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Abstract— Rapid serial visual presentation (RSVP) tasks, in
which participants are presented with a continuous sequence
of images in one location, have been used in combination with
electroencephalography (EEG) in a variety of Brain-Machine
Interface (BMI) applications. The RSVP task is advantageous
because it can be performed at a high temporal rate. The
rate of the RSVP sequence is controlled by the stimulus
onset asynchrony (SOA) between subsequent stimuli. When
used within the context of a BMI, an RSVP task with short
SOA could increase the information throughput of the system
while also allowing for stimulus repetitions. However, reducing
the SOA also increases the perceptual degradation caused by
presenting two stimuli in close succession, and it decreases
the target-to-target interval (TTI), which can increase the
cognitive demands of the task. These negative consequences of
decreasing the SOA could affect on the EEG signal measured
in the task and degrade the performance of the BMI. Here
we systematically investigate the effects of SOA and stimulus
repetition (r) on single-trial target detection in an RSVP task.
Ten healthy volunteers participated in an RSVP task in four
conditions that varied in SOA and repetitions (SOA=500 ms,
r=1; SOA=250 ms, r=2; SOA=166 ms, r=3; and SOA=100 ms,
r=5) while processing time across conditions was controlled.
There were two key results: First, when controlling for the
number of repetitions, single-trial performance increases when
the SOA decreases. Second, when the repetitions were com-
bined, the best performance (AUC=0.967) was obtained with the
shortest SOA (100 ms). These results suggest that shortening
the SOA in an RSVP task has the benefit of increasing the
performance relative to longer SOAs, and it also allows a higher
number of repetitions of the stimuli in a limited amount of time.

I. INTRODUCTION

Brain-machine interfaces (BMIs) based on the detection of
event-related potentials (ERPs) in the electroencephalogram
(EEG) signal require a task that evokes a consistent response
that can be decoded reliably and quickly. Many tasks and
paradigms have served as the basis for BMIs, but one that has
been used a lot in the recent literature is rapid serial visual
presentation (RSVP) [1]–[7]. In an RSVP task, a sequence
of stimuli is presented at a single location (e.g., fixation
point). Each individual stimulus in the sequence is presented
briefly, and then is replaced by the next item in the sequence.
Typical BMI variants of the RSVP require participants to
attend to the sequence, and monitor for rare target stimuli
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that require a response, or are simply to be counted amongst
more frequently occurring non-target stimuli.

Despite the advantages of the RSVP tasks for BMI, they
have low information transfer rate (ITR) [8], due to the
poor accuracy that is achieved for single-trial detection.
Increasing the ITR remains one of the many challenges that
must be addressed before BMIs could become an effective
tool for high behavioral performance of healthy people. The
ITR depends on both the time that is used for evoking a
brain response and also the performance of the classifier for
detecting the brain evoked response. Hence, it is important to
manage the right tradeoff between the time that is required
to present a visual stimulus, which should evoke a brain
response depending on the type of stimulus, and the classifier
accuracy.

There are three main parameters of the RSVP task that
could influence ITR, and are independent of the classi-
fier performance for single-trial detection: the presentation
rate of the RSVP sequence, target probability, and target-
to-target interval (TTI). A natural solution for increasing
the ITR would be to increase the presentation rate of the
RSVP sequence. The presentation rate is determined by
the stimulus onset asynchrony (SOA), and increasing the
presentation rate would require reducing the SOA between
the stimuli. The consequence of reducing the SOA would
be that more information would be presented to the ob-
server per unit time. Previous studies indicated that visual
processing needed during a go/no-go categorization task can
be achieved under 150 ms [9]. Reducing SOA has several
important implications. First, reducing the SOA increases the
perceptual difficulty of the task and increases the likelihood
for errors [10], [11]. Second, decreasing the SOA implies
decreasing the TTI. The P3 amplitude increases when target-
probability decreases, or when there is an increment in the
number of non-targets preceding the target. Reductions in
the TTI reduce the amplitude of the P3, and reductions
in P3 amplitude would likely result in a poor discriminant
feature in the classifier. In [12], it was suggested that ISI
and probability do not independently affect P3 amplitude and
that TTI offers a strong explanation of the reported relations
between P3 amplitude and both ISI and probability.

