
A Feedback Based Quality Assessment to Support Open Source

Software Evolution: the GRASS Case Study

Salah Bouktif, Giuliano Antoniol and Ettore Merlo

Department of Computer Science, École Polytechnique de Montréal,
C.P. 6079, succ. Centre-ville Montréal (Québec) H3C 3A7
{salah.bouktif, giuliano.antoniol, ettore.merlo}@polymtl.ca

Markus Neteler
ITC-irst – Istituto Trentino di Cultura

Via Sommarive, 18 - 38050 Povo (Trento), Italy

Abstract

Managing the software evolution for large open
source software is a major challenge. Some factors
that make software hard to maintain are geographi-
cally distributed development teams, frequent and rapid
turnover of volunteers, absence of a formal means, and
lack of documentation and explicit project planning. In
this paper we propose remote and continuous analy-
sis of open source software to monitor evolution using
available resources such as CVS code repository, com-
mitment log files and exchanged mail. Evolution mon-
itoring relies on three principal services. The first ser-
vice analyzes and monitors the increase in complexity
and the decline in quality; the second supports distrib-
uted developers by sending them a feedback report after
each contribution; the third allows developers to gain
insight into the “big picture” of software by providing
a dashboard of project evolution. Besides the descrip-
tion of provided services, the paper presents a prototype
environment for continuous analysis of the evolution of
GRASS, an open source software.

1 Introduction

The laws of software evolution developed 30 years
ago by Lehman [13] represent an attractive theory for
the software engineering community. To accept, re-
fute, formulate or redefine these laws presents a major
challenge to many empirical studies on software evolu-
tion. However, there is a consensus in the software en-
gineering community to consider certain Lehman laws
as guidelines for understanding evolution problems and

proposing innovating solutions. In this study we rely
on three Lehman laws as guidelines to address certain
evolution problems and propose solutions. Our focus
is on Open Source Software (OSS) evolution.

Indeed, many studies were done to understand the
evolution of OSS and to evaluate the applicability of
Lehman laws on OSS evolution.

Godfrey and Tu [6] studied the Linux Kernel from
94 to 99 and discovered a super-linear growth rate of its
size (more than two million SLOC). The same finding
was confirmed for Vim text editor. In another in-depth
study investigating 96 releases of Linux Kernel [22], it
was reported that the total coupling between Linux
modules grows exponentially. The same study con-
cluded that without effort to alter the coupling explo-
sion, Linux Kernel will become unmaintainable.

Antoniol, Merlo and otherss also investigated the
evolution of Linux Kernel by considering code similar-
ity at function level between versions [2, 16]. Analysis
of evolution of mSQL was reported in [1].

Another OSS, Gnome, was studied to discover a
causal relationship between the increasing number of
developers and the super-linear growth rate. Mockus
et al. in a study on Mozilla and Apache [17], states
that the approach of coordination used in Apache
project (100 KSLOC) to fit the work of each developer
into the whole system works well for small projects. In
contrast, the Mockus study suggests that the Mozilla
core team needs to have more formal means of coordi-
nating its work.

According to Scacchi [21], the growth of X-window
and GCC (GNU Compilers Collection) is less rapid
than other OSS because these were originally devel-
oped in an earlier software developing era (pre-Web).

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357326152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

From these studies, we conclude that continuing
change, increase in complexity and decline in quality
are common phenomena in OSS evolution. Specific
causes for these problems, related to a specific OSS
in its environment, are stated in the previous stud-
ies and can be eventually generalized for the whole
OSS domain. Besides these causes, we report other
opinions and interpretations of other pioneers of soft-
ware engineering. Kemerer [10] attributed the previ-
ous problems of software evolution to a lack of knowl-
edge of the evolution/maintenance process and of the
causal relationships between software evolution tasks
and their outcomes. Jones reported in [9] that accord-
ing to Pfleeger: “there is not one person who has an
overview of the whole project”, and more time must
be spent to communicate the big picture of project to
everyone in every position because “The people work-
ing on the pieces need to know how their one piece fits
into the entire architecture.”

We believe that the causes of the software evolution
problems related to the Lehman laws are more present
in the OSS and their consequences are more common.

Several researchers have addressed the problem
of remotely monitoring some software characteristics.
In [20] OSS has been remotely measured and analyzed
by CVSAnalY tool which accesses the version control
repository of a system and provides measurements and
analyzes automatically and non-intrusively. Historical
data about the project and its contributors can there-
fore be processed and results displayed using a Web
interface. Analyses mostly involve statistical analyses
and inequality coefficients computation on some evolu-
tion distributions.

Distributed Continuous Quality Assurance of OSS
has been investigated in [14, 23] where the task of
quality assurance has been distributed on several sites
based on availability, and results are then merged. The
advantages include short development cycles, consis-
tency of the global view of system configuration con-
straints, and ensuring coherency and reducing redun-
dancy in QA activities.

