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Abstract: Development of state-of-the-art methodologies to minimise search time and to increase the fishing 
efficiency of high seas fishery are vital for fishing success. It, minimise the operational cost as well as fishing 
duration that save the fish quality. Understanding of the ocean environment and their preferences of Yellowfin Tuna 
(YFT) are important aspect to addresses the fishing uncertainty thereby ensuring the expected catch during a short 
period of time. Environmental parameters such as temperature, chlorophyll and dynamic height of the sea surface 
were obtained from remote sensing satellites and a YFT catch dataset was obtained from Sri Lankan longliners. The 
results of the data analyses have shown that the relationships between oceanographic parameters and YFT catch 
rates were found significant. These relations are capable of predicting fishable aggregations of YFT using near-real 
time satellite observations. High frequencies of YFT catches were found in the areas where Sea Surface 
Temperature (SST) varied primarily between 28-30C. The corresponding Sea Surface Heights (SSH) ranged from 
205-215 cm and Sea Surface Clorophyll_a (SSC) concentration ranged from 0.1-0.4 mg/m3. The relationships 
between catch rates and the three environmental variables have been tested with the Empirical Cumulative 
Distribution Function (ECDF). The degrees of differences between the ECDF and catch-weighted cumulative 
distributions of the three variables are statistically significant (p<0.01). The strongest association showed between 
catch rates and SSC while SSH showed the lowest. The results obtained from a Generalized Additive Model (GAM) 
have shown that the space-time factor is well above the ocean environmental factors and the oceanographic factors 
are also in significant levels (p<0.05). Therefore, the migratory pathway is an essential factor in predicting YFT 
inhabitants in the northeast Indian Ocean. 
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INTRODUCTION 
 

Tunas, the family Scombridae are reported to be 
found in tropical oceans around the world ocean and 
account for a major proportion of the world’s fishery 
products (Collette and Nauen, 1983). Sri Lanka is one 
of the important tuna producing Island and its fisheries 
statistics have shown that the YFT, is the most 
important tuna species among the six species recorded 
(Joseph et al., 1985). With the increasing demand for 
YFT tuna in the export market, more and more efforts 
have been exerted using longlines and Gillnets. 
However, longline has become more popular than 
gillnets as it preserves the freshness of the fish, but 
uncertainty of catch brought wider spectrum of 
problems to the industry. Uncertainty of catch leads to 
increase search time, operational cost and low quality 
fish landings. As a result the catch being failed to 
export, even with high operational cost and the revenue 
become less. The purpose of this study is to examine 
the relationship between YFT occurence in relation to 

the oceanographic conditions in the northeast part of the 
Indian Ocean (Fig. 1). 

Indian Ocean is greatly influenced by two wind 
systems known as southwest and northeast monsoon 
causing characteristic seasonality of temperature, 
phytoplankton, ocean currents and mixed layer 
properties. YFT distributed over large oceanic extent of 
fishing potential due to this seasonality of 
oceanographic condones. The distribution of YFT cause 
longer search time which costly and time consuming. 
Therefore, predicting fishable aggregations make the 
search more efficient and economic. To achieve this, it 
would be useful to analyse long-term fisheries and 
oceanographic data that could affect the temporal  and  
spatial  distribution  of  YFT  (Zagaglia et al., 2004). 

Previous studies have shown that the distribution of 
tuna species is greatly influenced by oceanographic 
conditions such as sea surface temperature (Sund et al., 
1981; Ramos et al., 1996), hydrographic fronts (Laurs 
et al., 1984; Laurs and Lynn, 1977; Fiedler and 
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Fig. 1: Study area showing the positions of fishery dataset obtained during 3-year period from 2006-2008. The positions are 
shown 1/3grids  

 
Bernard, 1987; Stretta, 1991; Kimura et al., 1997) and 
depth of thermocline (Ueyanagi, 1969). Hence, it is 
reasonable to assume that these factors may have 
influence on the abundance and distribution of YFT. 
Limited studies have been carried out in the Indian 
Ocean to understand the fisheries oceanography of 
YFT. 

