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Abstract

In this paper we study a class of derivative-free unconstrained minimization algorithms em-
ploying nonmonotone inexact linesearch techniques along a set of suitable search directions. In
particular, we define globally convergent nonmonotone versions of some well-known derivative-
free methods and we propose a new algorithm combining coordinate rotations with approximate
simplex gradients. Through extensive numerical experimentation, we show that the proposed
algorithm is highly competitive in comparison with some of the most efficient direct search
methods and model based methods on a large set of test problems.
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1 Introduction

We consider unconstrained minimization problems of the form minx∈Rn f(x), where (in the
theoretical analysis) the function f : Rn → R is assumed to be continuously differentiable on
Rn. However, we suppose that the derivatives of f are not available and that cannot be easily
approximated by finite difference methods. As remarked in [3], this situation frequently arises
when f must be evaluated through black-box simulation packages, typically proprietary, and
each function evaluation may be costly and noisy. Thus the development of derivative-free
optimization techniques is currently an area of increasing interest, both from a theoretical and
a practical point of view.

A recent comprehensive study on methods for derivative-free optimization is the book cited
above [3], where several approaches, such as pattern search methods, model-based methods,
linesearch methods employing approximate gradients are described and analyzed. It would
seem that there is still the need of improving the current approaches and of developing new
ideas, especially when the problem dimensions are relatively large or the function f is noisy.

The objective of the present paper is actually that of contributing to this active field, by
proposing new efficient derivative-free algorithms based on nonmonotone inexact linesearches
along a set of search directions satisfying appropriate conditions. The derivative-free inexact
linesearches used here are based on the techniques introduced in [6] and employed in [13], [21]
for defining globally convergent unconstrained algorithms.

We note that the definition of appropriate ‘inexact’ algorithms can be important, in the
general case, even from a theoretical point of view. In fact, for a wide class of derivative-free
algorithms, ‘exact’ linesearches (at least in the sense that a stationary point along the search
direction is approximated with good accuracy) may not guarantee global convergence, unless
rather restrictive assumptions are imposed on f .

We consider also modifications of these algorithms based on nonmonotone acceptance rules,
which relax the descent requirements, while preserving the convergence properties of the mono-
tone methods. The modified algorithms used here can be viewed as derivative-free extensions
of nonmonotone linesearch algorithms employing first order derivatives (see, e.g. [14], [15], [16])
and have been also considered in connection with Jacobian-free techniques for solving nonlinear
equations [17]. Somewhat different derivative-free inexact and nonmonotone linesearch algo-
rithms have been proposed in [9], [27], in the context of methods for the solution of nonlinear
equations and in [7], [10], [11] with reference to optimization problems.

The introduction of nonmonotone acceptance rules can improve considerably both robustness
and efficiency, especially in the case of noisy problems and in the case of objective function
(possibly also non differentiable), whose contours exhibit steep sided valleys.

On the basis of the results mentioned above, in this paper we construct a class of algorithms
that combines different strategies for choosing the search directions and for performing the
line searches. The general algorithm scheme, illustrated in the next section, allows us to unify
the description and the convergence analysis of various new linesearch-based algorithms. In
particular, first we construct new nonmonotone globally convergent versions of known methods,
such as the coordinate method, the Hooke-Jeeves method [18] and the Rosenbrock method
[28]. Then, in the same framework, we define a new algorithm in which Rosenbrock rotation
of the coordinate axes is combined with an approximate gradient constructed using previous
information on function values. In particular, we use a form of (generalized) ‘simplex gradient’
[2], [4], [5], [19]. Approximations of the gradient of this form have been used in various works,
in order to improve the performance of derivative-free methods and error bounds have been
established. In our algorithm the acceleration step along the negative simplex gradient has also
the effect of defining the subsequent rotation of the coordinate axes.

The algorithms introduced here are compared on a large set of difficult test problems [12],[22]
with some of the best derivative-free methods currently available. The numerical results, eval-
uated through the performance and data profiles introduced in [23], show that the proposed
technique is competitive with the other approaches.
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The paper is organized as follows. In Section 2, we describe the general scheme of the class of
algorithms considered in the sequel. In Section 3, we recall the basic features and the convergence
properties of the linesearch algorithms, on the basis of the previous papers mentioned above.
In Section 4, we specialize and extend some of the convergence results given for derivative-free
methods [3], [13], [21]. In Section 5, we describe a new globally convergent implementation of the
Hooke-Jeeves method, employing nonmonotone inexact linesearches. In Section 6, we describe a
linesearch-based nonmonotone version of Rosenbrock’s method and we prove global convergence.
In Section 7, we describe and analyze the new nonmonotone linesearch-based algorithm that
makes use of simplex gradients and of Rosenbrock rotations for defining the search directions.
In Section 8, we report and discuss the results of our computational experimentation. Finally,
Section 9 contains some concluding remarks and indications on future work.

2 A conceptual scheme of the algorithms

In this section, we give an informal outline of the class of methods proposed in the present
paper; more precise descriptions of the specific methods will be reported in the sequel. All the
algorithms we will consider generate an infinite sequence of iterations of the form

xk+1 = xk + αkdk, (1)

where dk ∈ Rn is a search direction, αk ∈ R is a stepsize along dk and x0 ∈ Rn is a given point.
We denote by

L0 = {x ∈ Rn : f(x) ≤ f(x0)},
the level set of f corresponding to the initial value f(x0).

The algorithmic scheme we consider in the paper can be described as an infinite sequence of
major steps, indexed by ` = 0, 1, . . . . Each major step ` consists of a finite number of iterations
of the form (1), organized into three different phases, as indicated below.

(a) Basic search. Starting from the current point xk, indicated by y0, we consider a finite set
of r search directions

D = {di ∈ Rn, i = 1, . . . , r}, (2)

where typically r ≥ n. For i = 1, . . . , r we use, in sequence, the search directions dk = di

in D and we compute αk by means of a derivative-free nonmonotone line search along dk.
Then, for each i, we generate a new point using the iteration (1) and we update k.

During this phase, when needed, we can further store a set of tentative points yj ∈ Rn

computed along the directions di and the corresponding function values f(yj), for j =
0, 1, . . . , q.

After r line searches, we obtain a new updated point xk.

(b) Acceleration step. Given the available information gathered during phase (a), that is
yj , f(yj) for j = 0, 1, . . . , q, we determine a new search direction dk on the basis of some
local model of f . Using again a derivative-free nonmonotone line search technique along
dk we perform the iteration

xk+1 = xk + αkdk.