Remote dependability has been investigated in [7].
Statistical models are used to predict failures in soft-
ware under execution which is remotely monitored, and
corrective action is taken when required to increase the
residual life of some software executions.

Remote monitoring tasks can be split across several
instances of the software to be analyzed so that light-
weight instrumentation can be effective and execution
information can be merged to compose the overall mon-
itoring picture as described in [5, 8].

In this paper, we propose a general approach based
on remote and continuing analysis of OSS evolution

related to [20] to mitigate software degradation and
risks. This approach works by analyzing, identifying
and prioritizing evolution problems and needs in or-
der to better control evolution problems and risks such
as increasing complexity. Regardless of the geograph-
ical location, it allows the OSS developer/maintainer
to be informed about the big picture of the entire sys-
tem. This picture includes quality indicators of the
OSS, potential open problems, information about de-
velopers’ contributions, etc. Our approach allows the
developer/maintainer to get near real-time feedback af-
ter working on a piece of code and to know how it fits
into the whole architecture.

A particular solution (a prototype) of our remote,
continuing and feedback-driven analysis environment
is proposed for the OSS GRASS GIS.

The contribution of this work can be summarized as
follows:

• mitigation of the ripple effect of the OSS evolution
such as those stated by Lehman laws.

• architecture and plugins ensuring the remote con-
trol and analysis of OSS evolution activities

• quality remote monitoring

• scheduling of quality improving refactoring activ-
ities

• real-time feedback to developers about their con-
tributions

The remainder of this paper will be organized as fol-
lows: Section 2 describes our remote, continuing and
feedback-driven approach for OSS evolution analysis.
Section 3 presents a particular solution of our approach
for the OOS GRASS GIS. Section 4 presents the re-
sults of the facilities provided to the GRASS devel-
oper/maintainer team. Section 5 presents the lessons
learned and future work. A conclusion is drawn in Sec-
tion 6.

2 Remote Open Source Software Evo-
lution Analysis Approach

2.1 Principle and objective

When studying the evolution problems of OSS, an-
alyzing causes and searching for interpretation of their
subsequent phenomena, we identify, three weaknesses
in the OOS development/maintenance approach; (1)
lack of a mechanism to control the rapid growth, con-
tinuing increasing complexity and declining quality of
OSS systems, (2) lack of automated feedback reporting

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

the effects of a developer/maintainer contribution on
the quality of the system and (3) lack of formal means
to learn at least periodically about the big picture of
the whole OSS system. To solve these problem, our re-

Internet�Internet�

CVS Mailing Lists

Main CVS
Repository

CVS Server

Computation Server

WEB S erver

Proxy Server

On-line Site
OSS DashBoard

Local Mirror

OSS CVS Main Site SOCCER LAB SiteOSS Team
Member

Commitment Action /
Quality Feedback e-mail

Update/commitment
Notification log files / e-mails OSS Web site &

Dasshboard update
0:0 USA Eastern Time

Updates

e-mails

log files
e-mails

Working Copy
Parsing, analysis

Quality evaluation
Suggestion

Figure 1. Infrastructure for remote OOS evo-
lution analysis

mote OSS evolution analysis approach provides a set of
services using the CVS versioning system repository as
data source. The information provided by CVS log files
for a commitment include date, changed file name, de-
veloper name, revision number, etc. The services pro-
vided by our approach use as software infrastructure
a Plugin-based Architecture of software Maintenance
(PAM), which provides a set of basic software compo-
nents for general maintenance purposes. It also allows
the plugin of other specialized components for specific
problems, projects or objectives of maintenance. As
physical infrastructure, our remote analysis approach
uses the Internet as communication support between
main CVS site and the SOftware Cost-effective Change
and Evolution Research (SOCCER) laboratory (See
Fig. 1). The CVS site is sheltering the OSS system
versioning repository and the SOCCER lab. is provid-
ing automated evolution services and quality control
and improvement facilities. Three main services are
proposed in our approach to avoid problems related
to Lehman laws; the growth, complexity and quality
control mechanism (Section 2.2), the Feedback-driven
communication service (Section 2.3) and the OSS evo-
lution dashboard service (Section 2.4).

2.2 Growth, complexity and quality con-
trol mechanism

Growth, complexity and quality controlling mech-
anism, in brief, the quality controlling mechanism, is
activated periodically or after a number of developer
interactions (i.e., commitments). The time between
activations or/and the number of commitments can be

decided heuristically, based on statistics collected on
the deployed architecture or with respect to the im-
portance of the developer change, which can be deter-
mined by using information from the commitment log
file.

