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Abstract. Inline caches effectively eliminate the overhead implied by
dynamic typing. Yet, inline caching is mostly used in code generated by
just-in-time compilers. We present efficient implementation techniques
for using inline caches without dynamic translation, thus enabling future
interpreter implementers to use this important optimization technique—
we report speedups of up to a factor of 1.71—without the additional
implementation and maintenance costs incurred by using a just-in-time
compiler.

1 Motivation

Many of the currently popular programming language interpreters execute with-
out dynamic code generation. The reason for this lies in their origins: many of
these languages were implemented by single developers, who maintained their—
often extensive—standard libraries, too. Since implementing just-in-time com-
pilers is prohibitively expensive in terms of additional complexity and increasing
required maintenance efforts, it is usually not considered to be a viable imple-
mentation option. Perl, Python, and Ruby are among the most popular of these
programming languages that live without a dynamic compilation subsystem,
but, nevertheless, seem to be major drivers behind many of the advances in the
Internet’s evolution.

In 2001, Ertl and Gregg [8] found that there are certain optimization tech-
niques for interpreters, e.g., threaded code1, [1,7] that cause them to perform
at least an order of magnitude better than others. While interpreters using the
threaded code optimization, such as the OCaml and Forth interpreters performed
within a slowdown factor of up to 10 when compared with an optimizing native
code compiler, other interpreters, such as the Perl and Xlisp interpreters, which
were not using similar optimization techniques performed considerably worse:
a slowdown of an additional factor of 100 when compared with efficient inter-
preters [8]. These striking results provided the motivation for us to investigate
1 Please note that in the context of this paper, threaded code does not carry its usual

meaning related to multi-threaded programming; it refers exclusively to a technique
that reduces the overheads in interpreter instruction dispatch: instead of using the
well-known switch-based dispatch technique, a threaded code interpreter uses an
indirect jump to the next instruction.
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the case for inefficient interpreters more closely. Our analysis of the Python 3.0
interpreter [2] indicates that due to its nature, applying these promising op-
timization techniques results in a comparatively lower speedup than would be
expected based on the reported figures. Vitale and Abdelrahman report cases
where optimizing the interpreter’s dispatch overhead in the Tcl interpreter ac-
tually results in a slowdown [19].

This is due to the differing abstraction levels of the respective interpreters:
while the Java virtual machine [17] reuses much of the native machine for oper-
ation implementation—i.e., it is a low abstraction-level virtual machine—, the
interpreters of Perl, Python, and Ruby have a much more complex operation
implementation, which requires often significantly more native machine instruc-
tions; a characteristic of high abstraction-level interpreters. In consequence, opti-
mization techniques that focus on minimizing the overhead in dispatching virtual
machine instructions have a varying optimization potential with regard to the
abstraction level of the underlying interpreter. In low abstraction-level virtual
machines the overhead in instruction dispatch is big, therefore using threaded
code is particularly effective, resulting in reported speedups of up to a factor
of 2.02 [8]. On the other hand, however, the same techniques achieve a much
lower speedup in high abstraction-level interpreters: the people implementing
the Python interpreter report varying average speedups of about 20% in bench-
marks, and significantly less (about 7%-8%) when running the Django2 template
benchmarks—a real world application.

Upon further examination of the operation implementation in the Python 3.0
interpreter, we find that there is substantial overhead caused by its dynamic
typing—a finding that was true for Smalltalk systems more than 25 years ago.
In 1984, however, Deutsch and Schiffman [6] published their seminal work on
the “Efficient Implementation of the Smalltalk-80 System.” Its major contribu-
tions were dynamic translation and inline caching. Subsequent research efforts
on dynamic translation resulted in nowadays high performance just-in-time com-
pilers, such as the Java Virtual Machine [17]. Via polymorphic inline caches and
type feedback [13], inline caching became an important optimization technique
for eliminating the overhead in dynamic typing. Unfortunately, inline caches are
most often used together with dynamic translation. This paper presents our re-
sults on using efficient inline caching without dynamic translation in the Python
3.1 interpreter.

Our contributions are:

– We present a simple schema for efficiently using inline caching without dy-
namic translation. We describe a different instruction encoding that is re-
quired by our schema (Section 2), as well as our implementation of profiling
to keep memory requirements imposed by our new instruction encoding at
a minimum (Section 2.1).

– We introduce a more efficient inline caching technique using instruction set
extension (Section 3) with quickening (Section 3.1).

2 Django is a popular Python Web application development framework.



Inline Caching Meets Quickening 431

– We provide detailed performance figures on how our schemes compare with
respect to the standard Python 3.1 distribution on modern processors
(Section 4). Our advanced technique achieves a speedup of up to a factor of
1.71. Using a combination of inline caching and threaded code results in a
speedup of up to a factor of 1.92.

2 Basic Inline Caching without Dynamic Translation

In dynamically typed programming language implementations, the selection of
the actual operation implementation for any given instruction depends on the
actual types of its operands. We call the function that has the operand-types as
its domain, and the addresses of the corresponding operation implementations
as its range, the system default look-up routine. In 1984, Deutsch and Schiffman
describe their original version of inline caching [6]. During their optimization
efforts on the Smalltalk-80 system, they observe a “dynamic locality of type
usage”: for any specific occurrence of an instruction within a given function,
the types of the actual operands for that instruction are very likely to remain
constant across multiple interpretations of that specific instruction occurrence.
Consequently, the result of calling the system default look-up routine remains
constant with exactly the same likelihood. Therefore, using this observation,
Deutsch and Schiffman use their dynamic translation scheme to rewrite native
call instructions from calling the system default look-up routine to directly call-
ing the result of invoking the system default look-up routine. This inline caching
effectively eliminates the overhead in dynamic typing. As with every caching
technique, however, we need a strategy for detecting when the cache is invalid
and what we should do when this occurs. For detecting an invalid inline cache
entry, the interpreter ensures that the optimized call depends upon the current
class operand—its receiver—having the same address as it did when the cache
element was initialized. If that condition does not hold, the interpreter calls the
system default look-up routine instead and subsequently places its result in the
inline cache element.