The attempt is that of improving substantially the results of phase (a) by computing, for
instance, an approximation to the steepest descent direction or by determining a suitable
pattern on the basis of the previous steps.

(c) Rotation of the search directions. We perform a rotation (according to some given criterion)
of the directions in D, thus obtaining a new set

D̄ = {d̄i ∈ Rn, i = 1, . . . , r}.

In the sequel, we will refer, in particular, to the Rosenbrock rotation [28] or to suitable
modifications of this technique. Once that D̄ has been determined, we set D = D̄, we
update k and a new major step can be started.

3



In our formulation the fundamental requirements for establishing global convergence are the
conditions to be imposed on the line searches and the assumptions on the search directions in D.
Thus, the basic search of step (a) is essential, while both the acceleration step and the rotation
of the directions in D can be omitted. Therefore various algorithms can be derived from the
scheme defined above. We mention here some of the most significant choices that will be studied
in the sequel in more detail.

The simplest choice can be that of defining a (nonmonotone) linesearch-based version of the
coordinate method. In this case the set D is defined by D = {e1, . . . , en}, where ej is the j-th
column of the identity n× n and the algorithm will consist only of the basic search step (a).

A second scheme can be defined by combining step (a) with step (b). An example could be
a linesearch-based version of the Hooke-Jeeves method. In this case the set D is again the set of
coordinate directions, no coordinate rotation is introduced and D remains constant during the
iterations. The acceleration step (b) consists in defining the search direction

dk = xk − y0

and in performing a (possibly nonmonotone) linesearch along dk. A second example with a
similar structure could be a nonmonotone extension of the algorithm defined in [21], where step
(b) is defined by selecting a point and a search direction on the basis of the points and the
function values produced at step (a).

A different algorithm consists in executing only step (a) and (c), by performing a coordinate
rotation at step (c), starting from the vector

d̄1 = xk − y0

and employing Rosenbrock rotations. In this way we get a (nonmonotone) linesearch-based
version of the Rosenbrock method.

Finally, new algorithms can be constructed where the acceleration step (b) and the Rosen-
brock rotation at step (c) are combined. In the scheme proposed in this paper each iteration
starts with set D and the basic search (a) is executed as in the other cases. The acceleration
step (b) is defined by first computing the gradient approximation gk at the last point xk of step
(a) and then performing a (nonmonotone) derivative-free line search along −gk. The gradient
approximation is constructed by employing the data collected during the linesearches of step (a).
Once that the point xk+1 = xk − αkgk has been obtained, the set D is updated by employing
Rosenbrock rotation. However, now the first element of D̄ is given by

d̄1 = xk+1 − y0

and hence the step along −gk has effect also on the rotation carried out within the Rosenbrock
technique.

In order to perform a convergence analysis of the algorithms outlined above, we must first
specify the line search algorithms employed, we must impose suitable conditions on the search
directions that belong to D and then we must define exactly the different steps. This will be
the object of the next sections.

3 Derivative-free line searches

We consider the derivative-free line search algorithms that will be used within the minimization
method described in the preceding section, where it is assumed that, given xk, the next point
xk+1 is obtained through the iteration

xk+1 = xk + αkdk,

where dk ∈ Rn is a search direction and αk ∈ R is a step size.
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The algorithms defined in this section are essentially based on the techniques described in [17]
and can be viewed as nonmonotone versions of derivative-free line search algorithms enforcing
to zero the distance ‖xk+1 − xk‖. A sufficient reduction of the objective function is imposed
with respect to a reference value Wk that satisfies the condition

f(xk) ≤ Wk ≤ max
0≤j≤min(k,M)

[f(xk−j)], (3)

for a given integer M ≥ 0. In order to simplify notation, in the sequel we set fk = f(xk)
whenever convenient.

We consider two different types of line search, depending on the fact that the search is
bidirectional, that is αk can have any sign, or that only a nonnegative value for αk is permitted.

The first scheme reported below is the bidirectional search.

Nonmonotone Derivative Free Line Search (NDFLS) Algorithm

dk ∈ Rn, dk 6= 0, Wk satisfying (3) and parameters:

0 < θl < θu < 1, 1 < µl < µu, γ1 > γ > 0, ρk > 0, ∆k > 0.

Step 1. Set α = ∆k.

Step 2. While f(xk ± αdk) > Wk − γα2‖dk‖2 do:

If α‖dk‖ < ρk then

set αk = 0, ηk = α and terminate,

else

choose θ ∈ [θl, θu] and set α = θα.
End if

End while

Step 3. Let t ∈ {−1, 1} be such that

f(xk + tαdk) ≤ Wk − γα2‖dk‖2

and set α = tα.

Step 4. If |α| < ∆k, then set αk = α and terminate.

Step 5. Choose µ ∈ [µl, µu].

Step 6. While

f(xk + αdk) < fk − γ1α
2‖dk‖2

and

f(xk + µαdk) < min{f(xk + αdk), fk − γ (µα)
2 ‖dk‖2}

. set α = µα and choose µ ∈ [µl, µu].

End while

Step 7. Set αk = α and terminate.
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In the preceding scheme, starting from an arbitrary given initial tentative value α = ∆k > 0, we
search both along dk and −dk and the stepsize α is computed in order to satisfy the condition
of sufficient decrease expressed by

f(xk + αkdk) ≤ Wk − γα2
k‖dk‖2, γ > 0, (4)

with a sufficiently large stepsize. We note that, in this phase, when the initial tentative stepsize
∆k or −∆k does not satisfy the condition (4), then at least three function values are available,
and hence a safeguarded quadratic interpolation can be employed. The stepsize is reduced until
either the condition of sufficient decrease is satisfied, and hence the sign of αk is fixed, or the
length of the tentative step α‖dk‖ becomes smaller than an adjustable bound ρk.

In the latter case, the value αk determined by the algorithm is set equal to zero and the last
value of α (required only in the proof) is indicated by ηk > 0. This failure of the search along
dk may be due, in particular, to the fact that the directional derivative of f along dk at xk is
near zero.

