
LA-UR- 03 -05b ~
Approved for publicrelease;
distributio n is un limited.

Title :

Author(s):

Submitted to:

JOINT DEGRADATION ASSESSMENT IN AN EXTENDED
STRUCTURE USING CHAOITC ATTRACTOR PROPERTY
ANALYSIS (u )

Jeannette R. Wait, LANL, ESA-WR
Michael D . Todd, US Naval Research Laboratory
Jonathan Nichols, US Naval Research Laboratory
Stephen Trickey, US Naval Research Laborator y

SPIE's 10th Annual International Symposium On Smart
Structures and Material s
San Diego, CA
March 2-6, 200 3

v Los Alamos
NATIONAL LABORATOR Y

LosAlamos Na tiona l Labor ato ry, an a ffirm ative action/equal o pportunity e mployer, is opera ted by the Uni ve rsity of Californ ia for t he U . S .
Depa rtment ofEne rgy u nde r con tra ct W-740 5- ENG-36. Byacceptance of th is article, the pu b lisher recogn izes that the U.S. Government
re tai n s a nonexcl usive , royalty-f ree licen se to p u blish or reproduce the pub lis hed form of th is contribution , or to a llow ot hers to do so, for U . S.
Government purposes. Los Al amos National Laboratory requests that the pu b lish er iden t ify thi s article as work performed under the
aus p ices o f t he U . S . De p artment of Ene rgy. Los A lamos N ational La boratory st ronglysupports acad em ic freedom and a researcher's rig h t to
pub lis h ; as an i n stitu tion, however, the La borato ry d oes not endors e th e viewp oint of a pu blica ti on or gua rantee its technica l corre ctne ss .

Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.



For additional information or comments, contact:



Los Alamos National Laboratory Research Library

Los Alamos, NM  87545

Phone:  (505)667-5809

E-mail:  reports@lanl.gov



Joint degradation assessment in an extended structure using
chaotic attractor property analysi s
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bESA-WR, Los Alamos National Laboratory, MS T006, Los Alamos, NM 87545 US A

ABSTRACT

Recently, a new approach in vibration-based structural health monitoring has been developed utilizing features
extracted from concepts in nonlinear dynamics systems theory . The structure is excited with a low-dimensional
chaotic input, and the steady-state structural response attractor is reconstructed using a false nearest neighbors
algorithm. Certain features have been computed from the attractor such as average local "neighborhood"
variance, and these features have been shown in previous works to exceed the damage resolving capability of
traditional modal-based features in several computational and experimental studies. In this work, we adopt a
similar attractor approach, but we present° a feature based on nonlinear predictive models of evolving attractor
geometry. This feature has an advantage, over previous attractor-based features in that the input excitation
need not be monitored . We apply this overall approach to a steel frame model of a multi-story building, where
damage is incurred by the loosening of bolted connections between model members .

Keywords: structural health monitoring, chaos, damage detectio n

1. INTRODUCTION

Structural owners place a high priority on assessing the functional capability of a structure . Economic con-
straints, variable mission requirements, and liability considerations urge structural owners towards reducing
maintenance and operational costs . Historically, most owners have relied upon inspection techniques and fixed
maintenance or rotation schedules for assessing structural health, and little recourse was made to automated
methodologies or algorithms . However, with rapid recent advances in structural materials, sensing technologies,
and data processing and management capability, owners have increasingly embraced research and development
in advancing the state of the art . One prominent example is the United States Navy, who have identified a
"Total Ownership Cost Reduction" Future Naval Capability (FNC) that calls for a variety of initiatives aimed
at reducing maintenance and operational costs of all Navy structures as the Navy officially adopts a condition
basis for structural maintenance .