With the notable exception of rewriting native instructions, the previous para-
graph does not indicate any prerequisites towards a dynamic translation schema.
In fact, several method look-up caches—most often hash-tables—have been used
in purely interpretative systems in order to cache a target address for a set of
given instruction operands. If the look-up cache contains a valid target address,
the interpreter uses an indirect branch instruction to call it. The premise is that
using an indirect branch is less expensive than calling the system default look-up
routine. In case of a cache-miss, the interpreter calls the system default look-up
routine and places its returned address in the cache. Thus, using an indirect
call instruction (i.e., function pointers in C) eliminates the necessity of having a
dynamic translator at all.

Still, using hash-table based techniques is relatively expensive: you need to
deal with hashing in order to efficiently retrieve the keys, with collisions when
placing an element in the hash table, etc. However, we show that we can



432 S. Brunthaler

(a) Ad-hoc polymorphism in Python 3.x. (b) Basic inline caching long add.

Fig. 1. Illustration of our basic inline caching technique compared to the standard
Python 3.1 ad-hoc polymorphism

completely eliminate the need for look-up caches, too. A just-in-time compiler
generates dedicated native machine instructions for a given sequence of byte-
codes, for example a function body. Subsequently, the just-in-time compiler op-
timizes these native machine instructions, incorporating information obtained
during previous invocations of that sequence. In a sense, the just-in-time com-
piler is generating more efficient derivatives of the interpreter instructions it
actually used to “derive” the native machine code from. For example, the inline
caching optimization allows the just-in-time compiler to leverage the “dynamic
locality of type usage” by short-fusing the corresponding call instruction. Fortu-
nately, we can project this information back to the purely interpretative level:
by storing an additional machine word for every instruction within a sequence of
bytecodes, we can lift the observed locality to the interpreter level. Consequently,
we obtain a dedicated inline cache pointer for every interpreter instruction, i.e.,
instead of having immutable interpreter operation implementations, this ab-
straction allows us to think of specific instruction instances. At the expense of
additional memory, this gives us a more efficient inline caching technique that is
more in tune with the original technique of Deutsch and Schiffman [6], too.

Figure 1(a) shows how the Python 3.1 interpreter resolves the ad-hoc poly-
morphism in the BINARY ADD instruction. Here, an inline cache pointer would
store the addresses of the leaf functions, i.e., either one of long add, float add,
complex add, and unicode concatenate, and therefore an indirect jump cir-
cumvents the system default look-up path (cf. Figure 1(b)). The functions at the
nodes which dominate the leaves need to update the inline cache element. In our
example (cf. Figure 1), the binary op function needs to update the inline cache
pointer to long add. If there is no such dominating function (cf. Figure 1(a),
right branch to unicode concatenate), we have to introduce an auxiliary func-
tion that mirrors the operation implementation and acts as a dedicated system
default look-up routine for that instruction.
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Even though Deutsch and Schiffman [6] report that the “inline cache is ef-
fective about 95% of the time,” we need to account for the remaining 5% that
invalidate the cache. We change the implementation of the leaf functions to check
whether their operands have their expected types. In case we have a cache miss,
say we called long add with float operands for example, a call to PyNumber Add
will correct that mistake and properly update the inline cache with the new in-
formation along the way; continuing our example, the address of the float add
function would be placed in the inline cache.

PyObject *long_add(PyObject *v, PyObject *w) {
if (!(PyLong_Check(v) && PyLong_Check(w)))

return PyNumber_Add(v, w);

/* remaining implementation unchanged */
...

}

Finally, we present our implementation of using inline cache pointers in the
context of the Python 3.1 interpreter (cf. Figure 2). It is worth noting, however,
that we actually do not require any specific Python internals. Our technique can
in fact be applied in general to many other interpreters as well.

TARGET(BINARY_SUBTRACT)

w = POP();

v = TOP();

x = PyNumber_Subtract(v, w); <->

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

if (x != NULL) DISPATCH();

break;

TARGET(BINARY_SUBTRACT)

w = POP();

v = TOP();

x = (*ic_ptr)(v, w);

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

if (x != NULL) DISPATCH();

break;

Fig. 2. Implementation of basic inline caching technique

Figure 2 shows how we replace the call to the system default look-up routine
(in this case PyNumber Subtract) by an indirect call instruction using the ic ptr
pointer variable. Aside from this change, we use this example to introduce some
Python internals.

First, we shed some light on the meaning of TARGET: it is a pre-processor macro
definition, which the Python implementation uses to allow for conditional com-
pilation of whether the interpreter should use a switch-based dispatch technique
or the more efficient threaded-code based dispatch technique. When configured
with the switch based technique, this will expand to a C case statement, while
configuration for threaded code leads to an expansion with an additional label
(using a TARGET prefix; for example, TARGET BINARY SUBTRACT) and additional
instruction decoding.
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Similarly, DISPATCH is a pre-processor macro definition, too. Depending on
the selected dispatch method, it will either expand to a continue statement or
a table based look-up of the address of the next bytecode implementation.