When the initial tentative stepsize ∆k or −∆k satisfies the condition of sufficient decrease,
then an expansion step is performed and |α| is increased, until suitable conditions are satisfied.
Several different acceptability conditions can be combined for guaranteing that a sufficient dis-
placement from xk has been effected. In particular, an extension of Goldstein conditions can be
based on the request that αk satisfies both the condition of sufficient decrease and the condition

f(xk + αkdk) ≥ fk − γ1α
2
k‖dk‖2,

where γ1 > γ.
Note that, in the nonmonotone case, an expansion step is not required if the initial tentative

stepsize α ∈ {−∆k,∆k} satisfies the condition of sufficient decrease, but f(xk + αdk) > fk.
In the sequel, whenever convenient, we will recall the preceding algorithm by evidentiating

some of the inputs; in this case we will use the notation NDFLS(dk,∆k, ρk).
The properties of Algorithm NDFLS are stated in the next proposition, whose proof follows

with minor modifications from the results given in Propositions 3 and 4 of [17].

Proposition 1 Let f : Rn → R be continuously differentiable and assume that the level set L0

is compact.

(i) Algorithm NDFLS determines, in a finite number of steps, a scalar αk such that

f(xk + αkdk) ≤ Wk − γ(αk)
2‖dk‖2. (5)

(ii) Let {xk} be a the sequence of points in Rn and let K be an infinite index set such that

xk+1 = xk + αkdk, for all k ∈ K

where dk ∈ Rn, dk 6= 0 and αk ∈ R is determined by means of Algorithm NDFLS. Assume
that ρk → 0 for every infinite subsequence of {xk}K such that αk = 0. Then, we have:

lim
k→∞,k∈K

∇f(xk)
T dk

‖dk‖
= 0. 2

Now we can define the linesearch algorithm where the searches are performed only for posi-
tive values of α, which can easily obtained from the scheme of NDFLS algorithm by simple
modifications.
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Nonmonotone Derivative Free Line Search Algorithm 2 (NDFLS2)

Data. dk ∈ Rn, dk 6= 0, Wk satisfying (3) and parameters:

0 < θl < θu < 1, 1 < µl < µu, γ1 > γ > 0, ρk > 0, ∆k > 0.

Step 1. Set α = ∆k.

Step 2. While f(xk + αdk) > Wk − γα2‖dk‖2 do:

If α‖dk‖ < ρk then

set αk = 0, ηk = α and terminate,

else

choose θ ∈ [θl, θu] and set α = θα.
End if

End while

Step 3. If α < ∆k, then set αk = α and terminate.

Step 4. Choose µ ∈ [µl, µu].

Step 5. While

f(xk + αdk) < fk − γ1α
2‖dk‖2

and

f(xk + µαdk) < min{f(xk + αdk), fk − γ (µα)
2 ‖dk‖2}

. set α = µα and choose µ ∈ [µl, µu].

End while

Step 6. Set αk = α and terminate.

The next proposition gives the convergence properties of the algorithm, that we may recall as
NDFLS2(dk,∆k, ρk).
The proof can be established along the lines that can be followed for proving Proposition 1.

Proposition 2 Let f : Rn → R be continuously differentiable and assume that the level set L0

is compact.

(i) Algorithm NDFLS2 determines, in a finite number of steps, a scalar αk ≥ 0 such that

f(xk + αkdk) ≤ Wk − γ(αk)
2‖dk‖2. (6)

(ii) Let {xk} be a the sequence of points in Rn and let K be an infinite index set such that

xk+1 = xk + αkdk, for all k ∈ K

where dk ∈ Rn, dk 6= 0 and αk ∈ R is determined by means of Algorithm NDFLS2.
Assume that ρk → 0 for every infinite subsequence of {xk}K such that αk = 0. Then, we
have:

lim
k→∞,k∈K

∇f(xk)
T dk

‖dk‖
≥ 0. 2
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4 Global convergence conditions

In this section we state convergence conditions that impose restrictions on the directions em-
ployed during the basic search defined at phase (a) of the scheme of Section 2. More specifically,
we extend to nonmonotone methods some of the global convergence conditions already estab-
lished for derivative-free line search-based methods [3], [13], [21]. In particular, we state condi-
tions under which every limit point of the sequence generated by an unconstrained derivative-free
algorithm, employing a nonmonotone line search at each step, is a stationary point of f . These
conditions will be specialized in the sequel to the model algorithm introduced in Section 2 for
proving global convergence.

Suppose first that the sequence of search directions {dk} satisfies the following assumption,
which requires, in essence, that ultimately a set of n uniformly linearly independent search
directions is employed cyclically.

Assumption 3 Let {dk} be the sequence of search directions used in the algorithm. There
exists a value N > 0 and n integers j(k, i), for i = 1, . . . , n, such that

k ≤ j(k, 1) ≤ j(k, 2) ≤ · · · ≤ j(k, n) ≤ k +N

and the n sequences {pik}, defined by

pik =
dj(k,i)

‖dj(k,i)‖
, i = 1, . . . , n,

have the property that every limit point (p̄1, p̄2, . . . p̄n) of {(p1k, p2k, . . . pnk )} is constituted by n
linearly independent vectors p̄i ∈ Rn, i = 1, . . . , n. 2

It is easily seen that the assumption given above, for a sufficiently largeN , is satisfied in a scheme
where the coordinate directions are employed cyclically. Other examples will be considered later.

We recall from [24] that a function σ : R+ → R+ is called a forcing function if, for every
sequence of numbers tk ∈ R+ such that limk→∞ σ(tk) = 0,we have that

lim
k→∞

tk = 0.

The convergence results given in the sequel depend on the following lemma, proved in [16],
which follows essentially from the results established in [14], [15].

Lemma 4 Let {xk} be a sequence of points such that

f(xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (7)

where σ : R+ → R+ is a forcing function and Wk is a reference value that satisfies (3) for a
given integer M ≥ 0. Suppose that f is bounded below, and that it is Lipschitz continuous on
L0, that is, that there exists a constant L such that

|f(x)− f(y)| ≤ L‖x− y‖, for all x, y ∈ L0.

Then:

(i) xk ∈ L0 for all k;

(ii) the sequence {f(xk)} is convergent;

(iii) lim
k→∞

‖xk+1 − xk‖ = 0. 2

Using this lemma, we can establish the following result.
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Proposition 5 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by an algorithm of the form

xk+1 = xk + αkdk,

where dk 6= 0 for all k and αk ∈ R. Suppose that:

(a) the sequence of search directions {dk} satisfies Assumption 3;

(b) for every k we have
f(xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (8)

where σ : R+ → R+ is a forcing function and Wk is a reference value that satisfies (3) for
a given integer M ≥ 0.

