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Abstract

Let Xi be the ith order statistic of �̂2
j

for 1�j �k, where �̂j ’s follow independent normal distributions with respective means �j

and common variance �2. In this paper, we provide a stochastic ordering of the random vector T = (X2/X1, 2X3/(X1 + X2), . . . ,

(m−1)Xm/
∑m−1

j=1 Xj ) as the �j ’s change for any given 2�m�k. With this result and the assumption of effect sparsity, we construct
a step-up simultaneous testing procedure that strongly controls experimentwise error rate for a sequence of null hypotheses regarding
the number of negligible effects (zero �j ’s) in orthogonal saturated designs.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Assume a linear model

Yi = � + �1xi1 + · · · + �kxik + �i for i = 1, . . . , M , (1.1)

where �i ∼ iid N(0, �2). The goal is to identify how many and which of the �i’s are non-zero using least-squares
estimators {�̂i}ki=1, where �̂i follows N(�i , ai�2) for some known positive constant ai . The design is called orthogonal

if the statistics {�̂i}ki=1 are uncorrelated, and is said to be saturated if M = k + 1, which leaves no degrees of freedom
to estimate the error variance �2. Orthogonal saturated designs may occur in two-level fractional factorial designs
with single replicate. Such problem may also arise in the context of outlier detection and signal diagnosing such as
identification of non-zero coefficients in a wavelet transformed image. Without loss of generality, we assume ai = 1
for 1� i�k because otherwise statistics {�̂i/

√
ai}ki=1 would be considered.

In order to find active (non-zero) �i’s, typically one has to use the assumption of effect sparsity, i.e., only a small
number of the �i’s are active. We assume at least � of the �i’s equal zero for a predetermined positive integer �, which
is either half or 60% of k, see Wang and Voss (2003) or Box and Meyer (1986). Therefore, those small �̂2

i ’s, including
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the smallest � of �̂2
i ’s, should be used to estimate �2. Any other �̂i , whose square is substantially larger, is likely to

have a non-zero mean, and corresponds to an active effect.
There exist many statistical procedures to identify active effects for orthogonal saturated designs. Hamada and

Balakrishnan (1998) provided a thorough review on the analysis methods for saturated designs. For example, Daniel
(1959) considered the half-normal probability plot, which is still being used in the preliminary analysis. Lenth (1989)
and Wang and Voss (2001, 2003) proposed adaptive confidence intervals that utilize the data to determine which and
how many of �̂i’s should be used to estimate �2. Voss and Wang (2006) derived adaptive step-down tests with the
experimentwise error rate controlled at a given level in the strong sense. As pointed out in Venter and Steel (1998)
and Finner and Roters (1999), the step-up tests are generally more powerful than the step-down ones. Langsrud and
Naes (1998) and Venter and Steel (1998) (LNVS) provided step-up tests to detect active effects without showing
experimentwise error rates control in the strong sense, which was accomplished in Wu and Wang (2007) by using the
same form of rejection regions but with a different set of cutoff points. However, the LNVS test is intuitively more
attractive and easier to implement.

In this article, we show that the LNVS test also strongly controls experimentwise error rate for a sequence of null
hypotheses regarding the number of negligible effects (zero effects). In Section 2, we describe the LNVS testing
procedure and the corresponding hypotheses in terms of the number of negligible effects. Section 3 contains the main
results: first establish a monotone property of the test statistics, which identifies the least favorable distributions (given
in (2.8)) in the null hypotheses; then prove that the LNVS test strongly controls experimentwise error rate for the set
of null hypotheses proposed in Section 2. The technical details are deferred to the Appendix.