A second solution to increase the ITR would be to
repeat the presentation of a visual stimulus to combine
the classification scores and increase the robustness of the
decision. This strategy is often used in BMI for increasing
the detection of ERPs, like in the P300-speller [13], where
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several stimuli are presented in order to reliably select an
item.

A third solution is to combine reductions in SOA with
combining classifier scores from multiple presentations of the
same stimulus. A key hurdle to overcome in this solution is to
identify the best tradeoff between SOA and classification per-
formance. A decrease of the SOA can allow the presentation
of more images in a limited amount of time. Thus, decreasing
the SOA can be used in two ways: First, for increasing the
ITR of the BMI by decreasing the processing time, second,
for repeating the visual stimuli without sacrificing time, by
improving the detection by combining the classifier outputs
corresponding to the presentation of two identical visual
stimuli.

The purpose of the present study was to investigate the
effect of the SOA on single-trial detection during an RSVP
task and to determine the best tradeoff between the SOA and
the number of repetitions (r) for improving the performance
in a fixed amount of time. We addressed the different issues
by testing ten healthy participants during an RSVP task with
four conditions that differed in terms of the RSVP SOA, rate,
and target repetitions.

II. METHOD

A. Participants

Ten healthy subjects (5 females, mean=19.5, sd=1) were
recruited through the University of California, Santa Barbara
(UCSB) online recruitment system and received either $20
an hour or course credit for participation. All participants had
normal or corrected-to-normal vision and provided informed
consent prior to the experiment. The UCSB Human Subjects
Committee approved all procedures.

B. Visual stimuli

Visual stimuli consisted of 900 color images (683 × 384
pixel). These images were taken from “Insurgency: Modern
Infantry Combat” (Insurgency Team), a total conversion
modification of the video game “Half-Life 2” (Valve cor-
poration). The realistic images were separated into target
scenes that contained a person (300 images) and non-target
scenes that did not contain a person (600 images). Figure 1
depicts several examples of the images that were presented
during the experiments. The images were presented on a
19 inch ViewSonic E90F CRT monitor with a resolution
of 1024 × 768 pixels and a refresh rate of 60Hz. The
images were centered on the screen (visual angle ≈ 26o).
Participants were seated comfortably 60cm from the monitor
in a darkened electromagnetically shielded chamber.

Fig. 1. Examples of visual stimuli (targets (left) vs. non-target (right)).

C. Procedure and design

The RSVP task was separated into different trials. At the
beginning of each trial, a fixation cross was presented, when
the observer was ready he or she initiated the sequence
by pressing the enter button, after which the stimuli in the
RSVP sequence were presented one after another in the same
location. The task was to monitor the stream and to count
the number of targets. The visual task was designed to be
a target search for a rare item (a person in the image); the
target probability was set to 10% and constant across trials.
Each trial contained ten different images, one of them being
a target. When there was the repetitions of the visual stimuli,
images were presented in the same order for each repetition
(0 ms interstimulus interval).

Each subject participated in an RSVP task performed
under four conditions that correspond to four different SOA
and four different number of repetition of the images. The
number of repetitions was set in relation to the frequency
rate to keep a constant processing time across conditions,
and to avoid effects related to fatigue and the different
duration of sessions. The set of parameters of the four
conditions were: SOA=500 ms, f=2 Hz, r=1; SOA=250 ms,
f=4 Hz, r=2; SOA=166 ms, f=6 Hz, r=3; and SOA=100 ms,
f=10 Hz, r=5. In the next sections, we denote by Cf,r the
different conditions where f is the frequency and r is the
number of repetitions. The parameters of the conditions were
chosen such that the presentation added up time of a single
visual stimulus is 500 ms across blocks for each of the
four conditions. Participants performed two blocks for each
condition. A block contained 100 trials, resulting in 1000,
2000, 3000, and 5000 images for the four conditions. The
number of images that were contained in each trial was 10,
20, 30 and 50 for conditions C2,1, C4,2, C6,3 and C10,5,
respectively. The order of the conditions was randomized
and counterbalanced across participants.