(c) in correspondence to all the sequences of search directions dj(k,i), i = 1, . . . , n considered
in Assumption 3, the stepsize αj(k,i) is computed using Algorithm NDFLS, where ρk → 0
for every infinite subsequence such that αj(k,i) = 0.

Then the algorithm produces an infinite sequence that admits limit points and every limit point
x̄ of {xk} is in L0 and satisfies ∇f(x̄) = 0.

Proof. Taking into account the assumptions on f and L0 and assumption (b), preliminarily we
observe that all the hypotheses of Lemma 4 are satisfied and hence the assertions of Lemma 4
must hold. This implies, in particular, that xk ∈ L0 for all k, that {xk} has limit points and
that every limit point of the sequence is in L0. We must show that every limit point of {xk} is
a stationary point of f .

Let x̄ ∈ L0 be a limit point of {xk} and let {xk}K be a subsequence converging to x̄.
Consider the search directions dj(k,i), for i = 1, . . . n, introduced in Assumption 3 and let

pik =
dj(k,i)

‖dj(k,i)‖
, j(k, i) ∈ {k, k + 1, . . . , k +N}, i = 1, . . . , n,

be the elements of the n sequences defined there. As all the sequences {pik} are bounded there
exists a subsequence {xk}K1 , with K1 ⊆ K such that

lim
k∈K1,k→∞

pik = p̄i, i = 1, . . . , n. (9)

By Assumption 3, we have that the vectors p̄i, i = 1, . . . , n are linearly independent. By Lemma
4(iii), we have that

lim
k→∞

‖xk+1 − xk‖ = 0

and hence, as j(k, i) ≤ k + N , it can be easily established, by induction, that all the points
xj(k,i) converge to x̄ for k ∈ K1, k → ∞ and for all i = 1, . . . , n.

As αk is computed through Algorithm NDFLS it follows from (ii) of Proposition 1 that:

lim
k∈K1, k→∞

∇f(xj(k,i))
T dj(k,i)

‖dj(k,i)‖
= ∇f(x̄)T p̄i = 0, i = 1, . . . , n. (10)

Since vectors p̄i are linearly independent, we obtain ∇f(x̄) = 0. 2

The convergence results given above can be easily extended to algorithms employing other types
of search directions. To illustrate one of the most significant extensions, first we recall from [29]
that the positive span of a set of vectors {v1, . . . , vr} is the cone

{y ∈ Rn : y =

r∑
i=1

γivi, γi ≥ 0, i = 1, . . . , r}.
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A positive spanning set in Rn is a set of vectors whose positive span is Rn. The set {v1, . . . , vr}
is said to be positively dependent if one of its vectors is a positive combination of the others;
otherwise, the set is positively independent. A positive basis in Rn is a positively independent
set whose positive span is Rn. Two examples of positive basis for Rn are:

- the coordinate directions and their negative counterparts, that is

{s1, . . . , s2n} = {e1, . . . , en,−e1, . . . ,−en};

- the coordinate directions and the negative of their sum, that is

{s1, . . . , sn+1} = {e1, . . . , en,−
n∑

i=1

ei}.

Now, let {xk} be a sequence of points produced by an algorithm of the form

xk+1 = xk + αkdk,

where dk 6= 0 for all k and αk ≥ 0. We suppose that the sequence {dk} satisfies the following
assumption, which can be related to the definition of ‘class (a) of search directions’ introduced
in [21].

Assumption 6 Let {dk} be the sequence of search directions used in the algorithm. There
exists a value N > 0 and n integers j(k, i), for i = 1, . . . , r, such that

k ≤ j(k, 1) ≤ j(k, 2) ≤ · · · ≤ j(k, r) ≤ k +N

and the r sequences {pik}, defined by

pik =
dj(k,i)

‖dj(k,i)‖
, i = 1, . . . r,

have the property that every limit point (p̄1, p̄2, . . . p̄r) of {(p1k, p2k, . . . prk)} positively span Rn.

2

In this case, we suppose that the line search is carried out only for α ≥ 0 along each direction,
and hence we refer to the line search algorithm NDFLS2. Then we can state a convergence
result similar to that given in Proposition 5.

Proposition 7 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by an algorithm of the form

xk+1 = xk + αkdk,

where dk 6= 0 for all k and αk ∈ R. Suppose that:

(a) the sequence of search directions {dk} satisfies Assumption 6;

(b) for every k we have
f(xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (11)

where σ : R+ → R+ is a forcing function and Wk is a reference value that satisfies (3) for
a given integer M ≥ 0.

(c) in correspondence to all the sequences of search directions dj(k,i), i = 1, . . . , r considered
in Assumption 6, the stepsize αj(k,i) ≥ 0 is computed using Algorithm NDFLS2, where
ρk → 0 for every infinite subsequence such that αj(k,i) = 0.

Then the algorithm produces an infinite sequence that admits limit points and every limit point
x̄ of {xk} is in L0 and satisfies ∇f(x̄) = 0.
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Proof. Reasoning as in the proof of Proposition 5, we can establish that Lemma 4 holds. Let
x̄ be a limit point of {xk} and let {xk}K be a subsequence converging to x̄ ∈ L0. Consider the
search directions

dj(k,i), j(k, i) ∈ {k, k + 1, . . . , k +N} i = 1, . . . r,

introduced in Assumption 6 and let pik be the elements of the r sequences defined there. As all
the sequences {pik} are bounded there exists a subsequence {xk}K1 , with K1 ⊆ K such that

lim
k∈K1,k→∞

pik = p̄i, i = 1, . . . , r. (12)

By Assumption 6, we have that p̄i, i = 1, . . . , r represent a positive basis in Rn. Using Lemma
4(iii), we have that points xj(k,i) converge to x̄ for k ∈ K1, k → ∞ and for all i = 1, . . . , r. As
αk is computed through Algorithm NDFLS2 it follows from (ii) of Proposition 2 that:

lim
k∈K1, k→∞

∇f(xj(k,i))
T dj(k,i)

‖dj(k,i)‖
= ∇f(x̄)T p̄i ≥ 0, i = 1, . . . , r. (13)

Since vectors p̄i represent a positive basis in Rn, we can write

−∇f(x̄) =
r∑

i=1

γip̄
i, γi ≥ 0,

so that, by (13), we have

−‖∇f(x̄)‖2 =
r∑

i=1

γi∇f(x̄)T p̄i ≥ 0.