To control the growth of the code size and the in-
crease of the complexity, we parse the code, and com-
pute at different levels (i.e., function, class or file level)
a set of metrics such as size, complexity, in and out
coupling, cohesion indicator, etc. Then, we use three
methods to control the new metric values. The first
method consists of computing the metric value delta
and tolerating a certain percentage of variation. This
is followed by a more robust and statistical method
of checking where each metric value is positioned in
the corresponding box plot computed before the cur-
rent change(s). The third method, which reflects an
extreme programming attitude, consists of verify how
far the metric is from standard values (e.g., 20 LOC for
the size). For metrics at system level, such as the total
size of the OSS system, can be controlled by verify-
ing whether their variation is sub-linear, linear, super-
linear or exponential. Besides metric values control,
which is a preventive process for decline in quality, the
quality control mechanism also provides an intelligent
feature of scheduling, prioritizing and optimizing evo-
lution activities in order to improve quality.

The quality control mechanism uses the plugins of
the PAM architecture, namely a code parser, metric ex-
tractor and viewer, statistical analyzer, quality model-
ing, evolution effort estimator, activity scheduling, and
optimizing plugin. These plugins are described in de-
tail in [4]. It is worth noticing that the quality control
mechanism is extensible and can use other plugins in
the PAM architecture depending, for example, on the
quality factor being controlled (See Fig. 2).

2.3 Feedback-driven communication ser-
vice

The feedback-driven communication service, in
brief, feedback service, is automatically activated after
each commitment of a developer to send him a feed-
back. The idea behind this service is that the devel-
opers need to know how well their changes, additions,
or general contributions fit into the whole OSS struc-
ture. On the other hand, the also service starts when
users/developers suggest or comment on some evolu-
tion actions as a feedback to other developers/users.
The reason behind the second activation is that de-
velopers/users can identify problems that they cannot
resolve because they do not fit their skills and knowl-
edge. The feedback-driven communication service is

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Log file

metrics, diagrams, code representation
work packages, predictions, risks

information,etc.

Maintenance
Data flow

Data
Model

Advertising
and

discovery
Services

PAM Core

Plugin
Manager

Connection
Services

Metric�
extractor�

Risk�
manag�.�
Plugin�

Quality control &�
improvement�

Plugin�

Planning and�
Optimization�

Plugin�

Web Server Computation Server

On-line site

St
or

ag
e

Se
rv

er

Proxy
Server

Local
Mirror

PAM

Internet�Internet�

CVS Mailing Lists

Main CVS
Repository

CVS Server

OSS CVS Main Site

OSS Team
Member

Commitment Action /
Quality Feedback e-mail

Update/commitment

Notification log files / e-mails

Notification e-mail
Quality Feedback e-mail

OSS Working
Copy

OSS Web site & Dasshboard update / Query response
0:0 USA Eastern Time

Information
request

Feedback�
Manager�

E�-mail�
process-�

ing�

Web�Com�. &�
DashBoard�
Manager�

Plugin�

Statistical�
Plugin�

Code�
Parser�

Querying�
Language�

Bad Smell�
Detection�
(Clones)�

Figure 2. Remote OOS evolution analysis using PAM architecture

basically implemented by sending and receiving mes-
sage to and from the message processing plugin in the
PAM architecture (See Fig. 2).

After each developer’s contribution, various metric
and quality indicator values are updated and analyzed
(see Section 2.2), and then a message is sent to the
developer reporting the effects of the contribution on
the complexity and quality of the OSS system. The
reflected effects can be negative if there are abnor-
mal behaviors such as adding clones and very complex
functions qualified as monsters (all metrics beyond the
outer limits) or decline of a quality factor. This ser-
vice uses the OSS mailing list as a source of developer
information.

On the other hand, the message processing plugin
collects feedback from users/developers about new sug-
gestions or comments of evolution actions. These are
analyzed to determine the most valuable new changes
to be planned in the next period, which can be pub-
lished by sending message to all developers or consulted
via the dashboard (See the next Section).

2.4 OSS evolution dashboard service

OSS evolution dashboard allows everyone, regard-
less physical location, to learn about the overall picture
of the whole system and its evolution activity.

Like the quality control mechanism, the dashboard
service relies on a number of periodical activities. For
example, quite detailed snapshot of the OSS system
and its evolution is captured periodically. The first

source of dashboard information is the OSS code, which
is periodically parsed; then three families of metrics
(coupling, cohesion, and size-and-complexity) are ex-
tracted. Depending on the features to exhibit in the
dashboard, metrics values are used in a straightforward
way, transformed into other forms by statistical or/and
graphical devices, or combined using various techniques
to model or predict quality factors. The second in-
formation source for the OSS evolution dashboard is
the message processing. From the analyzed exchanged
messages and feedback between users/developers, valu-
able suggestions and comments can be formulated in
terms of new functionalities and changes to be carried
out with different priorities. These requirements give
a better idea of the desired evolution of the OSS sys-
tem. A third source of information for the dashboard
is extracted from the commitment log files in the CVS
repository system including important dates of major
changes, the activity involvement of developers, etc.