POP, and TOP are macro definitions for accessing the operand stack, and finally,
Py DECREF is a macro for decrementing the reference count of the argument.

The Python interpreter has a conditional instruction format: if an instruction
has an operand, the two consecutive bytes contain its value. Otherwise, the next
byte contains the next instruction. Hence, two instructions in the array of byte-
codes are not necessarily adjacent. This irregular instruction form complicates
not only instruction decoding (cf. Figure 3), but updating of the inline cache
pointers, too.

opcode = *ip++;

oparg = 0;

if (opcode >= HAVE_ARGUMENT)

oparg = (ip+= 2, (ip[-1]<<8) + ip[-2])

Fig. 3. Complex decoding of irregular instruction format

Our implementation removes this obstacle by encoding the instruction opcode
and its argument into one machine word, and using the adjacent machine word
for the inline cache pointer. Thus, all instructions have even offsets, while the
corresponding inline cache pointers have odd offsets (cf. Figure 4).

Fig. 4. Changed instruction format

In addition to being a more efficiently decode-able instruction format, this
enables us to easily update the inline cache pointer for any instruction without
having any expensive global references to that instruction. One minor change is
still necessary, however: since we have eliminated the argument bytes from our
representation, jumps within the bytecode contain invalid offsets—therefore we
relocate these offsets to their new destinations. Our previous work provides more
details concerning the relocation process [3].

A downside of this basic technique is that it requires significantly more mem-
ory space: instead of just one byte for the instruction opcode, this technique re-
quires two machine words per instruction. One way to circumvent the additional
memory requirements would be to add an inline cache word only to instructions
that benefit from inline caching. While this is certainly possible, this is a sub
optimal solution: as we have outlined above, this would invariably lead to an ir-
regular instruction encoding with its presented downsides. Moreover, as we will
see in later sections, many instructions will actually benefit from inline caching,
which supports our argument against this approach.
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Another way to compensate for this additional memory requirements is to
use profiling. Using the classic optimization approach of trading space for time,
profiling allows us to limit exuberant space requirements by actively monitoring
execution and selectively choosing which parts to optimize for maximum payoff.
The following section outlines our simple, low-overhead profiling implementation.

2.1 Implementation of Profiling

We implement the presented basic inline caching technique in a separate version
of the interpreter dispatch routine and use profiling to decide which version
handles the current activation/call. Choosing which routine should be invoked
per default among those two routines is an important choice. We rename the
original default interpreter routine and use the optimized version as the default
call target. The rationale behind this choice is that the additional call overhead
for calling the system default interpreter routine for all the infrequent cases is
negligible, but for the frequently used pieces of code it is not.

We add a counter field to the code object (PyCodeObject) that we increment
at the beginning of the system default interpreter dispatch routine. Once this
counter reaches a definable threshold of currently 500 activations, we stop di-
verting to the system default interpreter routine and continue execution using
the optimized interpreter routine. However, call frequency is but one indicator of
heavy activity on which we base optimization decision. Our second indicator is
the total amount of already executed instructions within the current interpreter
dispatch loop. Since counting every execution would be expensive, we approx-
imate the previously executed instructions and switch over to the optimized
dispatch routine if our approximation reaches a threshold of 10,000 instructions.
This captures code that is infrequently called but executes a lot of interpreter
instructions while it is active and therefore leaves a considerable footprint on
the overall execution costs.

Our approximation of the number of executed instructions is based on Python’s
own “instruction counter”: approximately every 100 instructions (configurable in
a counter variable called Py CheckInterval) the Python interpreter does vari-
ous things like handling pending (system) calls. We add code that counts these
occurrences. Once we reach a configurable threshold of 15,000 instructions, we
transfer the currently active execution from the system default interpreter rou-
tine to the optimized interpreter routine. For the optimized interpreter routine
to resume interpretation, we need to capture the current execution state of the
system default interpreter routine. The stack pointer is one part of the cur-
rent execution state and can be invariably used by both interpreter routines.
However, the other part of the current execution state involves the instruction
pointer, which needs to be relocated to correspond to the new instruction en-
coding. Other instruction-pointer dependent data, for example the encoding of
blocks of instructions for exceptions and loops need to be relocated, too. After
we finish these relocating operations, we can safely invoke the optimized dispatch
routine, which will create and initialize the improved instruction encoding and
resume execution.
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Summing up, this describes a basic and simple, yet more efficient version of an
inline caching technique for interpreters without dynamic translation. Combined
with a simple profiling technique the increased memory requirements implied by
this technique can be kept at a minimum. On average, the optimized interpreter
requires an additional 90 KB of memory on a 32bit Intel Atom CPU, and an
additional 122 KB of memory on a 64bit PowerPC 970 system.

3 Instruction-Set Extension

Our basic inline caching technique from Section 2 introduces an additional indi-
rect branch for every instruction that uses an inline cache. Though this indirect
branch is certainly almost always cheaper than calling the system default look-
up routine, we can improve on that situation and remove this additional indirect
branch completely.

The new instruction format enables us to accommodate a lot more instruc-
tions than the original one used in Python 3.1: instead of just one byte, the new
instruction format encodes the opcode part in a half-word, i.e., it enables our
interpreter to implement many more instructions in common 32 bit architectures
(216 instead of 28). Although a 64 bit architecture could implement 232 instruc-
tions, for practical reasons and limited instruction cache size it is unrealistic to
even approach the limit of 216 interpreter instructions.