D. Signal acquisition

The EEG signal was measured for each subject from 32
Ag/AgCl sintered electrodes mounted in an elastic Biosemi
headcap with active electrodes. The 32 electrodes were sub-
sampled from the 10-10 system [14]. Additional electrodes
were placed at the right and left mastoids, as well as 1
cm lateral to the left and right external canthi (horizontal),
and above and below each eye (vertical) for the electro-
ocologram (EOG). A Biosemi ActiveTwo EEG amplifier was
used for recording the signal. The EEG signal was sampled at
256 Hz and referenced offline to the average mastoid signal.

E. Signal processing

To classify the brain-evoked responses corresponding to
the presence of a target or a non-target image, a set of
features were extracted from the EEG signal to determine the
presence of an ERP related to the target. To isolate the brain-
evoked response on the target, the signal was first bandpassed
filtered (Butterworth filter of order 4) with cutoff frequencies
at 1 and 10.66 Hz. After the signal was downsampled to an
equivalent of 32Hz, we considered a time segment of 625 ms
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of post-stimulus data (20 sampling points), which includes
the main ERP components (N2, P3).

The next step consisted of enhancing the relevant signal
using the xDAWN spatial filtering approach [15], [16]. In
this method, spatial filters are obtained through the Rayleigh
quotient by maximizing the signal-to-signal plus noise ratio.
The result of this process provides Nf spatial filters, that
are ranked in terms of their SSNR. For the classification,
the first four spatial filters were used. The Bayesian linear
discriminant analysis (BLDA) [17], [18] classifier was con-
sidered for the detection, with the first four spatial filters
as input. For the classification, we considered two training
conditions, because the classifier performance depends on
the number of samples that were used during training. In the
first training condition, the same number of trials were used
for each condition, this number corresponds to the number of
trials present in the first condition with only one repetition. In
the second condition, all the available trials were considered.
Indeed, for comparing the different conditions based on the
ERP features, the number of trials must be the same for
training the classifiers. However, for evaluating globally the
best target detection system based on the same calibration
time, we consider all the trials that are available in each
condition.

F. Performance evaluation

Classifier performance was evaluated by using the area un-
der the receiver-operator characteristic (ROC) curve (AUC).
In addition, we also consider the evaluation of how the
images are ranked because RSVP task can be used for the
triage of images. In a block of N images that contain an
image representing a target, it is important to know how the
target image is ranked. Therefore, we determine the ranking
error as errrank, which represents the rank of the target image
after sorting the scores of the classifier in descending order. If
the target image is well detected, it will have the best score
errrank = 1, in the worst case errrank = N ; during the
experiment, N = 10 corresponds to the number of different
images per trial. Furthermore, as post-processing can be
used for the final decision, we determine the topi score
(1 ≤ i ≤ n), which indicates the accuracy by considering
the first i best images. For the statistical analysis based on
repeated measures analysis of variance (ANOVA), we report
the mean (M), standard error of the mean (SEM), repeated
measures t-statistic (t), p-value (p).

III. RESULTS

A. Single-trial detection

For comparing single-trial trial performance across con-
ditions, we first report the performance by considering
the training condition with the same number of trials for
each condition. SOA had a significant effect on classi-
fier performance (F (3, 9) = 13.73, p < 10e − 5), with
M=0.707 (SEM=0.028) for C2,1, M=0.813 (SEM=0.019)
for C4,2, M=0.812, (SEM=0.017) for C6,3, and M=0.835
(SEM=0.018) for C10,5. Post-hoc t-tests after a Bonferoni
correction revealed that single-trial detection was better with

C4,2 than C2,1 (t9 = 4.643, p = 0.012), the same way C6,3

was better than C2,1 (t9=3.553, p=0.006), C10,5 was better
than C2,1 (t9 = 4.494, p = 0.0015).

