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1 Introduction 2 Basic Equations
Newton'’s law of cooling gives the expression for convective Let us assume that a sphere of radiygnd temperatur@; is
heat flux leaving a solid surface in the for(r)): immersed into an infinite homogeneous gas at temperatyye

The temperature of sphere remains constant, but the changes in
gas temperature are described by the heat conduction equation in

q=h(Ts=Tgo), @ the form (8)):
whereh is the convective heat transfer coefficient, is the tem- ﬂ: « (72_T+ E f ?)
perature of the surface of the body,, is gas temperature at at o o)’

sufficiently large distances from the body. Although the expres-h iy is th ific h I
sion (1) is traditionally called the cooling law, it can be equall b ereKa ((.:pg’?g)'hcpé]_ Is the %as spheC| ic eathﬁpam%@ 1S
applied to the problem of heating of the body. the gas density, is the distance from the center of the sphéie,

The value ofh can be estimated dEL]): h=Nuk/L, where Nu timeﬁ T(rg=Ts. B d imolify i h ical
is the Nusselt numbek is the gas thermal conductivity, is the 1€ assumptiofs=const made to simplify the mathematica

characteristic size. This expression can be considerably simplifi@jmulation of the problem has a number important physical im-
in the case of spherical bodiés.g., droplets, particlgsassuming plications. For example, in the case of fuel droplets, their heatlng_
that both Reynolds and Prandtl numbers are small. In this case Qe N€at transfer from the hot gas can be compensated by their

can assume that N2 and simplify the expression fdr to cooling through evaporatioftf. [9,10)). .
Equation(3) can be reformulated in terms of new variables

h=k/r, 2) V=rT—rgls R=r—ryg

and written as
whererg=L/2 is the radius of the sphere. oV 2V
Strictly speaking, this form of the expression tois valid in e —s.
stationary cases only. However, it has been widely used for mod- at IR?
eling not only stationary but also transient processes, including th - - . . )
combustion of fuel dropletée.g..[2—6]). This assumption allows s:rl;theed t;osundary and initial conditions for this equation are pre
the analysis to be considerably simplified, but its applicability has
never been rigorously justified to the best of our knowledge. V(0t)=0 V(R,0=f(R), (5)
The objective of this paper is to investigate the transient heat
transfer between a spherical body and surrounding gas in ordeftigere
clarify the range of applicability of Eqgl) and(2). The aim of
this paper is to generalize these equations so that they can be fHR)= RTgo+rs(Tgo—Ts) when R>0
applied to both stationary and transient processes. The effects of (R)= 0 when R=0.
evaporation and combustion will be ignored. This enables the re- ] ] B )
sults to be applied to a heat-up period of fuel droplets—a problem The solution of Eq(4) subject to condition$5) can be written
complementary to the unsteady effects in droplet evaporation amel([11]):
combustion discussed by Crespo andalif7]. 1 . R £)2
Basic equations will be derived and discussed in Section 2. In V(R,1)= J f(g){ex;{— (R=9) }
Section 3 our results will be applied to the modeling of a typical ' 2\mktJo 4kt
problem of heating fuel droplets in a Diesel engine. The main 5
conclusions of the paper are summarized in Section 4. —exp{ ~(R+9)

4kt
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= fs r=rs — [CpgPyg
T=Tgot T(TszgO) 1erf(2m) , @) {=2rg TKAL (13)
On the other hand wheft<ty Eq. (12) is simplified to
where c
- [CpgPg
g_ rS 7Tkt0 . (14)

2 X
erf(x)= —| exp—t?)dt. . .
0 \/;fo A=t 3 Discussion
. . L Equation (9) is applied to a typical situation of gas cooling
In the limit r=rs Eq. (7) givesT=Ts. In the limitt—0, but 45und a fuel droplet in a medium truck Diesel engine where
r#rs, this equation give§ =Ty, in agreement with conditions qrqpjets are injected at room temperature into ail gt==880 K
). . . . . . and pressure 60 bar. Under these conditipgs 23.8 kg/n?, k
Equation (7) gives the radius of the effective cooling zone_ g 561 wmK, c,,= 1120 J/kgK. For a typical timestep used in
around the cold bodydrople) in a hot gas as a function of time. D calculationspztzlo’S s) we obtain from Eq(13) that at
If, for example, we assume that time is large and define the cogl— = i '
ing zone as the one whefle=0.8T;, then the radius of this zone the start of calculationg~1.4. This means that the thermal con-
ductivity of gas used for the estimate of the rate of the initial

(r.» can be obtained as : U -
droplet heating can be significantly highgnore than 100 per-
ceny than commonly believed. This time scale is much less than a
typical droplet evaporation time (18 s). Moreover, the change
If Tgo~3T; (realistic situation in Diesel engines: sgi]) then of droplet temperature ovekt=10 % s can be safely ignored.
r.~10rs. This condition needs to be accounted for in computéence the assumptions of our model regarding the absence of
modeling of heat exchange between droplets and gas in ordert@poration and the condition thif=const are satisfied in this
avoid grid dependence when coupling Lagrangian droplet trackipgrticular case.
W|th t_he _Eulerlgn_ gas phase in CFD calculatlons. It is usua}IIX Conclusions
satisfied in realistic Diesel spray calculations where the drop sizes . )
are of the order of 1&m and the grid sizes are of the order of 250 It is pointed out that the Newton’s law of cooling can be ap-
um, although this effect can be important in the case of largghied to the problem of transient cooling or heating of a spherical
droplets. body (dropled in a homogeneous gas if one replaces gas thermal
Based on(7) the heat flux from the surface of the sphere (conductivity by the effective thermal conductivity. The latter re-
=rg) can be estimated as: duces to the gas thermal conductivity in the limittef o, but can
be substantially larger than the gas thermal conductivity in the
s limit of t—0. In the case of fuel droplet heating in a medium duty
1+ . truck Diesel engine gas thermal conductivity may need to be in-
Kt creased by more than 100 percent for the initial stages of calcu-
. ) lations to account for transient effects during the process of heat-
Comparing Egs(1), (2), and(8), it can be seen that the New-ing of these droplets.
ton’s law of cooling can be used to describe the transient process
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T KT Ty0)
o rs

q= 8)

keff: k( 1+ é’) ’ (9)
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(10)

[CpgP
_ pgrg
£=rs mkt’

In the limit t—o0, ks—k as expected. On the other harkd
can be infinitely large wheh—0.

The average value df.; over the period from=t, to t=t,
+ At can be estimated as

keir=k(1+0), (11)

where

— 1
= a1

to+At 2 CogPy
J {dt=mrs W( \/tO+At—\/E).

to

(12)

In the case whemy=0 Eq.(12) is simplified to
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