Indeed, the OSS evolution dashboard can contain
graphs, indicators of quality, previous major changes
and changes roadmap, evolution activity planned for
the next period. It can also show information about
the major problem being treated in the current period,
the more active development team members, the most
stable part of code, the most changing (unstable) code,
etc. Besides these features, the dashboard offers a user
friendly interface that allows developers/maintainers to
interact with the code and all the relevant data for the
OSS evolution in order to support their contributions.
This is possible thanks to a query-based language that

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

can, for example, respond to queries for all the func-
tions using “Map” as argument type.

Plugin Category/Name Used by

Code source parser All three services
CVS log file processing All three services
Metric extractor All three services
Statistical analyzer All three services
Quality control All three services
Message processing Feedback
Feedback Manager Feedback
Querying language Dashboard
Web visualization Dashboard
Dashboard Manager Dashboard

Table 1. Plugin categories for Remote and
feedback-driven OSS evolution analysis

2.5 PAM architecture

To help the process of designing a software evolution
environment, we propose a generic CASE tool archi-
tecture that make it possible to integrate services sup-
porting quality improvement and risk mitigation. In-
spired by the hardware system field and others, this ar-
chitecture, called Plugin Architecture for Maintenance
(PAM) is based on plugin components and provides an
increasing number of diversified automated tasks, i.e.,
plugins supporting software evolution.

Alternative approaches to achieve distribution while
offering services and flexibility include architectures
based on web services, J2ee, Java beans, process in-
teracting through sockets, and so on.

Although from an architectural point of view, it
would be interesting to investigate and compare dif-
ferent architectures to support maintenance, we be-
lieve that a plugin based distributed architecture pro-
motes extensibility, flexibility, evolvability and open-
ness. PAM offers the possibility to add new auto-
mated activities by extensions usually called architec-
ture snap-ins or plugins. The components are plug-able
to the core of the architecture. In order to integrate a
remote and feedback-driven analysis for software evo-
lution, PAM is used as a software infrastructure for the
quality control mechanism, feedback service, and dash-
board service. Fig. 2 shows a PAM composition pro-
totype used to support the remote analysis of GRASS
OSS project evolution.

In addition to the plugins discussed in Sec-
tions 2.2, 2.3 and 2.4, the categories of the plugins
needed for remote and feedback-driven analysis are
summarized in Table 1 and used in the PAM archi-
tecture.

3 Case study

As stated in the introduction, our remote monitor-
ing architecture has been applied to monitor GRASS, a
large scale open source GIS. The following Section sum-
marizes the history of GRASS, the monitoring project,
and describes implemented plugins.

3.1 The Monitoring Project Startup

GRASS was originally developed by the U.S.
Army Construction Engineering Research Laboratories
(USA-CERL, 1982-1995), as a tool for land manage-
ment and environmental planning by the military. It
has evolved into a powerful utility with a wide range
of applications in many different areas of scientific re-
search and is currently used in academic and commer-
cial settings around the world.

GRASS provides an ANSI C language API with
nearly 1000 GIS functions used by GRASS commands
to read and write maps, compute areas and distances
for georeferenced data, and visualize attributes and
maps. Details of GRASS programming are covered in
the “GRASS 6.1 Programmer’s Manual” [18]. GRASS6
characteristics are summarized in Table 2.

The GRASS6 development team perceived that,
given the substantial effort toward quality improve-
ments, different means were needed to ensure a con-
tinuous monitoring and close to real time feedback on
GRASS6 quality status.

It was also perceived that the imported code base
has some quality related issues such as old style
Kernighan and Ritchie (K&R) code, mixed use of
wrapped and unwrapped dynamic memory allocation
functions (e.g., GRASS6 uses a wrapped malloc called
G malloc to guard against null pointers), or a mixed
use of symbolic and numeric constants in array decla-
rations. These specific issues, though known and rele-
vant, were considered so frequent to be too expensive
to be manually fixed at the entire project level.

Between August–November 2005, several meetings
between GRASS developers and SOCCER Lab re-
searchers took place and it was decided to evaluate
the feasibility of monitoring GRASS6 evolution on the
basis of a previous collaboration [19]. The focus of
the monitoring environment was identified in quality
and evolution monitoring. The environment desider-
ata were stated as being non intrusive (i.e., not change
or alter the GRASS6 CVS repository performances or
content), with the ability to schedule evolution activi-
ties (e.g., clone removal planning) and provide feedback
with reactive behavior, close to real time, after source
code modification.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

A first development milestone for the environment
was established in December 2005. In particular, upon
development of the first core plugins, the GRASS 6.1-
CVS development snapshot of December 5, 20051 was
used as a starting point to initiate our PAM archi-
tecture, discuss priorities with GRASS developers and
beta test the distributed monitoring architecture.