Thus, we obtain
∇f(x̄) = 0.

2

5 Hooke-Jeeves method with nonmonotone line searches

With reference to the scheme of Section 2 we consider here the case where the set D is not
changed during the iterations and consists in the set defined by

D = {e1, . . . , en},

where ej ∈ Rn is the j−th column of the identity n× n.
We can describe, by means of a single scheme, the nonmonotone versions of the coordinate

method and of the Hooke-Jeeves method; in particular in the following scheme the coordinate
method can be obtained by terminating each major iteration at the end of Step 1.
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NonMonotone Hooke-Jeeves (NMHJ) method

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, D = {e1, e2, . . . , en}.

Set k = 0.

For ` = 0, 1, . . .

Set y0 = xk and f(y0) = f(xk).

Step 1. Coordinate search

For i = 1, . . . , n

set dk = ei;

choose an initial stepsize ∆k > 0 and calculate step αk along dk

using Algorithm NDFLS (dk, ∆k, ρk);

set xk+1 = xk + αkdk;

if αk = 0, set ρk+1 = θρk;

set k = k + 1.

End For

Step 2. Pattern search

Set dk = xk − y0.

Choose an initial stepsize ∆k > 0 and calculate step αk along dk

using Algorithm NDFLS (dk, ∆k, ρk);

set xk+1 = xk + αkdk;

if αk = 0 set ρk+1 = θρk;

set k = k + 1.

End For

The convergence of the algorithm is established in the next proposition.

Proposition 8 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by Algorithm NMHJ. Then
the algorithm produces an infinite sequence of points in L0, such that there exist limit points
and every limit point x̄ of {xk} satisfies ∇f(x̄) = 0.

Proof. In order to prove the assertion, we need to show that the sequence generated by the
algorithm satisfies conditions (a), (b) and (c) of Proposition 5. Let xk be one of the points
generated at the major step `. Then, it is easily seen that, after at most n searches, at Step 1 of
the next major step ` + 1, we assume as search directions the coordinate directions and hence
the sequence {dk} satisfies Assumption 3 with pik = ei, i = 1, . . . , n for all k. Thus condition (a)
of Proposition 5 holds. As for every k the condition of sufficient reduction used in Algorithm
NDFLS must be met, in correspondence to the forcing function σ(t) = γt2, also assumption (b)
of Proposition 5 is satisfied. Finally, the instructions of the algorithm guarantee that condition
(c) of Proposition 5 holds. 2
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6 Rosenbrock method with nonmonotone line searches

We introduce, in this section, a linesearch-based version of the Rosenbrock method. First we
illustrate the procedure used for constructing periodically a basic set of search directions. Then
we describe two different algorithms:

1) a nonmonotone linesearch-based Rosenbrock method employing bidirectional searches along
n directions;

2) a nonmonotone linesearch-based Rosenbrock method employing non negative searches
along n+ 1 directions.

In the Rosenbrock approach, a set of orthogonal directions is rotated at each major step, so
that at least one of the new directions is more closely conformed to the local behavior of the
function. We consider:

- an orthonormal set of vectors D = {di, i = 1, . . . , n} given initially or determined during
a cycle of previous iterations;

- a set of values σi ∈ R, i = 1, . . . , n representing the movements performed along the
vectors di in a cycle of previous iterations.

The new set of directions
D̄ = {d̄i, i = 1, . . . , n}

is obtained by using the following scheme:

Search Directions Generation(SDG)

For i = 1, . . . , n

Step 1. Set

ai =


di if σi = 0
n∑

j=i

σjdj if σi 6= 0

Step 2. Set

bi =


ai if i = 1

ai −
i−1∑
j=1

((ai)Td̄j)d̄j if i ≥ 2

with d̄i =
bi

‖bi‖

End For

At Step 1, a vector ai is calculated, which represents the sum of all the movements made in
the directions dj for j = i, . . . , n. At Step 2, the new orthogonal vector d̄i is obtained by a
Gram-Schmidt orthogonalization procedure.

In practice, d̄1 represents the direction of farthest advance, d̄2 is the best direction which
can be found normal to d̄1, and so on. In other words, d̄1 connects the point x from which we
start our search and the point

x̄ = x+

n∑
j=1

σjdj

obtained at the end of the search.
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It has been proved (see [1]) that the new directions generated by the SDG Algorithm are
linearly independent and orthogonal. More precisely, the following result can be established.

Proposition 9 Let us assume that di, i = 1, . . . , n are linearly independent and mutually or-
thogonal. Then the directions d̄i, i = 1, . . . , n generated by the SDG Algorithm are also linearly
independent and mutually orthogonal for any set σi, i = 1, . . . , n. Furthermore, if σi = 0, then
d̄i = di. 2

Let us denote by σ = (σ1, σ2, . . . , σn)T the n−vector of the movements along the directions di,
for i = 1, . . . , n, starting from x. Then, the computation performed with the preceding scheme
will be indicated by

D̄ = SDG(D,σ).

At each step, the method of Rosenbrock originally proposed in [28] takes discrete steps along
the search directions. In [1], a version of the method that utilizes exact line searches is presented
and convergence results are reported, under rather restrictive assumptions on the objective func-
tions.
Now we describe the two new versions of the Rosenbrock method, based on the use of nonmono-
tone, inexact derivative-free line search techniques, and we prove convergence towards stationary
points under usual assumptions. We first consider the version which uses n bidirectional searches
carried out by means of Algorithm NDFLS. We report here the algorithm scheme.

NonMonotone LineSearch-based Rosenbrock (NMLSR) Algorithm 1

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, D = {e1, e2, . . . , en}, k = 0.

For ` = 0, 1, . . .

Step 1. Coordinate search

For i = 1, . . . , n

set dk = di;

choose an initial stepsize ∆k > 0 and calculate step αk along dk

using Algorithm NDFLS (dk, ∆k, ρk).

set xk+1 = xk + αkdk, σi = αk and set ρk+1 = θρk if αk = 0;

set k = k + 1.

End For

Step 2. Coordinate rotation

Compute the new set of search directions through Rosenbrock rotation, that is

D̄ = SDG(D,σ);

set D = D̄.

End For

In the following proposition, we report the main result about the convergence of the algorithm.