Remote sensing techniques show great potential to 
support successful exploitation of pelagic fishery 
resources and global fisheries management (Santos, 
2000; Yamanaka et al., 1988). This technology has 
proven to be a useful tool to study oceanographic 
features such as thermal fronts, eddies where tunas are 
reported to be aggregated. The combination of satellite 
and biological data could be used to identify habitat 
preference and migrating routes of YFT leading to 
predict potential fishing grounds. Several attempts have 
been made to study the associated movements and catch 
rates with environmental conditions (Uda, 1973; Stretta, 
1991; Power and May, 1991; Ramos et al., 1996; 
Browdwr et al., 1993; De Rosa and Maury, 1998; 
Bigelow et al., 1999). 

This study reveals the likelihood of YFT 
vulnerability to longlines with respect to the 
temperature, chlorophyll and dynamic heights of the sea 
surface in space and time. 
 

MATERIALS AND METHODS 
 

Two types of data sets consisting fishery and 
satellite derived oceanographic parameters were 
obtained for the period of three years (2006-2008). To 
meet the objectives of this study, oceanographic data 
derived from satellites, were obtained to match with 
fisheries data. 

SST data were obtained as blended products from 
two sensors with improved spatial resolution (1/4) and 

temporal resolution (3-day). The two sensors are 
Advanced Microwave Scanning Radiometer (AMSR) 
and Advanced Very High Resolution Radiometer 
(AVHRR) on the NASA Earth Observing System 
satellites. The SST products also included a large-scale 
adjustment of satellite biases with respect to in-situ data 
obtained from ships and buoys (Reynolds et al., 2007). 

Corresponding SSC data were obtained from 
Moderate resolution imaging spectroradiometer 
(MODIS) onboard Terra and Aqua satellites in 4 km 
spatial resolution. The data are distributed by NASA 
gsfc (http://oceancolor.gsfc.nasa.gov/ftp.html). Ocean 
colour products such as chlorophyll_a (SSC) were 
contaminated by clouds. To remove cloudy pixels and 
to increase the coverage, successive images were 
composited by assuming that the SSC is not 
considerably varies within the averaging period in the 
region. The minimum period of composting to remove 
the cloudy pixels was found to be 15 days with images 
taken from the two platforms (Terra/Aqua). Therefore, 
initially 15-day SSC composite image was constructed 
and successive 3-day interval time series was generated 
by updating the initial image. 

SSH data were obtained from the information 
collected by TOPEX/Poseidon and ERS satellite 
altimeters (ftp://ftp.cls.fr/pub/oceano/AVISO/). The 
data were available at archiving, validation and 
interpolation of satellite oceanographic data (AVISO) 
in net CDF format. These data (1/3) were obtained in 
3-day composites  that contain the parameters such the 
date, latitude, longitude and sea surface dynamic height 
with respect to the geoid. 

Fishery data were collected from Sri Lankan 
longliners and the dataset is consisting of fishing date, 
position, number of hooks and catch. Fishing effort is 
depend on varies factors such as number of fishermen 
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in each trip, number of hooks and availability of fish for 
the bait and bait types etc. There are many factors that 
determine the likelihood of a particular hook catching a 
fish, including the depth of hook, bait type, availability 
of live food, timing and location of effort. Fish 
behaviour also a factor (Ferno and Olsen, 1994); not all 
fish that are present will come close enough to detect 
the bait, not all fish that detect the bait will bite it and 
not all fish that do bite bait will get caught on the hook. 
Longline configuration and  hooking depth used in a 
particular area can result very poor catch rates 
depending on the vertical distribution. Considering all 
these catch uncertainties, null catches have been 
removed from the dataset. It is also important to point 
out that this CPUE cannot consider as a good index of 
relative fish abundance. Therefore the CPUE can be 
considered as indices of fish availability to Sri Lankan 
longlines, but not as indices of fish abundance. Water 
temperature, search time, catch of bait or bate type, 
hooking depth, catch weight and weather conditions 
were almost absent in logbooks. Owing to the lack of 
this information the effort data were not standardized. 
Therefore, Catch Per Unit of Effort (CPUE) was 
defined as number of fish per 100 hooks per day 
regardless of the catch weights. 