Directories 541 Functions 8054
C Files 2486 K&R Functions 820
Header Files 591 Perfect Clones 274
C KLOC 510 Near Duplicated Clones 720
Libraries 45
Applications 580

Table 2. GRASS6 key statistics (CVS Dec 5,
2005).

3.2 Implemented Plugins

As stated, the first analysis of the monitoring prob-
lem revealed that two behaviors were needed; the first
is a reactive behavior activated when the GRASS6
main CVS repository is modified or a developer ac-
cesses PAM services via WEB, the second is the abil-
ity to run routinely scheduled tasks (e.g., each weekend
re-compute the schedule of evolution activities). Fur-
thermore, it was obvious that the CVS main repository,
hosted at Osnabrueck, Germany, could not be exploited
to host PAM services or hacked to simplify PAM im-
plementation. Finally, a lightweight and fast update of
information on machines hosting quality and evolution
data was required.

These consideration led to the conceptual physical
layout shown in Fig. 1. GRASS6 CVS central reposi-
tory is mirrored on a SOCCER Lab machine; this mir-
roring is an exact and identical copy kept synchronized.
All computations, including configuration, compilation
or metrics extraction are performed on the working
copy, which holds all intermediate and final results. As
shown in Fig. 1 a further instance of the GRASS6 CVS
repository is used. This is essential particularly when
several files are changed at the same time and a non
negligible time to update the working copy is needed
(e.g., to extract software metrics). In such a case, two
accesses, close in time, could provide very different in-
formation. To avoid this, was decided to keep on line a
stable copy of the information and to update it as soon
as a new stable state is reached by the working copy.
This layout ensures a fast update of CVS mirror, in-
formation coherence, and non interference between dif-
ferent update tasks and parallel computations. As the

1Downloadable from http://grass.itc.it

monitoring system is being active and on line, Fig. 1
organization has been replicated to allow developing,
debugging and testing of components and plugins.

Two families of plugins have been developed, namely
General Purpose Plugins and Specialized Plugins.
Among general purpose plugins are the following: Met-
rics extraction, statistical analysis and visualization;
Code transformation and code instrumentation; Ac-
tivity planning and optimization; WEB communica-
tion and WEB services and Feedback plugins. These
are likely to be common to several projects, domains
and environments. The second category, specialized
plugins, consists of technology, team, and problem de-
pendent plugins. They are essential to actually imple-
ment evolution activities. They can depend on any ele-
ment of the evolution environment and are specialized
in some activities. Examples in this category include:
effort modeling plugins, parser tools and tester plugins.

In the following we will provide a brief description of
already developed or in progress plugins, general pur-
pose and specialized, involved in the evolution moni-
toring analysis project.

Metrics extraction, statistical analysis and vi-
sualization. These plugins can be considered as com-
posed of three services: extraction, statistical analy-
sis (e.g., box plot or outliers identification) and visu-
alization of software metrics. At the time of writing
distinct families of plugins are available for project re-
lated metrics (e.g., number of changed files per day
or week, changed volume per unit of time or program-
mer), object-oriented languages (e.g., Java, and C++),
procedural languages (e.g., C), interface definition and
communication languages (e.g., CORBA - IDL). Met-
ric visualization deals with information presentation;
several proposals exist to represent and navigate in
large amounts of information [3, 12]. Visualization is
also essential to grasp the overall picture as well as the
details. At present we provide basic statistical analysis
via histogram, multiple box plots, bar charts, and time
series visualization (e.g., evolution of clone percentage
over a given period of time, see Fig. 3).

Code transformation and code instrumenta-
tion. Like the previous plugins, these can be con-
sidered as general purpose from a high level point of
view. Code transformation plugin is limited in specify-
ing the interface in that actual transformations depend
on language, project, idioms and technology. We are
currently working on developing plugins specialized in
the integration of available transformation engines.

Activity planning and optimization. The ratio-
nale of this plugin is to support the new approach to
software evolution, namely quality improvement, risk
mitigation and cost reduction. Indeed the resolution

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Figure 3. GRASS6 March 2006: various dashboard formats.

of many problems in this area consists of making deci-
sions and compromises. In particular, managing main-
tenance activities in cost-effective ways while ensur-
ing high quality is a very difficult problem that can be
tackled via optimization and search-based approaches.
Activity planning and optimization is valuable sup-
port of a decision-making process. This plugin imple-
ments very well known search-based techniques such
as genetic algorithms, simulated annealing and taboo
search. Examples of supports provided by this plugin
are: a rigorous schedule and planning of maintenance
activities, etc. optimizing resources allocation;

Bad code smell detection. Any large software
system evolving over time is likely to develop unwanted
and undesired characteristics such as duplicated code
regions, unstructured or poorly structured code, anti-
pattern etc. We have developed a C specialized plugin
to detect two families of bad code smell: duplicated
code also known as clones [11, 15] and C functions with
complexity, size or coupling largely exceeding the me-
dian of the metric value for the given project (i.e., three
times the inter-quantile above the 75% percentile).