Proposition 10 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by Algorithm NMLSR. Then
the algorithm produces an infinite sequence of points in L0, such that there exist limit points
and every limit point x̄ of {xk} satisfies ∇f(x̄) = 0.
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Proof. In order to prove the assertion, we need to show that the sequence generated by the
algorithm satisfies assumptions (a), (b) and (c) of Proposition 5. By Proposition 9, we have that,
every time Step 2 is performed in the algorithm, a new orthonormal set of n search directions
is generated.
Therefore, for each k it is possible to find an index k̄ ≥ k, with k̄ ≤ k + n− 1, where Step 2 is
performed, and a finite positive value N ≤ 2n− 1 such that the n indices

k ≤ j(k, 1) ≤ j(k, 2) ≤ · · · ≤ j(k, n) ≤ k +N

are related to the set of mutually orthogonal directions dj(k,i), i = 1, . . . , n previously generated
at Step 2. As the sequences {pik}, i = 1, . . . , n, are defined by

pik =
dj(k,i)

‖dj(k,i)‖
, j(k, i) ∈ {k, k + 1, . . . , k +N}, i = 1, . . . , n,

the vectors pik, i = 1, . . . , n are mutually orthogonal too. Then we have, by continuity, that
every limit point (p̄1, p̄2, . . . p̄n) of {(p1k, p2k, . . . pnk )} is constituted by n orthonormal vectors
p̄i ∈ Rn, i = 1, . . . , n. Thus, assumption (a) of Proposition 5 is satisfied. Since at every iteration
the acceptability condition of sufficient reduction used in Algorithm NDFLS must hold, also
assumption (b) of Proposition 5 is satisfied in correspondence to the forcing function σ(t) = γt2.
Finally, the instructions at Step 1 of the algorithm guarantee that the assumptions on ρk are
satisfied and also (c) of Proposition 5 holds. 2

As we have already said at the beginning of the section, we can define, in alternative to Algorithm
1, a version of the Rosenbrock algorithm with (nonmonotone) derivative-free line searches and
n+1 search directions. In Section 4, we have seen that a positive basis can be obtained by the
coordinate directions and the negative of their sums. In general, if we have a set of linearly
independent mutually orthogonal vectors Da = {d1, . . . , dn}, we can always build a positive
basis by adding to the set Da the negative of their sums, that is

D =

d1, . . . , dn,−
n∑

j=1

dj

 .

Then we can define a modified version of the Rosenbrock algorithm that uses n+1 line searches
for non negative values of the stepsize and hence makes use of Algorithm NDFLS2.
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NonMonotone LineSearch-based Rosenbrock (NMLSR) Algorithm 2

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, ` = 0, k = 0,
Da = {d1, d2, . . . , dn}, D = Da ∪ {dn+1}, where di = ei, i = 1, . . . , n, dn+1 =

−
∑n

i=1 d
i.

For ` = 0, 1, . . .

Step 1. Set y0 = xk;

Step 2. Search on a positive basis

For i = 1, . . . , n+ 1

set dk = di;

choose an initial stepsize ∆k > 0 and calculate step αk ≥ 0 along dk using

Algorithm NDFLS2 (dk, ∆k, ρk);

set xk+1 = xk + αkdk, and set ρk+1 = θρk if αk = 0;

set k = k + 1.

End For

Step 3. Set σi = (xk − y0)T di, i = 1, . . . , n.

Step 4. Coordinate rotation

Compute a new set of search directions by first employing Rosenbrock rotation of
Da,

that is D̄a = SDG(Da, σ), and then setting d̄n+1 = −
∑n

i=1 d̄
i; D̄ = D̄a∪{d̄n+1};

set D = D̄.

End For

In the following proposition, we establish the convergence of the algorithm.

Proposition 11 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by Algorithm NMLSR2 and
assume that dk 6= 0 for all k. Then the algorithm produces an infinite sequence such that every
limit point x̄ of {xk} satisfies ∇f(x̄) = 0.

Proof. We show that the sequence generated by our algorithm satisfies assumptions (a), (b) and
(c) of Proposition 7. By Proposition 9, every time Step 4 is performed in the algorithm, a new
positive basis in Rn is obtained by adding the negative sum to the set of linearly independent and
mutually orthogonal directions generated by means of Algorithm SDG. As Step 4 is performed
after all n + 1 directions have been explored, for each k it is possible to find a step k̄ ≥ k and
k̄ ≤ k + n, where Step 4 is performed, and a finite positive value N ≤ 2(n + 1) such that the
n+ 1 indices

k ≤ j(k, 1) ≤ j(k, 2) ≤ · · · ≤ j(k, n+ 1) ≤ k +N

are related to the positive basis dj(k,i), i = 1, . . . , n + 1 previously generated at Step 4. Then,
as the sequences {pik}, i = 1, . . . , n+ 1, are defined by

pik =
dj(k,i)

‖dj(k,i)‖
, j(k, i) ∈ {k, k + 1, . . . , k +N}, i = 1, . . . , n+ 1,
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the vectors pik, i = 1, . . . , n + 1 have the property that every limit point (p̄1, p̄2, . . . p̄n+1) of
{(p1k, p2k, . . . pn+1)} is constituted by a positive basis of Rn. Thus, assumption (a) is satisfied.
By the instructions at Step 2 of the algorithm, the stepsize αk along dk is calculated using
Algorithm NDFLS2 for every k and ρk+1 = θρk if αk = 0. Then assumptions (b) and (c) are
satisfied. 2

7 Linesearch-based algorithms employing gradient approx-
imations and Rosenbrock rotations

In this section, we describe a new class of derivative-free algorithms, structured as indicated
in the general scheme of Section 2, which makes use of simplex gradients and of Rosenbrock
rotations for defining the search directions. Along these directions the stepsize are computed
through nonmonotone, inexact, derivative-free line searches.

In the scheme of Section 2, after a cycle of line searches at Step (a) is carried out along a set
of given directions di, for i = 1, . . . , n, we introduce at Step (b) the computation of a simplex
gradient g (in an extended sense). During the searches at Step (a) we further store (al least)
n points yi ∈ Rn and the corresponding function values f(yi), for i = 0, 1, . . . , n − 1 and we
compute the simplex gradient g using these data. Then, given the set of points {y0, . . . , yn−1},
we define the gradient approximation in xk as the solution of the least squares problem

min
g

‖ST g − δ(f)‖2,

where:

S = [y0 − xk, . . . , y
n−1 − xk] and δ(f) = [f(y0)− f(xk), . . . , f(y

n−1)− f(xk)]
T.