The original inline caching technique requires us to rewrite a call instruction
target. In an interpreter without a dynamic translator this equals rewriting an
interpreter instruction; from the most generic instance to a more specific deriva-
tive. Figure 5 shows how we can eliminate the inline cache pointer all together
by using a specialized instruction that directly calls the long add function.

Rewriting virtual machine instructions is a well known technique. In the Java
virtual machine, this technique is called “quick instructions” [17]. Usually, quick-
ening implies the specialization of an instruction towards an operand value,
whereas our interpretation of that technique uses specialization with respect
to the result of the system default look-up routine—which is a function of the
operand types instead of their values. Another significant difference between
the well known application of quickening in the Java virtual machine and our
technique lies in the quickening frequency: the JVM uses quickening for initial-
ization purposes, i.e., the actual quickening of a bytecode instruction happens
only once for each occurrence. Aside from the initial quickening based on the
results of resolving dynamic types of the actual operands, our technique requires
re-quickening whenever the inline cache is invalid, viz., in the remaining 5% of
cases when the “dynamic locality of type usage” does not hold.

Though quickening can be done regardless of the instruction format of the in-
terpreter, we implement our rewriting technique based on the basic inline caching
scheme of Section 2. Our primary motivation for keeping the new instruction for-
mat is that it enables us to accommodate much more optimized derivatives: if
we would restrict ourselves to the 255 instructions representable using the orig-
inal Python bytecode, we would have to carefully choose which derivatives to
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(a) Basic inline caching long add. (b) New instruction with direct
call.

Fig. 5. Instruction-set extension illustrated for operands having long type

implement based on some pre-defined profiling results. As an added benefit, our
new instruction format allows for much more effective decoding of instructions.

The quickening approach is somewhat the opposite of what we described in
the previous section. Which approach performs better depends on the underlying
native machine hardware. Since the quickening approach increases the code size
of the interpreter dispatch loop, this may cause instruction-cache miss penal-
ties on architectures with small instruction caches. For such architectures with
small instruction caches, the basic technique of Section 2 might actually per-
form better because it causes fewer instruction cache misses. In fact, using the
basic technique enables us to coalesce multiple instruction implementations if
their implementations differ only in the original direct call to the operation
implementation—which is precisely the case for all binary operations in the
Python implementation. On modern desktop and server hardware, which of-
fers larger instruction cache sizes, however, the quickening approach is clearly
preferable, since it completely removes the overheads caused by dynamic typing.
Figuratively speaking, both techniques are opposite ends on the same spectrum,
and the actual choice of implementation technique largely depends on direct
evaluation on the target hardware. Finally, both approaches are not mutually
exclusive: it turns out that a combination of both approaches enables us to imple-
ment optimizations that could not be realized using either one of the techniques
exclusively (cf. Subsection “Optimizations based on combining both approaches”
in the next Section 3.1).

3.1 Inline Caching via Quickening

In Python, each type is a C struct that contains a list of function pointers that
can be used on instances of that type. This list of function pointers contains,
among others, the following three sub-structures (which are C structs them-
selves) that allow a type implementer to provide context-dependent functions for
use on instances of that type:
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1. Scalar/numeric context: this context captures the application of binary arith-
metical and logical operators to operands of a given type. Examples include:
add, subtract, multiply, power, floor, logical and, logical or, logical xor, etc.

2. List context: this context captures the use of an instance of a type in list
context, for example list concatenation, containment, length, repetition (i.e.,
operation of a list and a scalar).

3. Map context: this context captures the use of an instance of a type in map
context. Operations include the assignment of keys to values in a map, the
fetching of values given a key in the map, and the length of the map.

Table 1. Types with context-dependent functions

Context
Type Scalar List Map

PyLong Type x

PyFloat Type x

PyComplex Type x

PyBool Type x

PyUnicode Type x x x

PyByteArray Type x x

PyDict Type x

PyList Type x

PyMap Type x

PyTuple Type x x

PySet Type x

For each of the types in Table 1, we determine whether it implements a spe-
cific scalar-/list-/map-context dependent function. For use in the scalar/numeric
context, each type has a sub-structure named tp as number, which contains a
list of pointers to the actual implementations, for example the nb add member
points to the implementation of the binary addition for that type. If we want to
call, for example, the long add function of Python’s unbounded range integer
type PyLong Type, the “path” would be: PyLong Type.tp as number->nb add.
For the list context, we use the sub-structure tp as sequence; for the map con-
text the corresponding tp as mapping identifier.

We have a short Python program in a pre-compile step that generates the
necessary opcode definitions and operation implementations (cf. Figure 6) for
several types. Currently, the program generates 77 optimized derivatives for
several bytecode instructions, amounting to 637 lines of code (as measured
by sloccount). These specialized instructions are generated in a separate file,
which we include in the optimized interpreter dispatch loop. Consequently, the
interpreter’s dispatch loop implementation remains largely untouched by this
optimization.
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TARGET(INCA_LONG_ADD)

w = POP();

v = TOP();

x = PyLong_Type.

tp_as_number->nb_add(v, w);

Py_DECREF(v);

Py_DECREF(w);

SET_TOP(x);

if (x != NULL) DISPATCH();

break;

if (v == PyFloat_Type.

tp_as_number->nb_add)

*ip= INCA_FLOAT_ADD;

Fig. 6. Examples for code we generate: the left side shows an optimized derivative
instruction for integer addition; the right side shows a quickening example