Much of the technical advancement over the last several decades has led to the field of n on-destructive eval-
uation (NDE) . The major approaches have inc luded ultrasonic or acoustic wave propagation, thermal imaging,
X-ray radiography, and eddy-current methods ; an overall summary may be found in,l for example . Many of
these techniques have proven extremely useful in certain damage scenarios, but each technique is primarily a
local technique . This means that these methods, in general, rely upon knowing where to look for damage and
what to look for . Additionally, most of these techniques are impractical to apply to large-scale structures . Some
of these issues were addressed with vibration-based techniques, where the structure is excited, either through
ambient or applied loading, and the response observed . The practitioner then looks for some characteristic
"feature" of the response which indicates the scope and possibly the location of the damage . T!raditionally,
most of these features have been derived from a modal analysis of the structure, e .g . resonant frequencies, mode
shapes, flexibility, etc . .2-5 Other non modal-based features have included cross-correlation,6 auto-regressive
approaches,7 neural networks,8,9 time series dimensionality,lo,11 and various other pattern recognition ap-
proaches .lz,13 A good summary of these approaches may be found in . 14 The implicit assumption, of course,
is that damage somehow changes the dynamics of the structure and that the extracted feature(s) reflect this
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This work will discuss using chaotic excitation as a structural interrogator and exploiting resulting attractor
geometry in a diagnostic capacity. The approach is applied experimentally to an aluminum frame model building
where damage is incurred by loosening selected bolted connections between members .

2. PREDICTION ERROR AS A FEATURE

An attractor is simply an invariant dynamic response to which initial condition trajectories eventually migrate
under inevitable dissipation . For example, in a simple spring-mass-damper system subject to sinusoidal excita-
tion, the (sole) attractor is a sinusoidal response at the same frequency as the excitation and some fixed phase
difference . Eventually, under the damping, transient dynamics will dissipate to leave the steady-state response
just described. Likewise, chaotic excitations of structures result in attractors, albeit more complex ones with
often fractal rather than integral dimension properties . The goal in this current work is to take advantage of
this low-dimensional steady-state chaotic response and develop a prediction-based approach . The idea is to use
data taken from the undamaged "pristine" structure to reconstruct reference, or baseline, attractors . These
data are to be compared to data collected from the structure at subsequent later times, when damage may (or
may not) have accrued on the structure . Such an approach falls within the context of supervised learning in that
known examples of data from each particular damage case must be obtained for later classification purposes . By
using a simple prediction scheme, points on the "damaged" attractors are forecast using the baseline data as a
model . Higher levels of damage will alter the structure's dynamic response causing these baseline models to lose
their ability to make predictions . The error formed between prediction and measurement-prediction error-then
becomes a good candidate feature for quantifying both the presence and magnitude of structural degradation .
The models make no assumptions about the underlying system . This is in contrast to auto-regressive modeling
techniques which implicitly assume a response coming from a structure for which a linear model is an accurate
descriptor .

The method begins by recording a set of NT baseline time series (N, independent experiments or runs)
when the structure is in its (user-definable) baseline or reference condition. Recording N, such independent
responses allows for the inclusion of ambient variation in the set of baseline data . Such variation is known to
occur in practice and must be accounted for if damage-induced changes are to be distinguished from those due
to environmental factors . We shall represent this baseline set of experiments by X={xl (n), x2 (n), •••, xN,. (n) }
where each xu(n), u = 1 . . . N,., is a vector of discretely sampled values of structural response (time series)
consisting of n = 1- •• N points . The discrete time index "n" simply refers to the value recorded at sample
time ts = nOt where 1/Ot is the sampling frequency. Similarly, at each damage case a set of data Yk =
{ylk (n), yU(n), •••, yNk(n)}, k= 1 . . . Nd is recorded, where Nd is the number of damage scenarios to consider
and the yu'k, u' = 1 . . . N,., are response time series recorded from the structure at damage case "k" in the
same fashion that the set X was created . The next step is to use the baseline data X to empirically generate
attractor-based models of the pristine structure's dynamics and observe the degree to which they predict the
dynamics of the Nd damaged data sets .