A schematic illustration of a major step of our algorithm is given in the figure reported below,
where we have assumed, for simplicity, that all stepsizes are positive.

Figure 1: illustration of a major step of Alg. NMDFU

We now formally state the algorithm where we combine simplex gradients with Rosenbrock
rotations.
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NonMonotone Derivative-Free Unconstrained (NMDFU) Algorithm

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, k = 0 and
D = {d1, d2, . . . , dn}, where di = ei, i = 1, . . . , n.

For ` = 0, 1, . . .

Set y0 = xk and f(y0) = f(xk).

Step 1. Coordinate search

For i = 1, . . . , n

set dk = di, choose an initial stepsize ∆k > 0 and calculate step αk along dk
using Algorithm NDFLS (dk, ∆k, ρk);

if αk = 0 set yi = xk +∆kd
i else set yi = xk + αkd

i; store yi, f(yi);

set xk+1 = xk + αkdk, σi = αk and set ρk+1 = θρk if αk = 0;

set k = k + 1.

End For

Step 2. Gradient approximation calculation

Set S = [y0 − xk, . . . , y
n−1 − xk], δ(f) = [f(y0)− f(xk), . . . , f(y

n−1)− f(xk)]
T;

calculate the gradient approximation g by solving the least squares problem

min
g

‖ST g − δ(f)‖2,
and set dk = −g.

Step 3. Line search along the gradient approximation

Choose an initial stepsize ∆k > 0, calculate step αk ≥ 0 along dk = −g using
Algorithm NDFLS2 (dk, ∆k, ρk);

set xk+1 = xk + αkdk and set ρk+1 = θρk if αk = 0;

if αk 6= 0 set σi = (xk+1 − y0)T di, with i = 1, . . . , n;

set k = k + 1.

Step 4. Coordinate rotation

Compute the new set of search directions through Rosenbrock rotation, that is

D̄ = SDG(D,σ).

Step 5. Set D = D̄.

End For

The convergence of the algorithm is established in the next proposition.

Proposition 12 Let f : Rn → R be a continuously differentiable function and assume that the
level set L0 is compact. Let {xk} be the sequence of points produced by Algorithm NMDFU.
Then the algorithm produces an infinite sequence of points in L0, such that there exist limit
points and every limit point x̄ of {xk} satisfies ∇f(x̄) = 0.

Proof. In order to prove the assertion, we need to show that the sequence generated by the
algorithm satisfies assumptions (a), (b) and (c) of Proposition 5.
It is easily seen that we can follow essentially the same arguments used in the proof of Proposition
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10. In fact, every time Step 4 is performed in the algorithm, a new orthonormal set of n search
directions is generated and used within N ≤ 2n iterations and assumption (a) of Proposition
5 can be established. Since at every iteration either the acceptability condition of sufficient
reduction used in Algorithm NDFLS or in Algorithm NDFLS2 must hold, also assumption (b)
of Proposition 9 is satisfied in correspondence to the forcing function σ(t) = γt2. Finally, the
instructions at Step 1 guarantee that also condition (c) of Proposition 5 is satisfied. 2

8 Numerical Results

In this section we analyze the effects of using coordinate rotations and gradient approximations
in a derivative-free context. Our numerical experience can be divided into three parts:

1. In the first part, we compare algorithms NMDFU and NMLSR (Alg. 1) with a nonmono-
tone version of the Coordinate Search algorithm (NMCS). The aim of this experiment is
analyzing the effects of using coordinate rotations and gradient approximations;

2. In the second part, in order to analyze the impact of nonmonotone linesearches in the pro-
posed framework, we compare two different version of our algorithm where we respectively
use a nonmonotone and a monotone linesearch;

3. In the third part, we compare the NMDFU Algorithm with NEWUOA [26] and NOMAD
[20] two well-known and widely used codes for derivative-free unconstrained optimization.
The aim of this experiment is that of evaluating the efficiency of our approach when
compared with other derivative-free solvers.

Consequently, we adopt the same procedure as that used in [23] to evaluate the behavior of the
different solvers. We use the following convergence condition:

f(x0)− f(xk) ≥ (1− τ)(f(x0)− fL) (14)

where 0 ≤ τ ≤ 1 is a suitably chosen tolerance and fL is the smallest function value obtained
by any solver within the same maximum computational budget. We consider a set A of na

algorithms, a set P of |P| problems and a performance measure mp,a (e.g. in our case, number
of function evaluations). We compare the performance on problem p by algorithm a with the
best performance by any algorithm on this problem using the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A}
.

Then, we obtain a first overall assessment of the performance of the algorithm a by defining the
performance profile:

ρa(α) =
1

|P|
size{p ∈ P : rp,a ≤ α},

which represents the probability for algorithm a ∈ A that the performance ratio rp,a is within
a factor α ∈ R of the best possible ratio. The function ρa represents the distribution function
for the performance ratio. Thus ρa(1) gives the fraction of problems for which the algorithm a
was the most effective, ρa(2) gives the fraction of problems for which the algorithm a is within
a factor of 2 of the best algorithm, and so on. The convention rp,a = ∞ is used when algorithm
a fails to satisfy the convergence test (14) for problem p.
We further measure performances of the different solvers by the percentage of problems that
can be solved (for a given tolerance τ) within a certain number of function evaluations. We
define tp,a the number of function evaluations needed for algorithm a to satisfy (14) for a given
tolerance τ , and we obtain the percentage of problems solved with ν function evaluations by
means of the so called data profile:

da(ν) =
1

|P|
size{p ∈ P :

tp,a
np + 1

≤ ν},
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where np is the number of variables in p ∈ P . If the convergence test (14) cannot be satisfied
within the assigned computational budget, we set tp,a = ∞.
The test set P we consider in the experiments consists of 38 problems from the CUTEr collection
[12] and 49 nonsmooth problems from the collection of Lukšan and Vlček [22, 30]. Since the
problems in P have at most 50 variables, in our numerical experience we set the maximum
computational budget to be 5000 and we investigate the behavior of the solvers within this
computational budget. We use both performance and data profile with the test (14) where
τ = 10−l with l ∈ {3, 6}.
In NMDFU, NMLSR Algorithm 1 and NMCS we used the following reference value:

Wk = max
0≤j≤min(k,M)

[f(xk−j)],

with M = 3.