The resolution of SST data was 1/4 and SSH data 
was 1/3 while SSC has 4 km. All the image data were 
gridded into the lowest resolution (1/3). The SST and 
the corresponding SSH data were taken in 3-day 
composites while updating SSC initial image in every 
3-day interval to coincide with the SST and SSH. The 
length of longlines vary between 10-15 miles and the 
drift due to ocean currents during the deployed period 
(4-6 h) is 5-10 miles. Thus, the long-line data fall 
within the minimum resolution of the satellite data 
(1/3). Therefore, the CPUE data were also gridded into 
1/3 and averaged over 3-day fishing activity assuming 
that the SST, SSC and SSH are not significantly varies 
within the 3-day periods. Fishery and satellite derived 
oceanographic parameters were matched up and the 
outputs were further analysed. 

The association between the three oceanographic 
variables and CPUE were analysed using Empirical 
Cumulative Frequency Distribution Function (ECDF). 
In this analysis, three functions (Perry and Smith, 1994; 
Andrade and Garcia, 1999) were used as follows: 
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where f(t) is empirical cumulative frequency 
distribution function, g(t) is catch-weighted cumulative 
distribution function, l(xi) is indication function and 
D(t) is the absolute value of the difference between the 
two curves f(t) and g(t) at any point t and assessed by 
the standard Kolmogorov-Smirnov test. n is the number 
of fishing activities, xi the measurement for satellite-
derived oceanographic variables in a fishing activity i, t 
an index ranking the ordered observations from the 
lowest to highest value of the oceanographic variables, 
yi is the CPUE obtained in a fishing activity i and ݕത the 
estimated mean of CPUE for all fishing activities. The 
maximum value of D(t) represents specific values of the 
oceanographic variables at which the highest CPUE can 
be obtained. 
 
Optimizing favourable oceanographic conditions: 
Two statistical models, Generalized Additive Model 
(GAM) and Generalized Linear Model (GLM) were 
applied to identify the nature of relationships between 
YFT and the three ocean environmental parameters. 
The relationships between environmental factors and 
CPUE are mostly expected as non-linear. Once the 
shape of the relationships between the response variable 
and each predictor was identified, the appropriate 
functions were used to parameterize these shapes in the 
GLM model. Generalized linear models have been used 
to study CPUE variability of YFT in the eastern Pacific 
Ocean (Punsly, 1987; Zagaglia et al., 2004). 

The shapes resulting from the GAM were 
reproduced as closely as possible using the piecewise 
GLM. Three environmental variables were included in 
the analysis using a GAM Eq. (4) and a GLM Eq. (5), 
as follows: 
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ሻܪሺܵܵݏ ൅ ݁                                                          (4) 
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where, a and b are constants, s(.) is a spline smoothing 
function of the variables (SST, SSC and SSH) and e is a 
random error term, b1, b2 and b3 are the vectors of 
model coefficients. 

GAM is a non-parametric generalization of 
multiple linear regressions which is less restrictive in 
assumptions of the underlying statistical data 
distribution (Hastie and Tibshirani, 1990). The GAM 
has no analytical form but explain the variance of 
CPUE more effectively and flexibly than the GLM. The 
GLM was constructed based on the trend of YFT CPUE 
in relation to the predictors estimated by GAM with the 
least different residual deviance (Mathsoft, 1999). GLM 
estimates a function of mean response (CPUE) as a 
linear function of some set of predictors. Hence, the 
GLM fit was used to predict a spatial distribution of 
potential habitat for YFT. 