The algorithm used here is adopted from Schreiber,21 where it was used to detect non-stationarity in time-
series data. A simple attractor-based prediction scheme is used on the undamaged data to forecast the values
of the damaged data some number of time steps s into the future . Each of the baseline time series may be
used to reconstruct a set of baseline attractors x,,(n), u = 1 . . . Nr, using the embedding theorem,22 where we
have now adopted boldface type to indicate an attractor rather than a single time series . Similarly, each of
the "damaged" data sets Yk will yield NT "damaged" attractors, denoted yu'k(n), u' = 1 . . . NT, k= 1 . . . Nd .
The method proceeds by selecting a specific baseline attractor u and the attractor whose dynamics are being
tested, u' at a given damage case k . The subscripts (u, u', k) are therefore dropped in the following discussion
for clarity. Given a randomly selected trajectory with time index f on a reconstructed "damaged" attractor,
y(f), the algorithm selects the set of points on the baseline attractor x(n) that are within some radius e of that
trajectory

UX(
,)(Y W ) = x(p) : 11 X (p) - Y W11 < e. (1)

where II ' II denotes the vector norm . No temporal relationship need exist between the indices p and f, as the
set is constructed purely by geometry ; in other words, the p values of x(n) are not selected explicitly by the



algorithm, but rather through the Euclidean distance of the specific point from the fiducial point is what is
selected, with the time index of that point passively carried along for bookkeeping. This is in contrast to an
autoregressive approach, which is based on temporal relationships . The idea here is to describe the evolution of

the neighborhood UX (p ) (y(f)) and to use this description as a predictor for how subsequent data should behave .
The predicted value for y(f) at s time steps into the future, denoted y( f+ s), becomes

Y~f '` s) = E( n)1
E X (P + S), (2 )IU

( Y(f)) I x ( P)EUE ( p ) c Y ( r ) )

where the quantity J UX (p) (y( f)) J simply denotes the number of points in the neighborhood . The predicted value
is the average of predicted values for the neighborhood . In this sense the baseline attractors are used as "look-
up" tables which contain the various patterns present in the data . The working hypothesis is that these tables
will lose their ability to serve as an accurate database as the dynamics are altered by damage . The prediction
horizon s will depend on the rate at which the data, are acquired and the specific application . For health
monitoring purposes, assuming reasonably sampled data, s = 1 will suffice . While more complicated prediction
schemes exist, this is among the sirriplest models one can use to quantify the evolution of the dynaanics . Because
we only seek to distinguish one attractor from another, the quality of the predictions is of diminished importance
and the simplest, most computatiorially efficient scheme is considered optimal . Variations of this algorithm have
been used for prediction and data clea,nsing .23, 24

Once the predictions has been made the s-step prediction error for trajectory f is quantified by

'Y 57, ( YU + S) - Y Y + S ))
f- i

This quantity is then normalized by the variance, 02, of the baseline signal

7rY =
or2

(3 )

(4 )

to yield the normalized nonlinear cross-prediction error for time index f . The process is repeated for some
randomly selected subset of the total number of points on the attractor M : M < N resulting in a vector
of prediction errors "ry$, z= 1 . . . M ; for each pair of attractors under consideration, (u, u') . However, because

there are NT attractors with which to make comparisons (u, u' = 1 . . . N,.), there are actually N,,, = MN,~,

total predictions at a given damage case . The entire feature vector at damage case k is therefore denoted

~:k, Z = I . . ]Vm k = 1 . . . jVd ,

In computing this feature, one must also compute the auto-prediction error by replacing y(f) with x(f) in
Equation (1) . The resulting ytil gives some idea of the prediction error one would expect to find in the instance
that the dynamics are not changing. However, in order to make such a comparison we must add the constraint
that comparisons between attracto:rs (u, u') be made such that u < u' . The problem is that comparing xl and
x2i for example, followed by a comparison of x2 with xl could potentially bias the data and therefore such
duplicate pairings should be eliminated from consideration . Although comparisons between data from different
damage scenarios do not suffer this effect (each baseline attractor x could be used to predict each damaged
attractor y), the constraint is maintained for consistency so that at each damage case the total number of
predictions is reduced to Nm = MIVr(N, . - 1)/2 values, as opposed to N,.. = MNr if duplicate pairs been been
included .