2. Testing procedures and hypotheses

Let Xi be the ith order statistics of �̂2
j for 1�j �k. Under the assumption of effect sparsity, the step-up procedure

starts a comparison between the (� + 1)th smallest order statistic X�+1 and the average of X1 through X� using a ratio.
If the ratio is large, then conclude that there are k − � active effects and stop; otherwise, compare X�+2 (go up) with
the average of X1 through X�+1 and so on until a significant ratio is found. To be more precise, for any two integers
��n < m�k, let Sn =∑n

i=1 Xi and X̄n = Sn/n and define a statistic

Tn,m = nXm∑n
i=1 Xi

= nXm

Sn

= Xm

X̄n

. (2.1)

And for a sequence of constants {cm}km=�+1, let

Rm =
m⋃

i=�+1

{Ti−1,i > ci} (2.2)

for any m ∈ [� + 1, k]. Then a step-up testing procedure can be conducted as follows:
Step 1: If R�+1(={T�,�+1 > c�}) occurs, then conclude there are k − � active effects and stop; otherwise go to step 2.
Step 2: If R�+2(={T�,�+1 > c�} ∪ {T�+1,�+2 > c�+1}) occurs, then conclude there are k − � − 1 active effects and

stop; otherwise go to step 3.
...

Step k − �: If Rk occurs, then conclude there is one active effect and stop; otherwise conclude no active effect and
stop.

Two sets of thresholds {cm}km=�+1 have been proposed, denoted by {cLNVS
m }km=�+1 and {cWW

m }km=�+1, corresponding
to the LNVS and the Wu and Wang procedures, respectively. For a given � ∈ (0, 1), constants cLNVS

m are determined
iteratively by solving equation

P(RLNVS
m ) = P

⎛
⎝ m⋃

i=�+1

{Ti−1,i > cLNVS
i }

⎞
⎠= P

⎛
⎝ m⋃

i=�+1

{
Xi

X̄i−1
> cLNVS

i

}⎞⎠= � (2.3)

one by one, starting from m = � + 1 and ending at k, where RLNVS
m is the region in (2.2) using constants cLNVS

m , and
{Xi}mi=1 are the ordered statistics of m independent �2

1 random variables. For example, first when m = � + 1, (2.3)



S.S. Wu, W. Wang / Journal of Statistical Planning and Inference 138 (2008) 3149–3156 3151

reduces to P(
X�+1

X̄�
> cLNVS

�+1 ) = �, which involves only one unknown constant cLNVS
�+1 , so cLNVS

�+1 is solved with � + 1

independent �2
1 random variables. Next, when m=�+2, (2.3) only involves one unknown cLNVS

�+2 (note cLNVS
�+1 is known

now), and then it is solved. Repeat this until all {cLNVS
m }km=�+1 are solved. Due to the complicated form of RLNVS

m ,
cLNVS
m is obtained by simulations (not numerical integration) based on m independent �2

1 random variables. On the
contrary, {cWW

i }ki=�+1 are obtained by solving

m∑
i=�+1

P

⎛
⎝max

⎧⎨
⎩Si−1,

{
(j − 1)Xj

cWW
j

+ Si−1 − Sj−1

}i−1

j=�

⎫⎬
⎭<

(i − 1)Xi

cWW
i

⎞
⎠= �, (2.4)

iteratively (cWW
� =: ∞) in a similar way. Intuitively, constants cWW

m would be larger than their correspondent cLNVS
m ,

and then result in smaller rejection regions. However, the difference between the two sets of cutoff points is small as
shown in the simulation of Wu and Wang (2007). Nevertheless, cLNVS

i is also simpler to evaluate. The main contribution
of this paper is to prove that the LNVS test with {cLNVS

m }km=�+1 strongly control the experimentwise error rate.
Now we formulate a sequence of null hypotheses for the LNVS tests. For a fixed parameter vector �= (�1, . . . , �k),

let

N = the number of �i’ s being zero, (2.5)

thus the number of non-zero �i’s is equal to k − N . When effect sparsity is assumed, the entire parameter space is
H = {� = (�1, . . . , �k) : N ��}. For each integer m ∈ [� + 1, k], consider a testing problem:

H0,m : N �m vs. HA,m : N �m − 1 (2.6)

and define a parameter configuration in each H0,m,

�m =: (0, . . . , 0, +∞, . . . ,+∞), (2.7)

where the first m components are zero. Then (2.3) can be rewritten as

P�m
(RLNVS

m ) = �. (2.8)