In Figure 2, we report performance and data profiles related to the first experiment. As we can
see, looking at the performance profiles, NMDFU is the fastest solver in at least 55% of the
problems, while NMLSR and NMCS are the fastest solvers respectively in less than 40% and
20% of the problems at most.
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Figure 2: Performance and Data Profiles of NMDFU, NMLSR (Alg.1) and NMCS

Furthermore, NMDFU guarantees better results than NMLSR and NMCS in terms of robustness
and the performance difference between NMLSR and the other two solvers increases as the
tolerance decreases. The data profiles show that NMDFU is slightly better than NMLSR as
it solves a higher percentage of problems when the number of simplex gradients is sufficiently
large. We can also notice that both the algorithms are better than NMCS as they solve a larger
percentage of problems for all sizes of computational budget and levels of accuracy τ .
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What we can conclude from this first experiment is that, in a derivative-free context, using
coordinate rotations and gradient approximations can be beneficial.

As the goal of the second experiment was analyzing the impact of nonmonotone linesearches in
the proposed framework, in Figure 3 we show the performances of two different version of our
algorithm that respectively use a nonmonotone and a monotone linesearch.
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Figure 3: Monotone vs Nonmonotone - Performance and Data Profiles.

By looking at the performance profiles, we can easily see that nonmonotone linesearches guar-
antee better results both in terms of efficiency and robustness for any value of the tolerance τ .
The good behavior of the nonmonotone version of the code is confirmed by the data profiles as
they basically say that the nonmonotone version solves a larger percentage of problems for all
sizes of computational budget and levels of accuracy τ . Furthermore, the performance difference
between the two tends to be significantly large when the computational budget is large enough.
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The results of the third experiment are reported in Figures 4-7. The performance profiles (Fig. 4)
show that NMDFU is competitive with NEWUOA and that they are both better than NOMAD.
Furthermore, NMDFU guarantees quite better results than both NEWUOA and NOMAD in
terms of robustness.
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Figure 4: Performance profiles of NMDFU, NEWUOA and NOMAD.

More specifically, both for τ = 10−3 and for τ = 10−6 NEWUOA and NMDFU show a similar
behavior, in terms of efficiency, as they are the fastest in about 40% of the problems, while
NOMAD is the fastest in about 20% of the problems. When the performance ratio is larger
than 1.5 for τ = 10−3 or larger than 2 for τ = 10−6, NMDFU guarantees better results than both
NEWUOA and NOMAD. We further have that, for any value of τ , the performance differences
between NMDFU and the other two codes becomes significantly large as the ratio increases.
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From the data profiles (Fig. 5), we can see that, when the computational budget is small, (say
less than 70 simplex gradient evaluations for τ = 10−3 or 200 for τ = 10−6) NEWUOA guar-
antees better results than NMDFU, and that these two algorithms are both much better than
NOMAD. As the computational budget increases NMDFU solves a larger number of problems
than the other solvers and the difference is significantly large as the number of simplex gradients
increases.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Number of simplex gradients ν

Data Profile τ=10−3

 

 

NEWUOA
NOMAD
NMDFU

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of simplex gradients ν

Data Profile τ=10−6

Figure 5: Data Profiles of NMDFU, NEWUOA and NOMAD.
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We can note, in particular, that, from a certain point onward ( that is when the number
of simplex gradients is larger than 220 for τ = 10−3 or than 200 for τ = 10−6) NMDFU
outperforms both NOMAD and NEWUOA. Once the number of simplex gradient evaluations
becomes larger than 350, the performance difference between NMDFU and NEWUOA is about
20% and the difference between NMDFU and NOMAD is about 15%− 20%.

In order to better understand the behavior of the codes in difficult cases, we also separately
report, in Figures 6 and 7, performance and data profiles related to the 49 nonsmooth problems
taken from [22], extracted from our test set.
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Figure 6: Performance Profiles of NMDFU, NEWUOA and NOMAD (Nonsmooth Problems).
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As we can easily see by looking at the performance profiles, the NMDFU algorithm guarantees
better results both in terms of efficiency and robustness for any value of the tolerance τ . The
good behavior of our code is confirmed by the data profiles, as they basically say that NMDFU
solves a larger percentage of problems for a computational budget respectively larger than 30
when τ = 10−3 and larger than 100 when τ = 10−6. Furthermore, the performance differences
between NMDFU and the other two codes becomes significantly large as the ratio increases.
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Figure 7: Data Profiles of NMDFU, NEWUOA and NOMAD (Nonsmooth Problems).

Finally, we analyze the performances of the algorithms when the number of variables of the
problem to be solved is (relatively) large. We consider 4 problems from the CUTEr collection
(namely, arwhead, penalty1, penalty2 and extended woods) with a number of variables n ∈
{50, 75, 100}, thus obtaining a set of 12 problems. In Figure 8, we show performance and
data profiles related to the comparison of NMDFU and NEWUOA on the 12 large dimensional
problems. In this case, we set the computational budget to 10000.

By considering the performance profiles, we can see that NMDFU guarantees better results
both in terms of efficiency and robustness for any value of the tolerance τ . The good results are
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confirmed once again by the data profiles, as we have that our code solves a larger percentage
of problems for almost all sizes of computational budget at any levels of accuracy τ .
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Figure 8: Comparison of NMDFU and NEWUOA on Large Dimensional Problems.

9 Concluding remarks and future work

The results presented in this paper show that linesearch-based nonmonotone methods appear
quite competitive and often superior to some of the best derivative-free techniques presently
available. More specifically, on the basis of our preliminary computational experience, it would
seem that linesearch-based methods can be much more efficient than mesh adaptive direct search
methods. In comparison with good model-based methods (such as NEWUOA) the advantages
of our algorithm can be significant in difficult problems and in (relatively) large dimensional
problems. Additional work may be needed for improving our code, for evaluating the effect
of some parameters and for experimenting other possible choices in the general framework
considered here. Future research will include:

- the study of algorithms for large dimensional systems employing decomposition techniques
and parellel searches;

- the definition of enhanced nonmonotone acceptance rules, such as, for instance, the combina-
tion of nonmonotone linesearches with nonmonotone watchdog techniques (see e.g. [17] in
the case of nonlinear equations);

- extensions to constrained problems.
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