Apart from the generation of the derivatives themselves, we need to take care
of the actual quickening, i.e., the actual rewriting of the instructions, too. In the
previous Section 2, we already explained that we need to instrument suitable
places to update the inline cache pointer. Our implementation has a function
named PyEval SetCurCacheElement that updates the inline cache. Since this
function already takes care of updating the inline cache pointer of the current
instruction, adding code that rewrites the opcode of the current instruction is
easy. However, manually adding code for checking the 77 inline cache target
functions is tedious, error-prone, and unnecessary: since our small generator has
all the information necessary for creating the actual operation implementations,
it already has the information necessary for creating the checks, too: the mapping
of bytecode instructions to the addresses of operation implementation functions.
Consequently, we extend the generator to provide the C statements necessary
for quickening the instructions (cf. Figure 6, right column). By including these
checks in the PyEval SetCurCacheElement function, we can actually re-use the
cache-miss strategy of the previous approach, too.

The types in Table 1 represent the most basic primitives of the Python lan-
guage, i.e., they are not defined in modules of the standard library but repre-
sent the “core” of the language. Depending on the programs to be run in the
interpreter, providing different instruction derivatives might be beneficial; with-
out statistical evidence of real-world usage, however, it seems only natural to
promote the most basic primitives to their dedicated instructions. In order to
select which operations to implement, it is necessary to know which type imple-
ments which operations. One approach would be to parse the C code containing
the type definitions and their bindings for several operations, represented as
C struct’s. While certainly possible, our approach is much simpler: using the
gdb [18] debugger, one can inspect data structures at runtime.

The format gdb uses when printing this information is already very close
to Python data structure definitions. For example, Figure 7 displays the out-
put of gdb’s print command with the Python floating point type structure
(PyFloat Type) as its argument on the left side, and the corresponding Python
data structure definition on the right side. As we can see, converting gdb’s
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$1 = {

tp_name = 0x5438f6 "float",

tp_itemsize = 0,

tp_dealloc = 0x4ea940 <float_dealloc>,

tp_repr = 0x4ec630 <float_repr>,

tp_as_number = 0x799c40,

tp_as_sequence = 0x0,

tp_as_mapping = 0x0,

...

’PyFloat_Type’ : {

’tp_name’ : 0x5438f6,

’tp_itemsize’ : 0,

’tp_dealloc’ : 0x4ea940,

’tp_repr’ : 0x4ec630,

’tp_as_number’ : {

’nb_add’ : 0x4edcb0,

...

Fig. 7. Example of the gdb output on the left side, and the corresponding Python data
structure definition on the right side

runtime data structure output into valid Python data structure definitions is
trivial—it is possible to do this in your editor of choice with nothing more than
the regular search and replace feature, which is certainly faster than writing a
C parser. We put this information into a dedicated Python module, such that
further changes, refinements, and additions do not affect the code generator. We
captured gdb output for multiple types; all in all our type structure master data
file has 1700 lines of code. Using this module as a database, the code genera-
tor can decide which operations to promote to their own instructions and how
to properly name them. Whereas the former is necessary to prohibit the naive
generation of operation implementations for unimplemented type functions, the
latter is necessary for debugging convenience.

Inline Caching the Iteration Instruction: Python has a dedicated instruc-
tion for iteration, FOR ITER. This instruction expects the top-of-stack element to
be an instance of an iterator—as is the result of executing the GET ITER instruc-
tion. The FOR ITER instruction takes the iterator top-of-stack element, and pushes
the result of executing this iterator onto the operand stack, such that the result
becomes the new top-of-stack element and the iterator object the second object
on the operand stack. Executing the iterator means to invoke the function pointed
to by the tp iternext function pointer of its type structure, with the actual it-
erator instance as an argument (cf. the concrete implementation below). This de-
pendency on the type of the top-of-stack element is similar to the application of
inline caches in the previous section. The main difference between the two cases
is that the previous section requires the selection of a matching operation imple-
mentation based on actual operand types, whereas the iteration instruction does
not. Nevertheless, the same optimization can be applied in this case, too.

TARGET(FOR_ITER)
v = TOP();
x = (*v->ob_type->tp_iternext)(v);
if (x != NULL) {

PUSH(x);
DISPATCH();

}
/* remaining implementation omitted */
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There is a set of dedicated types for use with this construct, and we have ex-
tracted 15 additional instructions totaling 124 lines of code that replace the indi-
rect call of the standard Python 3.1 implementation with a specialized derivative:
for example the iterator over a range object, PyRangeIter Type:

TARGET(FOR_ITER_RANGEITER)
v = TOP();
x = PyRangeIter_Type.tp_iternext(v);
/* unchanged body */

Our previously mentioned generator takes care of generating the 15 optimized
derivatives, too. However, having to compare against the 77 optimized derivatives
for inline-cached operations in the previous section (using the extended
PyEval SetCurCacheElement function) when we only have to compare among the
15 specialized iteration instructions is not necessary at all. Therefore our generator
generates the necessary C code that we include in the original FOR ITER instruc-
tion to rewrite its occurrence to an optimized derivative, e.g., replace the current
FOR ITER instruction by the corresponding FOR ITER RANGEITER instruction.

Inline Caching the Call Instruction: The optimization of the CALL FUNCTION
instruction requires the most work. In his dissertation, Hölzle already observed
the importance of instruction set design with a case in point on the send byte-
code in the Self interpreter, which he mentions to being too abstract for efficient
interpretation [11]. The same observation holds true for the Python interpreter,
too: there are only a few bytecodes for calling a function, and the compiler gen-
erates CALL FUNCTION instructions most often. The same bytecode is used for
multiple call targets:

– Python functions: calling convention requires special handling of parameter
lists depending on the number of arguments passed to the target function.