Let

B = {H0,m : � + 1�m�k}, (2.9)

which contains all null hypotheses of interest in this paper.
Because H0,i is a subset of H0,j for any i > j , if H0,j is incorrect, so is H0,i . This implies that a reasonable testing

process should be terminated as soon as a rejection occurs for some null hypothesis. Starting from m = � + 1, we test
these hypotheses one at a time as m goes up to k. If H0,�+1 is rejected, we then conclude that there are k−� active effects
(i.e., H ∩ HA,�+1) and no longer test any other hypotheses; otherwise, test the next hypothesis H0,�+2. In general, if
H0,m0 is the first hypothesis being rejected for some m0 �k, we stop and conclude that there are k − m0 + 1 non-zero
effects (i.e., H0,m0−1 ∩ HA,m0 ); otherwise, all hypotheses in B are accepted and we conclude no active effect. Clearly,
this is a step-up testing procedure and provides the same result as the step-up tests {Rm}km=�+1 described earlier.

Notice that H0,m is decreasing and RLNVS
m is increasing in m. To establish that the procedure {RLNVS

m }km=�+1 controls
the experimentwise error rate in the strong sense for all hypotheses in B, following Marcus et al. (1976), we only
need to show that RLNVS

m is a level-� rejection region for the individual hypothesis H0,m. This will be done in the next
section, and we will also show that its least favorable distribution for each H0,m is at �m.

Remark. Hypotheses in B deal with N, the number of zero �i’s. It would be a more interesting problem to show
strong control of experimentwise error rate for the step-up tests to identify all active �i’s. This is very challenging and
deserves further study. Nevertheless, if one makes a type I error regarding N, then an error is made for identifying the
set of active effects. Therefore, a strong control of experimentwise error rate on N is a necessary condition for that on
the set of active effects.
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3. Main results

3.1. A monotone property

In this section, we establish a stochastic ordering of test statistics Ti,i+1 as the �’s change. The proofs of our results
are mainly based on probability inequalities on coordinatewise ordered spaces.

Definition 1. We define a partial ordering of two vectors x(=(x1, . . . , xd)) and y in Rd , denoted by x�y if xi �yi, i=
1, . . . , d. A function h : Rd → R1 is non-decreasing to this coordinatewise ordering if x�y implies h(x)�h(y).

Definition 2. We say that random vector X with a pdf p(x) is stochastically smaller than Y with a pdf q(y) in the
coordinatewise order, denoted by X ≺ Y or p(x) ≺ q(y), if E[h(X)]�E[h(Y)] for any non-negative bounded non-
decreasing function h.

Our first main result is given below.

Theorem 1. For any m�k, random vector T=(T1,2, T2,3, . . . , Tm−1,m) is stochastically largest at �m for all � ∈ H0,m.

Note that the above result is a stronger result than Theorem 1 in Wu and Wang (2007), which only establishes the
stochastic ordering of each coordinate of T. Also Theorem 1 implies:

Theorem 2. For all � ∈ H0,m and for any constants {ci}mi=�+1, we have

P�(Rm)�P�m
(Rm) with equality only if � = �m. (3.1)

Theorem 2 warrants the existence of finite solutions {cLNVS
i }ki=�+1 for equations in (2.3). Specifically, the sequence

of critical values can be determined iteratively (ci depends on cj for j < i) as follows:

(1) For testing H0,�+1, since P��+1
{T�,�+1 > c} decreases from 1 to 0 as c goes from zero to infinity, there exist a unique

c�+1 such that P��+1
(RLNVS

�+1 ) = �, which guarantees the type I error to be � due to Theorem 2.

(2) For any � + 2� i�k, suppose finite {cj }i−1
j=�+1 are available such that P�j

(RLNVS
j ) = �, � + 1�j � i − 1. Since

�i ∈ H0,i−1, Theorem 2 implies P�i
(RLNVS

i−1 ) < P�i−1
(RLNVS

i−1 )=�. Hence P�i
(Ti−1,i > cLNVS

i ) > 0, which warrants

cLNVS
i to be finite and implies that rejection region RLNVS

i is larger than RLNVS
i−1 .