The GLM were fitted using a Normal distribution 
as the family associated with identity link function 



 
 

Int. J. Fish. Aquat. Sci., 2(4): 72-80, 2013 
 

75 

(McCullagh and Nelder, 1989). The data distribution 
and the link function in the GLM were exactly the same 
as those used in the GAM. A logarithmic 
transformation of the CPUE was used to normalize 
asymmetrical frequency distribution. The model 
selection process for the best predictive model for 
explaining CPUE data was based on a forward and 
backward stepwise manner. The predictors were 
considered to be significant in explaining the variance 
of CPUE, if the residual deviance and Akaike 
Information Criteria (AIC) decrease with each addition 
of the variables and the probability of final set of 
variables was lower than 0.01 (p<0.01). 
 

RESULTS 
 

Frequency distribution of YFT fishable SST is 
primarily varies between 26-31C and more catches 
have been taken in the areas where SST varied between 
28-30C (Fig. 2a). The tendency of temperature is 
centred at 29C where more frequencies of catches have 
been taken. Sea surface chlorophyll concentrations of 
YFT catches shows below 1.0 mg/m3 although it can be 
observed higher (>1.0 mg/m3) concentrations in the 
area. The SSC distribution of YFT falls between 0.0-0.8 
and negatively skewed within this range (Fig. 2b). 
Frequency of YFT fishing days in relation to sea 
surface height follows a Gaussian distribution. The 
distribution of SSH indicates that YFT were found in 
areas where sea surface height ranged from 185-235 cm 
(Fig. 2c). However, the most catches have been 
obtained from the waters where SSH varies from 205-
215 cm (2105 cm) while it slightly varies over the 
year. 

Monthly variability of CPUE Fig. 3a doesn’t show 
a considerable variation or any seasonality of YFT 
catches. Thus, the YFT fishable aggregations are 
available in the area throughout the year although the 
spatial distribution of YFT is varying depending on the 
prevailing oceanographic conditions. SST of fishable 
aggregations is around 27C in January and it increases 
to about 30C in April and then gradually decreases till 
August (28.5C). Then SST increases again to ~30C in 
October and down to about 27.5C in December. YFT 
aggregations are found in warmer (28.5-3C) waters 
during inter-monsoons and relatively cooler waters (27-
28.5C) during NE and SW monsoons (Fig. 3b). 
Monthly variation of SST of fishable YFT shows an 
identical pattern followed by each year. Thus, SST can 
be used to locate YFT aggregating areas using this 
feature. Monthly variation of sea surface chlorophyll_a 
(Fig. 3c) does not show such an identical pattern, but 
the best range for YFT availability between 0.2-0.4 
mg/m3. Sea surface height (Fig. 3d) of YFT also show a 
seasonal variability that also useful for locating YFT 
aggregations. 

 
 

Fig. 2: Histograms showing frequencies of YFT caught SST 
(a), SSC (b) and SSH (c) in the NE Indian Ocean   

 
The relationship between CPUE and the three 

environmental variables above have been proven by the 
empirical cumulative distribution function (ECDF). The 
cumulative distribution curves of the three variables are 
different and the degrees of the differences between the 
two curves are highly significant (p<0.01) for SSC. 

The results showed a stronger association between 
CPUE and the variables, with SSC ranging from 0.1-0.4 
mg/m3 (Fig. 4c), slightly lower association with SST 
ranging from 28C to 30C (Fig. 4a). The lowest 
association exist with SSH ranging from 205-215 cm 
(Fig. 4b). The highest association of the three variables 
occurred at 29.3C SST, 0.3 mg/m3 SSC and 205 cm 
SSH and the catch rates tend to be decrease at the 
outside of those ranges. 
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Fig. 3: Monthly variability of CPUE (a) and corresponding variability of SST (b), SSC (c) and SSH (d) during the period 
 

 
 

 
 

Fig. 4: Empirical cumulative distribution frequencies of SST (a), SSH (b) and SSC (c) superimposed of YFT catch weighted SST, 
SSC and SSH. The dashed-lines show the degree of differences of the two curves  
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Table 1: Single predictor GAM fits for YFT in fishing ground. For 
each predictor, the percentage of deviance and the 
generalized cross validation score is given 