One other consideration is the possibility of obtaining data from multiple locations on a, structure . While
the preceding discussion assumes data collected at a single location, many health monitoring studies incorporate
data from many spatial locations . Assuming structural response data have been collected from sensors at NS
different locations, the final set of features is denoted "ry¢jk where i = 1 . . . Nm is the member index for an
individual prediction, j = 1 ••• NS spans the range of sensors, and k = 1 ••• Nd remains the darnage index . It is
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in which each S, (i = 1 . . . N,,,) is a matrix of observations of prediction error extracted from data recorded at

sensor location j and structural condition k . We now turn our attention to the task of using the :'V,,, obscrvationti

at each sensor location to classify the data according to damage .

3 . EXPERIMEN T

This approach was teslr d by exciting a scaled three-story frame structure with a chaotic Loreiiz uscilloto~r, such
that the structural tiytitem model could be writte n

zi = 16 (z2 - zi )

zZ = 40z1 - Z2 + z,z3

z3 - -4 z3 + z I z- 1

x = Ax + Bz. (6)

w here the fir s t three equations descrihe the Lorenz oscillator in a chaoti c reg ime , and t he last, equation is the
state equati on of the structure coupled to the oscillator through B .

The t es t structure, constructed of a lnrninurn Unistrut columnti and a l u minum floor plates, i s shown at
the t op of Fi g ur e 2 . The floo r s w er e 1 . 3- o- in - thi ck (0 .5- in - thick) a luminum plat es w ith two bolt connections
to bra c kets on the Uni s trut columns . The base wa s a 3 .8-cm-thirk (1 .5-in-t}ii c k ) aluminum p late . Support
brackets for the coliimn s w e re bolted to thi s pl a t e . A further discussion of this structure may be found in . 2 `' An
e l e rta •o niecham iral shak e r wa s c onnect ed to th e s tru c ture at the mid-h e i g ht of the base plate so that translational
motion cou ld be impa rted .

The structure was instrumented with 6 piezoe l ec tric accelerometers on Floor 1 onl y (bot tom of Fi gur e 2 ) .
Accelerometers were mounted on blocks glu ed to three of the Unistrut columu s ( J o int s A , B and D) at the H oor



level, in both in-plane directions . Additionally, a force transducer was mounted between the stinger and the
base plate. This force transducer was used to measure the input to the base of the structure . A commercial
data acquisition system controlled from a laptop PC was used to digitize the accelerometer and force transducer
analog signals .

Table 1 : Descr ipt i on o f d a mage cases .

A simple input/output MATL. 4B SIMULINKTM model along with XPC Target TM and a commercially
available signal conditioner were used to send the pre-digitized chaotic Lorenz waveform to the shaker . The
waveform was sent at a 1000 Hz shaker update rate, and the analog sensors were sampled at 370 .3 Hz . Five sets
of baseline undamaged data sets were recorded before damage was introduced to the structure . Damage was
introduced by removing two bolts at various combinations of the connections between Floor 1 and the three
Unistruts . The baseline condition and five damage scenarios are summarized in Table 1 . The test procedure was
repeated at each of the damage cases, resulting in N,.=5 runs at each of Nd=6 total damage cases (including
the baseline) for each of the NS = 6 acce lerometers (5 runs x 6 sensors x 6 damage cases=180 separate data ,
sets) .
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4 . RESULT S