– Python methods: because of dynamic binding, and taking care of the instance
reference, this requires special handling, too.

– C functions: proper Python support requires C functions to be able to take
named and/or variable arguments in a similar manner to Python func-
tions/methods. Since C does not natively support both in the same uniform
manner as Python handles them, we have to supply dedicated code to “fix
up” argument handling accordingly.

Since we cannot provide inline caching variants for every possible combination of
call types and the corresponding number of arguments, we decided to optimize
frequently occurring combinations (cf. Table 2 for details).

We provide our own version of an instrumented standard look-up routine to
rewrite the instructions if the matching number of arguments and type of calls
occur. For the remaining, unoptimized calls, we provide another call instruc-
tion that uses the default look-up routine without our instrumentation code.
Therefore, our instrumentation penalties occur only during the first invocation.
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Unfortunately, because of their non-trivial nature, our generator cannot auto-
matically generate the implementations for the optimized call instructions, i.e.,
we manually created the optimized implementations for each combination of
Table 2. This, however, is much less complicated than it may seem at first: the
inherent complexity in the operation implementation comes from the call-target
type, i.e., whether a call target is a C function or a Python method (cf. rows in
Table 2). The combinations within one row, i.e., the support for different num-
bers of arguments, are trivial—the separate implementations for a given type are
almost identical replicas and the only difference comes from argument handling.
In consequence, the actual implementation effort lies in the initial implementa-
tion of separate instructions for the four basic call targets with the remaining
variations being just simple copies. Similarly to the previous inline caching im-
plementations, we keep the inline cached call instruction implementations in a
separate file which we include in the optimized interpreter dispatch loop. Our
implementation of the optimized call instructions needs 491 lines of code.

Table 2. Specialized CALL FUNCTION instructions

Number of Arguments
Target Zero One Two Three

C std. args x x

C variable args x x x x

Python direct x x x

Python method x x x

Optimizations Based on Combining Both Approaches: There are sev-
eral instructions in Python that deal with look-ups in environments. These
environments are represented by Python dictionaries, i.e., hash tables which con-
tain bindings for given identifiers. Similar to many other stack frame layouts, a
Python stack frame object (PyFrameObject) holds references to several environ-
ments. For example, the LOAD GLOBAL instruction implements a precedence-based
look-up procedure: first there is a look-up using the stack frame’s reference to the
hash table holding globally visible identifier-to-object bindings (f->f globals).
If no binding for a given identifier was found, Python implements a second look-
up attempt using the stack frame’s reference to the hash table holding entries
for built-in objects (f->f builtins):

TARGET(LOAD_GLOBAL)
w = GETITEM(names, oparg);
x = PyDict_GetItem(f->f_globals, w); /* 1st */
if (x == NULL) {

x = PyDict_GetItem(f->f_builtins, w); /* 2nd */
if (x == NULL) {
load_global_error:

/* remaining implementation omitted */
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Now, hash-table look-up using complex objects is an expensive operation, since
the computation of hash keys for those objects and the list traversal to find and
retrieve the actual object are necessary. If we can ensure that no destructive
calls, i.e., calls invalidating an inline cached version, occur during the execution,
we can cache the resulting object in our inline cache element of Section 2 and
rewrite the instruction to a faster version:

TARGET(FAST_LOAD_GLOBAL)
Py_INCREF(*ic_ptr);
PUSH(*ic_ptr);
DISPATCH();

For our current implementation we assume that optimized bytecode that does
not contain any STORE GLOBAL instructions is safe to use that optimization.
Therefore, we do not quicken LOAD GLOBAL instructions in the presence of
STORE GLOBAL instructions within the same optimized bytecode sequence. This
naive assumption misses some optimization potential and is not generally appli-
cable for all Python programs. Particularly Python programs that make heavy
use of global variables will not be properly interpreted, since this straightforward
invalidation mechanism is too aggressive for this type of programs. Yet, for our
set of benchmarks, in addition to preliminary benchmarks using the Django web
application framework—a comparatively big real world application—, using this
naive assumption yields correct results. First analysis results indicate that these
programs do not make heavy use of potentially unsafe STORE GLOBAL instruc-
tions. We conjecture that this is due to the common programming practice of
avoiding the use of global variables at all costs.

However, we present a sound and generally applicable invalidation mecha-
nism that requires us to add a flag to each object. Since Python uses reference
counting, we could re-use the reference count field for that purpose. Whenever
we quicken a LOAD GLOBAL instruction, we set the flag for this object and re-
quire the FAST LOAD GLOBAL implementation to check whether this flag is set.
If the flag is set, we continue to execute the fast path in the FAST LOAD GLOBAL
implementation; otherwise we jump to the implementation of the LOAD GLOBAL
instruction, which would re-quicken the instruction accordingly. This is however
just one part of the invalidation scheme. The other part requires us to change
the STORE GLOBAL implementation: it retrieves the currently held object first and
resets the flag before updating the corresponding slot with the new reference.
The same optimization applies to the LOAD NAME instruction.

