger has length l, mass
mh, and moment of inertia Ih. The mass center of each link
coincides with its centroid, the distance between the first
joint of the two fingers is lb. The position and orientation of
the object with radius rO is described as xO = ( x, y, φ ),
which is defined as the output variables of the manipulation
system, and the mass and the moment of inertia of the object
are denoted by mO and IO , respectively. The mass center of
the object coincides with its centroid.

We assume that the fingers do not slip on the object by
applying appropriate internal forces at point contacts with
friction, and that the straight line connecting the both contact
points crosses the mass center of the object.
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Fig. 5. The two-fingered robotic hand and its physical parameters:
mh = 1 kg, Ih = 1/12 kg · m2, l = 1 m, lb = 1m, mO = 5 kg,
IO = 5/32 kg · m2, rO = 0.5 m

A. Task Accuracy

For a motion control of cooperating manipulation systems,
it is desired that disturbances and modeling errors have less
effect on the motion of the grasped object.

Consider a manipulation task that the robotic hand rotates
the circular object by 50-degree anti-clockwise with the
lateral grasp and the hook grasp [14], as shown in Figs. 6(a)
and 7(a). Only the direction of gravity is different between
the two grasps. The gravity is exerted in the direction of each
arrowed line.

Figs. 6(b) and 7(b) show the orthographic projections of
the three-dimensional output controllability ellipsoid (OCE)
on the xφ-plane at each object’s orientation for the two
grasps, respectively. These figures indicate that the difference
of the direction of gravity yields a change in the shape, size
and orientation of the OCE even though the robotic hand
represents the same configuration.

Assuming that the robotic hand rotates the object with each
lateral grasp and hook grasp, we compare the errors of the
object’s orientation at each final point. The desired trajectory
of the object is given by the cubic polynomial of time with
zero angular velocities at the initial and final time. The
nominal joint torque of each grasp for the object’s trajectory
is obtained in advance using the equation of motion (6). The
input torque is set as the sum of its nominal joint torque
and the Gaussian white noise. Applying the input torque
to the feedforward controller, we obtain the final position
and orientation of the object. This simulation is repeated 50
times. We let the total motion time be 1.5 s, the variance
of the Gaussian white noise be 25 N2m2, and the position
and orientation of the object at the initial and final time be
xO = ( 0, 1.5, 0 ) and ( 0, 1.5, 5π/18 ), respectively.

Figs. 8(a) and (b) show the simulation results with the
lateral grasp and the hook grasp, respectively. The sign ×
indicates the final position and orientation of the object,
and the sign • indicates the goal. The final orientations φ
with the lateral grasp of Fig. 8(a) disperse from the goal. In
contrast, the final orientations φ with the hook grasp of Fig.



Fig. 6. Rotating the object with lateral grasp

Fig. 7. Rotating the object with hook grasp

8(b) converge in the neighborhood of the desired orientation.
These results indicate that the manipulation with the hook
grasp is more accurate than that with the lateral grasp.

As mentioned in section III-B, the difference in task
accuracy arises from the difference in the relative sensitivity
of the lateral grasp and the hook grasp. Let Sx and Sφ

denote the sensitivity in direction of the x and φ axes,
respectively, as shown in Figs. 6 (b) and 7 (b). The relative
sensitivity of the orientation φ to the position x can be
given by Sφx = Sφ/Sx. If the value of Sφx becomes larger,
then the manipulation system becomes more sensitive for
the object’s orientation. Therefore, the task accuracy of the
manipulation becomes lower for the orientation. In contrast,
if the value of Sφx becomes smaller, then the manipulation
system becomes less sensitive for the object’s orientation.
Therefore, the task accuracy of the manipulation becomes
higher for the orientation.

The relative sensitivity Sφx with the lateral grasp and the
hook grasp are shown in Fig. 9. This figure shows that the
value of Sφx with the hook grasp is smaller than that with the
lateral grasp through the rotational manipulation. This means
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Fig. 8. Errors at final position and orientation of the object for two different
grasps
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Fig. 9. Relative sensitivity Sφx of two different grasps with gravity

that the hook grasp is less sensitive and higher accurate for
the rotational manipulation than the lateral grasp. This result
corresponds to the simulation results of the final errors shown
in Fig. 8.

Finally, we consider the effect of a gravity for the task
accuracy. Fig. 10(a) shows orthographic projections of the
OCE for the same manipulation task shown in Figs. 6 and
7 without taking the gravitational effect into the considera-
tion. The size, shape and orientation of the OCE with two
grasps totally coincide through the manipulation. The relative
sensitivity Sφx of the two grasps also have the identical
value as shown in Fig. 10(b). This means that the task
accuracy for a manipulation system with the same grasp



configuration becomes identical when a gravity is not taken
into consideration.

Fig. 10. Manipulation performance of two different grasps without gravity

B. Comparison with Conventional Manipulability

Fig. 11 (a) and (b) show the orthographic projections of
the output controllability ellipsoid (OCE) and the dynamic
manipulability ellipsoid (DME) on the xy-plane with/without
gravitational effect, respectively. When the gravitational ef-
fect is considered, their size, shape and orientation are totally
different. In contrast, when the gravitational effect is not
considered, the OCE and the DME are identical as shown
in Fig. 11(b). This result indicates that the DME shows the
task accuracy as well as the task efficiency only without
gravitational effect.

V. CONCLUSION

The present paper proposed the task accuracy measure
for cooperating manipulation system with taking its dynamic
process into consideration. We are now planning to conduct
experiments in order to show the validity of the task accuracy
measure for a real cooperating manipulation system.

The proposed measure can be applied to various types
of robots since the measure is based on the linear system
theory. In the future, the applicability of the measure shall
be extended to robotic systems that have complicated con-
straints, such as friction or non-holonomic constraints. We
will also consider task-oriented manipulation by using the
task accuracy measure.
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Fig. 11. Output controllability ellipsoid (OCE) and dynamic manipulability
ellipsoid (DME) at xO = [ 0 1.2 0 ]T (τmax = 100Nm for DME)
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