WEB communication, WEB services and
WEB dashboard. To experiment with our archi-
tecture and to develop and deploy plugins, we rely on
standard Unix/Linux platforms. In particular, we used
an Apache web server acting as gateway, SOAP trans-
port, Java, Perl and Python modules. These modules

are the backbone of the system. We rely on WEB com-
munication and WEB Dashboard to perform analysis,
update information and present results. WEB dash-
board also provides per user authentication and secure
access to confidential data.

The actual architecture with its essential elements
has been deployed on the SOCCER laboratory net-
work. At present we are monitoring, analyzing and
supporting the evolution of GRASS system.

Feedback plugins. These are the core of the reac-
tive part of the system devoted to providing developers
with personalized feedback. It relies on metrics extrac-
tion, statistical analysis tools and standard Unix e-mail
facilities. In particular we rely upon procmail, fetch-
mail, sendmail and R for the statistical part. E-mail
messages are composed automatically and sent back to
the developer each time a source file modification is
committed. As shown in Fig. 4 the message provides
information on metrics, the absence or presence of code
duplication (with respect to the entire code base), and
a quality ranking (e.g., metric values identified as out-
liers for the GRASS6 project). At the time of writing
no secure or authentication mechanism was put in place
for the e-mail. To minimize the risk of possible man-in-
the-middle attacks we plan to add a digital signature
and to switch to a certified mailer server.

Refactoring Effort estimator plugins. These
plugins are specialized in estimating the effort needed

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

for particular types of refactoring activity. In our case
we already developer an effort estimator for refactoring
of duplicated code at function level.

Hello Markus,

here a report on your recent GRASS-CVS change:

Threshold GRASS6 key metrics values at 2006-03-25 are:

---------------------------+-----------+---------+

median | upper | outlier |

| quartile | limit |

---------------------------+-----------+---------+

Complexity (Cyclo): 5 | 25 | 36 |

ParamNBR: 2 | 6 | 8 |

CalledNBR: 9 | 55 | 78 |

LOC: 39 | 181 | 254 |

---------------------------+-----------+---------+

Measures (see below Web page for details):

Complexity (Cyclo): a complexity index

ParamNBR: number of passed parameters

CalledNBR: number of called functions

LOC: Lines Of Code

Message interpretation:

OK : Nothing to say at all

* : above 75 % of value warning

** : this is getting close to be out of range, consider revising the code

***: this is a monster, definitely you should revise this function

ANALYSIS

you have changed 1 files/functions:

./grass6/vector/v.in.ascii/points.c functions

points_to_bin (Begins at: 187 Ends at: 300)

--------------+---------+-------+---------+

Complexity: | 15 | | OK |

ParamNBR: | 13 | *** | MONSTER |

CalledNBR: | 53 | * | |

LOC: | 114 | | OK |

--------------+---------+-------+---------+

1 metric are OUT OF RANGE!

Clone analysis:

This file does not contain cloned functions

Figure 4. Example of generated feedback (The
e-mail was edited to fit the space).

4 Results and interpretation

GRASS developers were asked to provide guidelines
to set up quality improvement goals. Discussion led to
the decision to separate the problem of K&R code an-
sification from the longer term quality improvement
goal. Unfortunately the public domain ansification
tools don’t provide an accurate code transformation, so
we developed our own ansification toolkit. Information
collected while parsing C code on K&R function loca-
tion is very accurate and it was used to perform pre-
cise (including saving comment position) and semantic
preserving code transformation. The process required
about 6 hours of an expert in parsing and code transfor-
mation, and 8 hours of an expert GRASS programmer.
Out of the 6 hours, about 5 were needed to develop
the ansification plugin. Ansification was performed
on a per-directory basis; GRASS developer time was
needed to semi-automatically verify performed trans-
formations, recompile the system, perform basic tests,
and commit changes in the central CVS repository.

This means that all 820 K&R functions were trans-
lated into ANSI style in less than two working days.
At the time of writing, no error has been discovered
related to such a major change. It is however worth
noticing the relation with quality issues: in K&R style
function parameter declaration, at function definition,
is optional. Out of the 820 functions, about 20 had un-
declared parameters; most of these dangerous missing
declarations were unknown to developers. The type
of parameters is assumed by the compiler; however,
there is no guarantee on assumptions made by differ-
ent compilers. The simple rebuilding of an application
with different compiler may thus lead to crashes or, in
the worst case scenario, to undetected data corruption.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14 16 18 20

Fe
atu

re

Day

GRASS6 March Evolution Facts

Function above 8210

Duplicated functions (%)

Changed files

Baby monsters (%)

Figure 5. GRASS6 March 2006: feature evolu-
tion

GRASS developers set up priority on a code region
perceived as critical. Moreover, concern was expressed
on the quality of the largest and most complex func-
tions. Complexity was in turn represented as number
of parameter and cyclomatic complexity. These prior-
ity values together with initial model parameter values
and data collected by two developers were then used by
a calibration plugin to customize the quality and activ-
ity planning plugin. Following the initial calibration, a
beta version of PAM was put on line at the beginning
of February 2006. After a couple of weeks collected
data and statistics were considered reliable.