Quickening and the Comparison Instruction: Depending on its operand
value, Python’s COMPARE OP instruction chooses which comparison relation it is
going to use. It calls the cmp outcome function which implements comparator
selection using a switch statement:
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static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w) {

int res = 0;
switch (op) {
case PyCmp_IS: res = (v == w); break;
case PyCmp_IS_NOT: res = (v != w); break;
case PyCmp_IN: res = PySequence_Contains(w, v);

if (res < 0) return NULL;
break;

case PyCmp_NOT_IN: res = PySequence_Contains(w, v);
if (res < 0) return NULL;
res = !res;
break;

case PyCmp_EXC_MATCH:
/* more complex implementation omitted! */

We eliminate this switch statement for the four topmost cases by promoting
them to dedicated interpreter instructions: COMPARE OP IS, COMPARE OP IS NOT,
COMPARE OP IN, COMPARE OP NOT IN. This is somewhat similar to an optimiza-
tion technique that is described by Allen Wirfs-Brock’s article on design decisions
for a Smalltalk implementation [16], where he argues that it might be more ef-
ficient for an interpreter to pre-generate instructions for every (frequent) pair
of (opcode, oparg). Since the operand is constant for any specific instance of
the COMPARE OP instruction, we assign the proper dedicated instruction when
creating and initializing our optimized instruction encoding. Hence, our imple-
mentation does not do quickening in this scenario—however, an implementation
without our instruction format might need quickening to implement this. Fur-
thermore, the four topmost cases are only simple comparison operations, more
complex cases require the evaluation of an operand-type dependent comparison
function. This function might very well be inline cached, similar to our previously
presented scenarios. Please note, however, that our current implementation does
not do this kind of advanced inline caching for the COMPARE OP instruction.

4 Evaluation

We used several benchmarks from the computer language shootout game [9]. Since
the adoption of Python 3.x is rather slow in the community, we cannot give more
suitable benchmarks of well known Python applications, such as Zope, Django,
and twisted. We ran our benchmarks on the following system configurations:

– Intel i7 920 with 2.6 GHz, running Linux 2.6.28-15 and gcc version 4.3.3.
(Please note that we have turned off Intel’s Turbo Boost Technology to have
a common hardware baseline performance without the additional variances
immanently introduced by it [14].)
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Fig. 8. Achievable speedups on various benchmarks on Intel i7 CPU

– Intel Atom N270 with 1.6 GHz, running Linux 2.6.28-18 and gcc version
4.3.3.

– IBM PowerPC 970 with 2.0 GHz, running Linux 2.6.18-4 and gcc version
4.1.2.

We used a modified version of the nanobench program of the computer language
shootout game [9] to measure the running times of each benchmark program.
The nanobench program uses the UNIX getrusage system call to collect usage
data, e.g. the elapsed user and system times as well as memory usage of a process.
We use the sum of both timing results, i.e., elapsed user and system time as the
basis for our benchmarks. In order to account for proper measurement and cache
effects, we ran each program 50 successive times and the reported data represent
arithmetic averages over those repetitions.

Figures 8, 9, and 10 contain our evaluation results. We calculated the speedup
by normalizing against the standard Python 3.1 distribution with threaded code
and inline caching optimizations turned off. The labels indicate the name of
the benchmark and its command line argument combined into one symbolic
identifier. The measured inline caching technique represents the technique of
Section 3.1 with the modified instruction format of Section 2. Therefore our
inline caching interpreter employs all optimizations described in the previous
sections. In particular, we used the naive invalidation mechanism described
for optimization techniques that rely on a combination of both inline caching
techniques.
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Fig. 9. Achievable speedups on various benchmarks on Intel Atom CPU

Since using our outlined correct invalidation mechanism consists of adding code
that just checks the state of the flag, we conjecture that using the generally
applicable invalidation mechanism yields similar results. Due to overly long run-
ning times on the Intel Atom platform, the range of arguments for the set of
chosen benchmarks was slightly reduced for our evaluation (cf. Figure 9).

With the exception of the fannkuch benchmark, the combined approach of
using threaded code with inline caching is always faster. On the Intel i7 920
(cf. Figure 8), the range of possible speedups is wide: from moderate improve-
ments (< 10%) in the case of the chameneosredux benchmark, to substantial
improvements (≥ 10% and < 60%) for the binarytrees, fannkuch, fasta, mandel-
brot, and nbody benchmarks, and finally up to impressive speedups (≥ 60%) in
the spectralnorm benchmark.

The Intel Atom CPU has lower overall speedup potential (cf. Figure 9),
but demonstrates that our inline caching technique performs better than the
threaded code optimization on all of our benchmarks. The PowerPC CPU presents
similar findings (cf. Figure 10): substantial speedups on most benchmarks, with
the exception of the chameneosredux benchmark.

Interestingly, when comparing all three results we become aware of the vari-
ance of speedup achievable on the spectralnorm benchmark: while achieving the
highest speedup of all benchmarks on the Intel i7, it does not achieve the full
potential on the other CPUs: it is en par with the nbody benchmark on the
PowerPC 970, but noticeably lower on the Atom CPU. Further investigation is
necessary to uncover the cause of this effect. In addition to this, the comparison
of the benchmark results on the Intel i7 and the PowerPC shows that there is
one benchmark for each CPU where inline caching alone and a combination with
threaded code is actually slower than a threaded-code only version (cf. fannkuch
benchmark in Figure 8, and mandelbrot benchmark in Figure 10). Intuitively,
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Fig. 10. Achievable speedups on various benchmarks on PowerPC CPU

the orthogonality of both optimizations implies better speedup potential when
applied in combination rather than separately. This intuition is supported by
our results on the Intel Atom CPU (cf. Figure 9): combining both optimization
techniques almost always performs significantly better than one of the techniques
alone. With the exception of the mandelbrot benchmark the same observation
holds true for the binarytrees, nbody, and spectralnorm benchmarks on the Pow-
erPC (cf. Figure 10). We are currently unsure why this effect occurs and will be
investigating this issue in future work.