4.1. Individual Sensor Result s

Representative shaker input (pre-digitized Lorenz waveform), force transducer response, and acceleration re-
sponse signals are shown in Figure 3, along with their corresponding reconstructed attractors . The driving
signal and the force felt by the structure exhibit the low-dimensional features characteristic of chaotic wave-
forms . The force time series very closely tracks the input Lorenz waveform, with some differences primarily due
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to structural feedback at the transducer and possibly even stinger dynamics . Response acceleration time series,
however, are clearly less structured and illustrate the filtering effect of the structure on the input signal . Both
co-directional (Ch . 3) and contra-directional (Ch . 4) sensor data are shown in order to highlight the differences
in response data from these two directions . In this context, "co-directional" means in the same direction as the
excitation, while "contra-directional" means perpendicular to that direction. Co-directional acceleration data
are greater in magnitude than contra-directional data, as expected . The contra-directional data appear to have
some higher frequency content, resulting in a more "tightly wound" attractor . This does not pose a challenge
from a modeling perspective, as predictions made on data coming from a given sensor are made using only the
baseline data from that same sensor .

For each undamaged/damaged attractor pair, M 3,276 individual predictions were made using the un-
damaged attractor as the baseline . This results in N,, = 3, 276 x 5(5 - 1)/2 = 32, 760 values of prediction error
per damage case per sensor which will reflect any ambient variation present in the 5 independent runs under
each damage case. Each of the feature vectors in the set Si i = 1 . . . N,,,, were resampled26 into p= 5, 000
clusters of size C = 1,000 . Figure 4 summarizes the behavior of the prediction error feature for data from
co-directional sensor channels 3, 5, and 7 (a-c) and contra-directional channels 4, 6, and 8 (d-f) . The left-hand
plot in each sub-figure shows the probability density function (PDF) estimate for all the data, which appear
quite Gaussian due to the resampling procedure . From these distributions, we obtained N3 means and 95%
quantile limits for each of the Nd damage cases. These limits are plotted beside their corresponding PDFs in
order to better illustrate the discriminating power of the data from a single sensor

. In general there is very reasonable separation among the PDFs for both co- and contra-directional sensors,



implying a good ability to distinguish among the various damage cases . This is reflected in the control limits

which show no overlap for many cases . Features obtained from the co-directional data can successfully discrim-

inate among many damage cases . Data collected from channel 3 can clearly distinguish cases 3, 4, and 5 from
case 0 (undamaged), although it should be noted that cases 4 and 5 cannot be distinguished from each other,
a problem to be addressed shortly using multivariate analysis . Channels 5 and 7 appear sensitive to daanage
cases 1, 4 and 5 . The fact that all sensors tended to produce high prediction errors for damage levels 4 and 5
should not seem surprising . The last two damage cases were the most severe in terms of the degree to which
the structure's connectivity was degraded, affecting the dynamics in such a way as to be easily observed by
the co-directional sensors . Features extracted from the contra-directional data produced much more interesting
results . In general the separation between PDFs is larger than for co-directional data, as certain damage cases
become more clearly highlighted . Channel 6, for example, highlights cases 1 and 3 more so than does channel 5
(although the trend is nearly the swne) . Furthermore, damage cases 4 and 5 do not always produce the largest
mean prediction error implying that the dynamics recorded from the contra-directional sensors are responding
to degradation differently than their co-directional counterparts (see plots from channels 6 and 8) .

As a general rule, the contra-directional sensors overall performed better at discriminating among damage
cases . This likely is explained by investigating a close-up of any particular damage case . The bolts removed in
each damage case were aligned with the co-directional axis . Such a removal may allow some impact-like motion
in that direction, but most of the time, the structure remains constrained . However, in the contra-direction,
all bolt-induced stiffness has been removed, and relative joint dynamics are easily excited, even though they
are perpendicular to the plane of :forcing. The slightest asymmetry (which necessarily exists) excites contra-
directional dynamics, and these dynamics are suppressed with bolts in place .