We now consider all the available trials for training in
each condition, i.e., , C10,5 has five more trials than C2,1.
Classifier performance for each individual and the group
mean are shown in Figure 2. There was no difference across
conditions (F (3, 9) = 2.89, p = 0.05), with M=0.793
(SEM=0.021) for C2,1, M=0.830 (SEM=0.019) for C4,2,
M=0.823 (SEM=0.018) for C6,3, and M=0.853 (SEM=0.018)
for C10,5. These results show that it is possible to decrease
the SOA to 100 ms during an RSVP task without any
significant decrease a performance.

Fig. 2. AUC corresponding to single-trial detection, for each subject and
each condition. The error bars indicate the standard error of the AUC across
subjects.

B. Combined detection

The performance by considering the mean of the different
decision scores across repetitions is presented in Fig. 3. As
there is only one repetition for C2,1, the results are identi-
cal with and without combination. There was a significant
increase of the AUC by combining several trials: (F (3, 9) =
30.64, p < 10 − 9), with M=0.793 (SEM=0.066) for C2,1,
M=0.897 (SEM=0.049) for C4,2, M=0.925 (SEM=0.049) for
C6,3, and M=0.967 (SEM=0.035) for C10,5. Post-hoc t-tests
after a Bonferoni correction indicated that increasing the
number of repetitions improves target detection. Particularly,
C2,1 provides lower performance than C4,2 (t9 = 6.26,
p < 10e − 3), C6,3 (t9 = 5.18, p < 10e − 3) and C10,5

(t9 = 7.11, p < 10e − 3). Similarly, C10,5 provides better
performance than C4,2 (t9 = 5.15, p < 10e−4). The results
show that it is better to have a short SOA, and to repeat the
images, than to have a long SOA.

The error based on the rank for sorting blocks of 10
images, errrank, was 2.86 for C2,1, 1.93 for C4,2, 1.70 for
C6,3, and 1.33 for C10,5, showing that it possible to find
the target among the two highest ranked responses. The
accuracy by considering the n first best response is presented
in Figure 4. A block of columns represents the accuracy if
the target belongs to one of the n images that are supposed
to contain the target.
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Fig. 3. AUC for each subject and each condition, after combination. The
error bars indicate the standard error of the AUC across subjects.

Fig. 4. Top results across subjects and for each condition, after combination
of the decisions. The error bars indicate the standard deviation of the top
results across subjects.

IV. DISCUSSION AND CONCLUSION

This study had two goals. The first was to assess the effect
of the SOA on single-trial detection during an RSVP task
for target detection. We observed that the SOA has affected
single-trial detection, with an increase of the performance
when the SOA decreases. The second goal was to assess
tradeoff between SOA and number of repetitions to increase
the ITR during RSVP tasks. By considering experiments
conducted with a constant amount of time, we have shown
that it is better to present images at a faster rate and to repeat
the image presentations.

At the BMI application level, the results have highlighted
the advantage of considering a short SOA during an RSVP
task. An SOA of 100 ms has two advantages. First, it allows
the same performance than an SOA of 500 ms for single-trial
detection. Second, a low SOA allows the repetition of the
stimuli for increasing the performance. In application settings
where the time is limited or when the ITR shall be improved,
an SOA of 100 ms with 5 repetitions represent efficient
parameters because the condition C10,5 could provide an
accuracy over 90%. Such parameters could be applied in
other RSVP tasks, i.e., virtual keyboard, target detection
systems. While encouraging, what is unclear from our work
is whether the short SOA approach is stable over time and

whether it is robust to changes in task difficulty. Moreover,
different results may be expected during long sessions when
people cannot keep their attention for a long time. Whereas
it is possible to decrease the SOA, and to obtain good
performance with few sessions, further investigations need
to be carried out with sessions lasting several hours.