3.2. Strong control of experimentwise error rate

To conduct the simultaneous tests for B = {H0,m : � + 1�m�k}, assert not H0,m (i.e., assert HA,m),

if RLNVS
m is true. (3.2)

Notice two facts: (i)B is closed under the operation of intersection and (ii) for each �+1�m�k, RLNVS
m =⋂k

i=mRLNVS
i

is a level-� test for H0,m. Therefore, the experimentwise error rate is no greater than � by the closed test procedure
proposed by Marcus et al. (1976). In summary, we have the second main result below.

Theorem 3. The rejection region RLNVS
m increases when m gets larger, and each defines a level-� test for H0,m. If one

conducts simultaneous tests for B using (3.2), then the experimentwise error rate is controlled at � in the strong sense.

4. Discussion

In this paper, a stochastic ordering is established for the ratios of order statistics of non-central chi-squared distributed
random variables. With this result and the assumption of effect sparsity, we construct a step-up simultaneous testing
procedure such that its least favorable distribution is located at �m and it strongly controls experimentwise error rate
for testing a sequence of null hypotheses regarding the number of zero effects in orthogonal saturated designs.
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All theorems proved in this paper hold for any value of �. Therefore, there is no need for “assumption of effect
sparsity” regarding the result on the experimentwise error rate. However, the choice of � does affect the cutoff points.

The step-up testing procedure considered in this paper is called step-up test with sequential scaling by Venter and
Steel (1998). However, we are unable to prove similar results for the step-up procedure with fixed scaling, which is
based on R

†
m =⋃m

i=�+1{T�,i > c
†
i }. Even though the test seems to be simpler because it always uses X̄� to estimate

�2, but we cannot establish the stochastic ordering for the random vector (T�,�+1, T�,�+2, . . . , T�,m). Fortunately, the
step-up tests with sequential scaling are usually more powerful than the ones with fixed scaling. Other variants of the
step-up tests, including “Q vector”, were proposed in Langsrud and Naes (1998). Again, whether these procedures
control the experimentwise error rate is open.
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Appendix A. Proof of Theorem 1

The proof is based on probability inequalities on coordinatewise ordered spaces. In particular, we rely on the following
property, which is a special case of Proposition 1 in Kamae et al. (1977).

Theorem 4. Let p(x, y) and q(x, y) be the two densities with marginals p1(x) and q1(x), and conditional probability
distributions p(y|x) and q(y|x), respectively. Suppose p1(x) ≺ q1(x) and p(·|x) ≺ p(·|x′) ≺ q(·|x′) for x�x′, then
p(x, y) ≺ q(x, y).

W.l.o.g., assume � = 1 because the distribution of T depends on �i/�. Let 	(x) and 
(x) be the pdf and cdf of
standard normal distribution, then �̂2

i has cdf G�i
(x)=
(

√
x+�i )+
(

√
x−�i )−1 and pdf g�i

(x)= 1
2x−1/2[	(

√
x+

�i ) + 	(
√

x − �i )]. Also to simply the notation, let f (x) = g0(x) = x−1/2e−x/2/
√

2� and F(x) = G0(x). Recall that

Xi is the ith order statistics of �̂2
j , 1�j �k. If we define Wi =

∑i
j=1 Xj

Xi+1
= i/Ti,i+1, then Theorem 1 is equivalent to

show that W = (W1, . . . , Wm−1) is stochastically smallest at �m among H0,m.
First, we derive the absolute Jacobian for transformation from (X1, . . . , Xn, Xn+1, . . . , Xm) to (W1, . . . , Wn, Zn+1,

. . . , Zm), where Zi = 1/Xi .

Lemma 1. Jn(w, z) = | det �(x1,...,xn,xn+1,...,xm)

�(w1,...,wn,zn+1,...,zm)
| =∏n−1

i=1 ( 1
wi+1

∏n
j=i+1

wj

wj−1+1 ) 1
zn+2
n+1

∏m
i=n+2

1
z2
i

.