Parameter % devience GCV score 
 SST 4.63% 0.67658 
CHL 2.57% 0.69039 
SSH 1.5% 0.69595 
lat×lon×month 19.9% 0.5965 
 
Table 2: Significance of the smooth terms included in the GAM for 

YFT occurrence in fishing grounds 
 S.E. t-value p n 
Intercept 0.01526   0.774 0.437 1673 
Variable edf F p  
SST 6.620   8.216 <0.001  
CHL 5.786   5.913 <0.001  
SSH 2.905   7.791 <0.001  
 
Table 3: Deviance and GCV scores of YFT CPUE of fishing 

grounds explained in GAM with variables added 

Variable 
Residual 
d.f. 

Residual  
deviance 

GCV 
score  

Cumilative  
variance  

Mean 1664.8 1120.8   
SST 1659.7 1098.8 0.67658 4.63% 
CHL 1656.7 1077.3 0.66729 6.5% 
SSH 1611.8 903.76 0.65667 8.33% 
 
Table 4: Construction of GLM as each variable is added, residual 

deviance, the approximate AIC and F-statistic for YFT 
availability in the fishing grounds 

Variable Residual d.f. 
Residual 
deviance AIC F 

NULL 1672 1175.2   
SST 1671 1147.3 4122.7 40.665 
CHL 1670 1132.9 4103.6 21.182 
SSH 1669 1125.2 4094.2 11.423 

 
to describe tuna habitats as it relatively easy to obtain 
and the SST become particularly very useful in finding 
strong surface thermal gradients, where the fishing 
grounds are normally located (Laurs and Lynn, 1977; 
Laurs et al., 1984). 

The space-time factor (lat/lon and month), explains 
the largest portion of the data variance (Table 1), being 
the most significant factor amongst all the independent 
variables included in the model. This explains the 
migratory behaviour of YFT described earlier, where 
the largest CPUE observed close to Sri Lanka during 
the early year and moving parallel to the Indian coast 
towards Bangladesh waters (Fig. 6). 

The relationship between the given predictor and 
the density of YFT was analyzed according to the 
percentage of deviance explained and the GCV scores 
of the GAM models (Table 1). Space (lat/lon) and time 
(month) were the best predictor explained the density of 
YFT with the highest deviance (19.9%) and the lowest 
GCV score (0.5965) and it was subsequently followed 
by SST (4.63%), SSC (2.57%) and SSH (1.5%). The 
environmental factors, SST, SSC and SSH, being 
statistically significant as shown by associated p-values 
(Table 2). 

The environmental parameters, SST, SSC and 
SSH, showed associated p-values well below those 
found for the space-time factor (Table 1). In fact, 

considering their p-values (p<0.05) the oceanographic 
parameters are also in significance levels. Therefore, 
the environmental parameters influence on the CPUE of 
YFT in the Northeast Indian Ocean (Table 3 and 4). 

 
DISCUSSION 

 
Offshore/high longline seas fishery has been begun 

in 80‘s and its inefficient development has been caused 
by several limitations. Fleets developments and fishing 
technology were the main areas that have not been 
developed in this fishery. However, fishermen used 
their gathered knowledge and experience during the 
short histry of longline fishing. Single-Side-Band radio 
communication have been helping them to reach 
potential fishing areas. Sri Lankan longlines operates in 
very shallow depths (50-75 m) due to onboard 
manpower for hand-hauling the fishing lines. The 
shallow depth of tuna existance can be considerd as 
feeding grounds. This existance is explained by Nishida 
(1992) using two stock structure that is western and 
eastern stocks mixing around Sri Lanka in their 
migratory path. The fishermen have been able to follow 
the migratory paths wih their experiences and 
communication. Longlines are operating comparatively 
deeper (100-130 m) waters in the south of Sri Lanka. 