Fig. 3 shows reports produced to populate the dash-
board. The upper left histogram shows the func-
tion size measured in LOC on March 11, while the
right histogram depicts the cyclomatic complexity his-
togram. No substantial variation was observed in the
first month of monitoring. Summary statistics for

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

collected function level metrics remain stable as also
shown by the two Fig. 3 boxplots.

The trend observed between March 1–20, 2006 for
the number of modified C files, the number of C func-
tions, the percentage of duplicated functions and the
percentage of baby monster is shown in Fig. 5. A func-
tion is referred as to a baby monster when at least one
of the monitored metrics falls above the outlier thresh-
old (e.g., the cyclomatic complexity is above 32); these
are about 300 functions. Pathologic functions, mon-
sters, (all metrics above the outlier limits) are both of
the order of ten, did not exhibit a substantial change
in the first three weeks of March. Also GRASS6 du-
plicated code about 10% did not change substantially.
A slight reduction between December 5, 2005 and Feb-
ruary 2006 was experienced. However, between Febru-
ary and March a slight increase was observed. This is
also related to the fact that the clone analysis was al-
most unknown in the GRASS community. When exact
copies are counted the rate drops to about 2.5%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Ch
an

ge
s

Week

GRASS6 SOCCER Lab. Change Traffic per Developer Feb-Mar

Feb 12 - 18
Feb 19 - 25

Feb 16 Mar 4
Mar 5 - 11

Mar 12 18

Figure 6. GRASS6 March 2006: CVS source
file traffic per developer

About 45 programmers are registered as GRASS de-
velopers however, in reality, there are fewer than 20
core contributors; as shown by Fig. 6, most contribu-
tions can be attributed to an even smaller pool of five
people. Names are not reported for confidentiality.

5 Lessons learned and future work

We recall that the objectives for the described en-
vironment are the remote monitoring of software evo-
lution to avoid quality deterioration, to increase devel-
opers’ productivity and efficiency, and to reduce the

cost of evolution. At first, gaining confidence of de-
velopers was an issue, but, once achieved, developers
were more than willing to supply help and make sugges-
tions to improve PAM architecture for their needs. One
key success factor for effective collaboration is to show
developers that PAM really adds value to their daily
work. Gathering priorities about the projects and the
planned development together with inhibition informa-
tion about parts of the project were quickly identified
as an important utility in PAM.

Another success factor has been the non-invasive ap-
proach used in PAM. In general, developers receive a
suggested schedule of refactoring activities that they
are free to follow, reject, or re-schedule. GRASS de-
velopers are free to subscribe/unsubscribe to the au-
tomatic quality notification plugin. A prescriptive way
of interacting with developers would have been rejected
in the project.

Indeed, although we should have expected it, we re-
alized that refactoring carried some risks. Uncertainty
about real span of refactoring may be a source of risk;
unexpected dependencies may carry refactoring farther
than expected or than detected by analysis. Also, hu-
man error during refactoring can hardly be planned
in the scheduler. To reduce risks, we created and im-
plemented a file-level visualization tool that shows the
differences between files during refactoring.

The implemented visualization scheme to interact
with developers is very useful, but rather primitive
and simple. Better schemes should be investigated
in terms of ergonomic design of user interface and of
supplied visual functionalities. The presented ap-
proach allowed the accidental discoveries of candidate
bugs in the project, such as array size inconsistencies
between somehow related code fragments. This bug
discovery opportunity should be further investigated
and exploited since it could be an interesting source of
quality improvement. A formal definition and catalog
of candidate bugs together with appropriate detection
techniques could be developed and tested.

Also, although very important, the presented closed-
loop between development and analysis in PAM is rel-
atively primitive. A more sophisticated process would
consider some communication scheme to specific devel-
opers, rather than the blackboard style access to the
all the information.

6 Conclusion

We have reported our experience in deploying a
plugin-based architecture to monitor software evolu-
tion and support programmer activity. Our approach
stems from the needs of a team of open source devel-

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

opers in evolving an open source project, the GRASS6
application.