Proof. Let ui = xi

xi+1
, in other words xi = (

∏n
j=iuj )/zn+1. Hence �(x1,...,xn,xn+1,...,xm)

�(u1,...,un,zn+1,...,zm)
has diagonal elements dxi

dui
=

(
∏n

j=i+1uj )/zn+1, i�n− 1; dxn

dun
= 1/zn+1; dxi

dzi
=−1/z2

i , i�n+ 1; and all of its lower triangular elements are equal
to zero. Therefore,

∣∣∣∣det
�(x1, . . . , xn, xn+1, . . . , xm)

�(u1, . . . , un, zn+1, . . . , zm)

∣∣∣∣=
n−1∏
i=1

⎛
⎝ n∏

j=i+1

uj

⎞
⎠ 1

zn+2
n+1

m∏
i=n+2

1

z2
i

.

Similarly, since ui = wi

wi−1+1 , all upper triangular elements of �(u1,...,un,zn+1,...,zm)

�(w1,...,wn,zn+1,...,zm)
are equal to zero. Consequently,

∣∣∣∣det
�(u1, . . . , un, zn+1, . . . , zm)

�(w1, . . . , wn, zn+1, . . . , zm)

∣∣∣∣=
n−1∏
i=1

1

wi + 1
.

The proof completes because Jn(w, z) = | �(x1,...,xn,xn+1,...,xm)

�(u1,...,un,zn+1,...,zm)
| | �(u1,...,un,zn+1,...,zm)

�(w1,...,wn,zn+1,...,zm)
|. �
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Now, we are ready to prove Theorem 1, which is a special case of the following:

Lemma 2.

(W1, . . . , Wn, Zn+1, . . . , Zm)|�m ≺ (W1, . . . , Wn, Zn+1, . . . , Zm)|�, (A.1)

for all 1�n�m − 1 and � ∈ H0,m.

Proof. We prove Lemma 2 by an induction on n.
First we derive the densities of the two distributions at �m and �. Under �m, random vector (X1, . . . , Xm) has pdf

m!∏m
i=1f (xi) for 0 < x1 �x2 � · · · �xm < ∞. Apply transformation

wi =
∑i

j=1 xj

xi+1
, i�n, zi = 1/xi, i�n + 1,

we have

xi =
⎡
⎣ n∏

j=i

wj

wj−1 + 1

⎤
⎦ 1

zn+1
, i�n, xi = 1/zi, i�n + 1.

Thus (W1, . . . , Wn, Zn+1, . . . , Zm) has a pdf

p(w, z) = m!
n∏

i=1

f

⎛
⎝ 1

zn+1

n∏
j=i

wj

wj−1 + 1

⎞
⎠ m∏

i=n+1

f (1/zi)Jn(w, z), (A.2)

over the domain D = {(w, z) : 0 < wi �wi−1 + 1, i�n; ∞ > zn+1 � · · · �zm > 0} with w0 = 0. On the other hand,
under parameter configuration �, random vector (X1, . . . , Xm) has pdf

∑
�

[
m∏

i=1

gti (xi)

]⎡⎣ k∏
i=m+1

(1 − Gti (xm))

⎤
⎦ , 0 < x1 �x2 � · · · �xm < ∞, (A.3)

where summation is over all permutations of {�1, . . . , �k} (�=(t1, t2, . . . , tk)). Hence (W1, . . . , Wn, Zn+1, . . . , Zm)|�
has pdf

q(w, z) =
∑
�

⎡
⎣ n∏

i=1

gti

⎛
⎝ 1

zn+1

n∏
j=i

wj

wj−1 + 1

⎞
⎠ m∏

i=n+1

gti (1/zi)

k∏
i=m+1

(1 − Gti (1/zm))

⎤
⎦ Jn(w, z), (A.4)

over region D.
Next we prove the stochastic ordering (A.1) for n = 1.
Since (z1, . . . , zm)|�m ≺ (z1, . . . , zm)|� due to the Stochastic Ordering Lemma, see, for example, Lemma 2 in Wu

and Wang (2007), it is obvious that the marginal distributions satisfy (z2, . . . , zm)|�m ≺ (z2, . . . , zm)|�. And in this
case, we have

p(w, z) = m!f
(

w1

z2

) m∏
i=2

f (1/zi)J1(w, z),

q(w, z) =
∑
�

⎡
⎣gt1

(
w1

z2

) m∏
i=2

gti (1/zi)

k∏
i=m+1

(1 − Gti (1/zm))