4.2. Multivariate Data Discriminatio n

Although the single sensor data is useful, it falls short of the end goal which is to classify data according to the
6 damage cases . To this end a mu:ltivariate linear discriminant analysis procedure27 , 28 was employed in order
to take advantage of the fact that we have multiple sources of data . Multivariate discriminant analysis seeks
the linear combination of data which minimizes the within group variance, that is differences between linear
combinations of sensor data at within single damage case, while at the same time maximizing differences between
data collected at different damage levels . Following the supervised learning paradigm, the sets of prediction

error for each sensor were split into two halves Si -> 541 ) i = 1 . . . N„. /2, 5 ;2 ) i = Nm, 1 2 + 1 . . . 1Vm , each

containing N,,, /2 members . The fii st half of the data, 54were resampled, again using ,0 = 5, 000 C= 1, 000,

and then used to find the discriminant functions, i .e ., to "train" the discriminator . The second half of the data

(5 !2) were then used to assess the :,trength of the classification scheme . To this end, ,Q = 30, 000 sample means
were drawn from the resampled data of S(2) for each damage scenario and multiplied by the discriminator .

This constitutes a "blind" study in which data coming from a structure of "unknown" condition are classified
according to pre-defined damage levels . In the ideal case, the transformed data will fall into 6 independent

intervals, each corresponding to a different damage scenario . The results are shown in Figure 5 . The PDFs for
the 6 sensors are shown as the smaller plots labeled Case 0 -~ Case 5 corresponding to the 6 dama.ge scenarios .

The center plot shows the PDFs for the transformed data, i .e., after application of the discriminator .

The tightly-packed PDFs from the individual sensors are combined in such a way that 6 independent intervals

are indeed created . In fact, all damage scenarios appear to be classified as independent distributions with the
exception of possibly cases 0 and 2 . In order to quantify the discriminating power of the technique, each
of the classified points were compared to the actual daanage case from which the sampled data were taken .
The percentage of the data that were classified correctly are shown in the confusion matrix, Table 2 . These

percentages were obtained by examining the degree of overlap in the distributions for each pair of damage
scenarios . Distributions that are completely separate from one another result in 100% classification while
varying degrees of overlap result in diminished success rates .

The data appear to be projected into separate damage "bins" with near 100% accuracy . A success rate
of 100% is achieved for all classifications except between damage cases 0 and 2 . In this case there is overlap

between the resulting distributions (seen in the main plot of Figure 5) such that only a 86% rate is achieved



Figure 5 : Optimized damage classification using linear discriminant analysis .

Case 1 2 3 4 5
0 100.0 86.0 100.0 100.0 100 . 0
1 x 100.0 100.0 100.0 100 . 0
2 x x 100.0 100.0 100 . 0
3 x x x 100.0 100 . 0
4 x x x x 100. 0

Table 2 : Confu sion mat ri x for "b lind" study u sin g linear discrimi nant analysis .

for discriminating between these two cases . In no cases did the supposedly optimized linear discriminant
analysis fail to perform better than any given individual sensor . If that had been the case, that could imply
that somenonlinear combination of the sensor data may be required for accurate results . Exploiting nonlinear
discriminators will be the goal of future work .

5 . CONCLUSIONS

This work has illustrated the value of a steady-state approach to vibration-based structural health monitoring .
It is possible, through the use of chaotic excitation, to generate a deterministic structural response which may be
used to build empirical models of the system's dynamics . Deviations in these models will cause their predictive
power to diminish and thus provide a useful means to detect damage . The power of this approach is that it
directly searches for changes in the dynamics . This is in contrast to the more traditional "transient" approaches
which proceed by extracting features which may or may not be sensitive to damage induced changes to the
structure's response.

Using linear discriminant analysis clearly shows that incorporating multiple sensor data in the analysis
is advantageous, as it significantly increases the discriminating power of the data . Multivariate discriminant
analysis will likely play a large role in future studies which fall under supervised learning approaches . The
procedure is optimal in the sense that it can take spatially extended data and maximize the discriminating
power of that data in the presence of ambient variation . The combination of a steady-state, model-based



approach can yield powerful result ; : . We have shown that this approach is extremely effective in discriminating
between the various damage cases on an experimental aluminum frame structure .
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