Like other approaches presented in the literature,
we rely on parsing technology and standard tools. An
initial version of our monitoring environment has been
deployed and is currently used to track and manage
GRASS6/GIS evolution. Developed plugins allowed
GRASS maintainers to effectively carry out automated
maintenance and to receive, almost in real time, feed-
back on performed evolution activities. Moreover, we
provide them with an optimal schedule of quality im-
provement.

Our approach also allowed for the accidental dis-
coveries of candidate bugs in the project, such as ar-
ray size inconsistencies between somehow related code
fragments. This bug discovery opportunity should
be further investigated and exploited since it could
be an interesting source of quality improvement at a
low effort of detection. At present we are developing
more sophisticated plugins, such as those required to
semi-automatically deal with array boundaries incon-
sistency.

References

[1] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo.
Modeling clones evolution through time series. Pro-
ceedings of IEEE International Conference on Soft-
ware Maintenance, pages 273–280, Nov 6-10 2001.

[2] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta.
Analyzing cloning evolution in the linux kernel. In-
formation and Software Technology, 44:755–765, Oct.
2002.

[3] T. Ball and S. G. Eick. Software visualization in the
large. IEEE Computer, 29(4):33–43, Apr 1996.

[4] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler.
A plugin based architecture for software maintenance.
RT EPM-RT-2006-03, Department of Computer Sci-
ence, École Polytechnique de Montréal, 2006.

[5] J. Bowring, A. Orso, , and M. Harrold. Monitoring
deployed software using software tomography. In ACM
SIGPLAN-SOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE), Nov 2002.

[6] M. Godfrey and Q. Tu. Evolution in open source
software: A case study. In Proceedings International
Conference on Software Maintenance, pages 131–142,
2000.

[7] K. C. Gross, S. McMaster, A. Porter, A. Urmanov,
and L. G. Votta. Towards dependability in everyday
software using software telemetry. In IEEE Workshop
on Engineering of Autonomic Systems, March 2006.

[8] M. Haran, A. Karr, A. Orso, A. Porter, and
A. Sanil. Applying classification techniques to
remotely-collected program execution data. In 13th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), Sept 2005.

[9] C. Jones. Patterns of Software Systems Failure and
Success. Computer Press, Boston, Mass., 1996.

[10] C. F. Kemerer and S. Slaughter. An empirical ap-
proach to studying software evolution. IEEE Trans-
actions on Software Engineering, 25(4):493–509, 1999.

[11] B. Lague, D. Proulx, E. Merlo, J. Mayrand, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Proceedings of IEEE International Conference on Soft-
ware Maintenance, pages 314–321, 1997.

[12] G. Langelier, H. A. Sahraoui, and P. Poulin.
Visualization-based analysis of quality for large-scale
software systems. In proceedings of the 20th interna-
tional conference on Automated Software Engineering.
ACM Press, Nov 2005.

[13] M. M. Lehman. Laws of software evolution revisited.
In EWSPT, pages 108–124, 1996.

[14] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan,
D. Schmidt, and B. Natarajan. Skoll: Distributed
continuous quality assurance. In International Con-
ference on Software Engineering (ICSE), Edinburgh,
Scotland, UK, May 2004. IEEE Society Press.

[15] E. Merlo, G. Antoniol, M. D. Penta, and F. Rollo. Lin-
ear complexity object-oriented similarity for clone de-
tection and software evolution analysis. In Proceedings
of IEEE International Conference on Software Main-
tenance, pages 412–416, Sept 2004.

[16] E. Merlo, M. Dagenais, P. Bachand, J. S. Sormani,
S. Gradara, and G. Antoniol. Investigating large soft-
ware system evolution: the linux kernel. In COMP-
SAC, pages 421–426, Aug 2002.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[18] M. Neteler, editor. GRASS 6.1 Programmer’s Manual.
Geographic Resources Analysis Support System. ITC-
irst, Italy, http://grass.itc.it/devel/, 2005.

[19] M. D. Penta, M. Neteler, G. Antoniol, and E. Merlo. A
language-independent framework for software minia-
turization. Journal of Systems and Software, (77):225–
240, 2004.

[20] G. Robles, S. Koch, and J. M. Gonzlez-Barahona. Re-
mote analysis and measurement of libre software sys-
tems by means of the cvsanaly tool. In 2nd ICSE
Workshop on Remote Analysis and Measurement of
Software Systems (RAMSS ’04), 26th International
Conference on Software Engineering, May 2004.

[21] W. Scacchi. Understanding open source software evo-
lution: Applying, breaking, and rethinking the laws of
software evolution, June 24 2003.

[22] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and
A. J. Offutt. Maintainability of the linux kernel. IEE
Proceedings - Software, 149(1):18–23, 2002.

[23] C. Yilmaz, A. Memon, A. Porter, A. Krishna,
D. Schmidt, and A. Gokhale. Techniques and
processes for improving the quality and performance
of open-source software. Software Practice and Im-
provement Journal, 2006 (To appear).

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