In the chameneosredux benchmark, we can see that threaded code execution
can result in negative performance, too. This supports similar findings of Vitale
and Abdelrahman on implementing threaded code for the Tcl interpreter [19].
Yet, this particular benchmark is inline caching friendly, and therefore a combi-
nation of both techniques results in a visible speedup.

4.1 Dynamic Frequency Analysis

In addition to the raw performance figures of the previous section, we want
to quantify the effectiveness of our profiling system together with the available
amount of “dynamic locality of type usage” [6] demonstrated by our bench-
mark programs. Therefore we instrumented the interpreter to count the ex-
ecuted instructions. Table 3 shows the amount of instructions executed during
the corresponding benchmarks in the left column. The right column presents the
percentage of instructions that were optimized among the overall instructions.
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Unsurprisingly, we see that the optimization possibility depends very much on
the actual benchmark. For those benchmarks where our technique achieves a very
high speedup (cf. Figures 8, and 10), the utilization of optimized instructions
is significantly higher. The converse observation holds, too: Figures 8, and 10
indicate that for the fannkuch benchmark, our technique is slower than threaded
code and can even slow down a combined version—at least on the Intel i7 920.
This is reflected by the exact same benchmark having the lowest utilization
among all our results.

Table 3. Number of total interpreter instructions and percentage of optimized inter-
preter instructions

Benchmark Argument Total Instructions Optimized Instructions

binarytrees 12 42.431.125 23.37%

chameneosredux 50.000 8.474.581 24.79%

fannkuch 8 7.865.843 18.80%

fasta 50.000 11.051.463 32.76%

mandelbrot 300 33.565.619 26.82%

nbody 50.000 68.974.547 38.57%

spectralnorm 100 12.963.104 37.07%

Median — — 26.82%

Mean — — 28.88%

5 Related Work

In his PhD thesis of 1994 [11], Hölzle mentions the basic idea of the data struc-
ture underlying our basic technique of Section 2. The major difference is that
we are not only proposing to use this data layout for send—or CALL FUNCTION
instructions in Python’s case—but for all instructions, since there is enough
caching potential in Python to justify that decision. Hölzle addresses the addi-
tional memory consumption issue, too. We use a simple low-overhead invocation
based counter heuristic to determine when to apply this representation, i.e., it
is only created for code we know is hot. Therefore, we argue that the increased
memory consumption is negligible—particularly when compared with the mem-
ory consumption of state-of-the-art just-in-time compilers.

In 2008, Haupt et al. [10] published a position paper describing details of
adding inline caching to bytecode interpreters, specifically the Squeak inter-
preter. Their approach consists of adding dedicated inline caching slots to the
activation record, similar to dealing with local variables in Python or the con-
stant pool in Java. In addition to a one-element inline cache, they also describe
an elegant object-oriented extension that enables a purely interpretative solution
to polymorphic inline caches [12]. The major difference to our approach lies in
the relative efficiencies of the techniques: whereas our techniques are tightly in-
terwoven with the interpreter infrastructure promising efficient execution, their
technique relies on less efficient target address look-up in the stack frame.
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Regarding the use of look-up caches in purely interpretative systems, we refer
to an article [5] detailing various concerns of look-up caches, including efficiency
of hashing functions, etc., which can be found in “Smalltalk-80: Bits of History,
Words of Advice” [16]. Kiczales and Rodriguez describe the use of per-function
hash-tables in a portable version of common lisp (PCL), which may provide
higher efficiency than single global hash tables [15]. The major difference to
our work is that our inline cache does not require the additional look-up and
maintenance costs of hash-tables. Our quickening based approach of Section 3
eliminates the use of indirect branches for calling inline cached methods, too.

Lindholm and Yellin [17] provide details regarding the use of quick instruc-
tions in the Java virtual machine. Casey et al. [4] describe details of quickening,
superinstructions and replication. The latter technical report provides interest-
ing figures on the performance of those techniques in a Java virtual machine
implementation. The major difference to our use of instruction rewriting as de-
scribed in Section 3 is that we are using quickening for inline caching. To the
best of our knowledge there is no other work in that area. However, we share
the use of a code generator to compensate for the increased maintenance effort,
but do not use any form of superinstructions.

6 Conclusion

Inline caching is an important optimization technique for high abstraction-level
interpreters. We report achievable speedups of up to a factor of 1.71 in the
Python 3.1 interpreter. Our quickening based technique from Section 3 uses the
instruction format described in Section 2. Therefore, the measured performance
includes the compensation times for the profiling code and the creation of the
new instruction format. However, it is possible to use the quickening based inline
caching approach without the new instruction format—thereby eliminating the
compensation overhead, which we expect to positively affect performance. Future
work on such an interpreter will quantify these effects.

Using the quickening approach, a compiler might decide to inline function
bodies of specialized derivative instructions. This will provide additional perfor-
mance improvements at the cost of possible instruction cache penalties. Future
work will investigate the potential of further inlining.

Efficient inline caching without dynamic translation is an optimization tech-
nique targeting operation implementation. Therefore, it is orthogonal to opti-
mization techniques focusing on instruction dispatch and both techniques can
be applied together. In the spectralnorm benchmark the application of both
techniques results in a speedup of up to a factor of 1.92—only slightly lower than
the maximum reported speedup of up to a factor of 2.02 achieved by efficient
interpreters using threaded code alone [8].
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