Null catches might not be due to the less 
abundance, but it may be due to other factors such as 
line oprating depth, bait used, area and time factor, 
availability of live food, prevailing oceanographic and 
weather conditions. However, it has been assumed that 
the dataset represent the real availablity of YFT in 
relation to environmental parameters such as sea 
surface temperature. The reported CPUE of YFT in the 
present study was comparatively lower than the other 
fishing fleets in the Indian Ocean. This may be due to 
several factors such as fleet capacity, operating depth, 
suitable baits, onboard technology and the overall 
knowledge on fishing skills. 

Limited fishery data were used in this study 
although longer time series data provide more precise 
representation of YFT with respect to the environment. 
Combinations of SST data with SSC and SSH have 
provided fishable conditions of YFT in time and space. 
Hence, the oceanographic parameters themselves do not 
adequate to predict the potential fishing grounds and 
required to combine the space/time factor. The space 
time factor provides the information of YFT migratory 
pattern. 

The results showed that catchable aggregation of 
YFT can be located using SST which specific to a time 
period. The highest CPUE exist within a narrow SST 
range (~1C) between 28.0-30.0C depending on the 
time of a year. This implies that the SST does not 
represent the preferred living temperatures of YFT, 
although a chronological SST can be used to locate 
more abundant areas combining the migratory 
pathways. It has been proven that the YFT live slightly 
above thermocline helping them to reach favourable 
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temperature ranges. Thermocline is the layer where 
rapid decrease of temperature gradient occurs. It 
fluctuates from about 50-100 m in the northeast Indian 
Ocean due to seasonal monsoons wind stress. As a 
result the depth of YFT abundance in the water column 
may affect by tending vertical migration. Deepening of 
the thermocline may affect the vulnerability of YFT to 
shallow longlines by Sri Lankan fishermen. Brill et al. 
(1999) found that the depth of the mixed layer is more 
important than the SST for YFT abundance. According 
to their findings, adult YFT are found to be 
immediately below the mixed layer and juveniles are 
associated in much shallow areas. However, the present 
study does not reveal the correlation between the mix 
layer depth and the CPUE since less information 
available in the dataset. Knowledge of the relations 
between CPUE and thermocline depth can be used to 
locate fishing grounds accurately. 

According to Stretta (1991), YFT prefers warmer 
waters and the abundance of this species was higher 
with temperature limits between 18-31.0C. In the 
tropical Atlantic, most of YFT catches have been 
obtained with temperatures between 22.0-29.0C and 
preferentially above 25.0C. The flat relationship of the 
temperature is evident that the distribution of YFT in 
the Brazil coast within the range of 26-28.5C 
(Zagaglia et al., 2004). By these observations it has 
been concluded that the SST values above 28.0C seem 
to form a pathway of favourable thermal conditions to 
the migratory movements of YFT (Zagaglia et al., 
2004). The result of this study is also consistent with 
the other findings in tropical waters. Therefore, SST is 
an important predictor for YFT that represented not 
only by the temperature but also correspondence with 
space (lat/lon) and time factor (Fig. 6). 

The optimum SSH ranges for the abundance and 
distribution of YFT in the northeast Indian Ocean was 
estimated 200-220 cm with some temporal variations. 
The importance of SSH to predict YFT fishing grounds 
have been discussed by various authors (Zagaglia et al., 
2004). The relationship between SSH and CPUE may 
vary considerably as SSHA (Sea Surface Height 
Anomaly) is a complex combination of dynamical and 
thermodynamical factors, which could affect in 
opposite ways the concentration of the fishing resources 
(Zagaglia et al., 2004). 

Based on the results, the YFT fishable 
oceanographic parameters in the northeast Indian Ocean 
were characterized by SST of 28-30C, SSC of 0.1-0.4 
mg/m3 and SSH 200-220 cm. These results are very 
similar to the previous studies in relation to SST (Uda, 
1973) and CHL (Polovina et al., 2001). The results of 
this study were confirmed by statistical models. 
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