⎤
⎦ J1(w, z). (A.5)

This, along with the facts that (1) J1(w, z′)/J1(w, z) does not depend on w; (2) f (w
z′ )/f (w

z
) is non-decreasing in w

when z�z′; and (3) gt1(
w
z′ )/f (w

z′ ) is non-decreasing in w, we conclude that both p(w1|z′)
p(w1|z) and q(w1|z′)

p(w1|z′) are non-decreasing
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functions of w1 when z�z′. Therefore, we have p(w1|z) ≺ p(w1|z′) ≺ q(w1|z′), and the inequality (A.1) follows
Theorem 4 for n = 1.

Lastly, suppose the stochastic ordering (A.1) holds for n. Then the marginal distributions satisfy

p(w1, . . . , wn, zn+2, . . . , zm) ≺ q(w1, . . . , wn, zn+2, . . . , zm). (A.6)

In addition, (W1, . . . , Wn, Wn+1, Zn+2, . . . , Zm) has densities

p(w, z) = m!
n+1∏
i=1

f

⎛
⎝ 1

zn+2

n+1∏
j=i

wj

wj−1 + 1

⎞
⎠ m∏

i=n+2

f (1/zi)Jn+1(w, z),

q(w, z) =
∑
�

⎡
⎣n+1∏

i=1

gti

⎛
⎝ 1

zn+2

n+1∏
j=i

wj

wj−1 + 1

⎞
⎠ m∏

i=n+2

gti (1/zi)

k∏
i=m+1

(1 − Gti (1/zm))

⎤
⎦ Jn+1(w, z), (A.7)

under parameter configurations �m and �, respectively. Therefore,

p(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m)

p(wn+1|w1, . . . , wn, zn+2, . . . , zm)
= A(w′

1, . . . , w
′
n, w1, . . . , wn, z′, z)

n+1∏
i=1

⎡
⎢⎢⎢⎢⎣

f

(
wn+1

z′
n+2(w

′
n−1 + 1)

∏n
j=i

w′
j

w′
j + 1

)

f

(
wn+1

zn+2(wn−1 + 1)

∏n
j=i

wj

wj + 1

)
⎤
⎥⎥⎥⎥⎦ .

Note that

n+1∏
i=1

f

⎛
⎝ 1

zn+2

n+1∏
j=i

wj

wj−1 + 1

⎞
⎠= B(w1, . . . , wn, zn+2)w

−1/2
n+1 e−wn+1/(2zn+2),

then

p(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m)

p(wn+1|w1, . . . , wn, zn+2, . . . , zm)

is a non-decreasing function of wn+1 when zn+2 �z′
n+2. Consequently, we have

p(wn+1|w1, . . . , wn, zn+2, . . . , zm) ≺ p(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m), ∀zn+2 �z′

n+2. (A.8)

Consider the ratio

q(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m)

p(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m)

= C(w′
1, . . . , w

′
n, z′)

∑
�

n+1∏
i=1

⎡
⎢⎢⎢⎢⎣

gti

(
wn+1

z′
n+2(w

′
n−1 + 1)

∏n
j=i

w′
j

w′
j +1

)

f

(
wn+1

z′
n+2(w

′
n−1 + 1)

∏n
j=i

w′
j

w′
j +1

)
⎤
⎥⎥⎥⎥⎦ .

As a function of wn+1, this ratio is non-decreasing since each gti (x)/f (x) is non-decreasing. Therefore,

p(wn+1|w′
1, . . . , w

′
n, z

′
n+2, . . . , z

′
m) ≺ q(wn+1|w′

1, . . . , w
′
n, z

′
n+2, . . . , z

′
m). (A.9)

Combining (A.6), (A.8) and (A.9), the inequality (A.1) follows Theorem 4. �
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