Acknowledgment

This research was supported by the Institute for Collabo-
rative Biotechnologies through contract W911NF-09-D-0001
from the U.S. Army Research Office.

REFERENCES

[1] N. Bigdely-Shamlo, A. Vankov, R. R. Ramirez, and S. Makeig, “Brain
activity-based image classification from rapid serial visual presenta-
tion,” IEEE Trans. on Neural Systems and Rehab. Eng., vol. 16, no. 5,
pp. 432–41, 2008.

[2] H. Cecotti, M. P. Eckstein, and B. Giesbrecht, “Effects of performing
two visual tasks on single-trial detection of event-related potentials,”
34nd International IEEE Conf. EMBC, pp. 1–4, 2012.

[3] H. Cecotti, M. Eckstein, and B. Giesbrecht, “Single-trial classification
of event-related potentials in rapid serial visual presentation tasks
using supervised spatial filtering,” IEEE Trans. Neural Networks and
Learning Systems, pp. 1–13, 2014.

[4] L. C. Parra, C. Christoforou, A. D. Gerson, M. Dyrholm, A. Luo,
M. Wagner, M. G. Philiastides, and P. Sajda, “Spatio-temporal linear
decoding of brain state: Application to performance augmentation in
high-throughput tasks,” IEEE Signal Process. Mag., vol. 25, no. 1, pp.
95–115, 2008.

[5] E. A. Pohlmeyer, J. Wang, D. C. Jangraw, B. Lou, S. Chang, and
P. Sajda, “Closing the loop in cortically-coupled computer vision: a
brain-computer interface for searching image databases,” J. Neural
Eng., vol. 8, p. 036025, 2011.

[6] M. G. Philiastides and P. Sajda, “EEG-informed fMRI reveals spa-
tiotemporal characteristics of perceptual decision making,” The Jour-
nal of Neuroscience, vol. 27, no. 48, pp. 13 082–91, 2007.

[7] J. Touryan, L. Gibson, H. J. Horne, and P. Weber, “Real-time mea-
surement of face recognition in rapid serial visual representation,”
Frontiers in Psychology, vol. 2, no. 42, pp. 1–8, 2011.

[8] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and
T. M. Vaughan, “Brain-computer interfaces for communication and
control,” Clin Neurophysiol, vol. 113, pp. 767–791, 2002.

[9] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–2, 1996.

[10] K. H. Kim, J. H. Kim, J. Yoon, and J. K. Y, “Influence of task difficulty
on the features of event-related potential during visual oddball task,”
Neuroscience Letters, vol. 445, no. 2, pp. 179–83, 2008.

[11] W. Prinzmetal, A. Zvinyatskovskiy, P. Gutierrez, and L. Dilem, “Vol-
untary and involuntary attention have different consequences: The
effect of perceptual difficulty,” The quaterly journal of experimental
psychology, vol. 62, no. 2, pp. 352–369, 2009.

[12] R. J. Croft, C. J. Gonsalvez, C. Gabriel, and R. J. Barry, “Target-to-
target interval versus probability effects on P300 in one-and two-tone
tasks,” Psychophysiology, vol. 40, pp. 322–328, 2003.

[13] L. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials,”
Electroencephalogr. Clin. Neurophysiol., vol. 70, pp. 510–523, 1988.

[14] F. Sharbrough, G. Chatrian, and R. P. e. a. Lesser, “Guidelines for
standard electrode position nomenclature,” Bloomfield, IL: American
EEG Society, 1990.

[15] B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN algorithm
to enhance evoked potentials: application to brain-computer interface,”
IEEE Trans Biomed Eng., vol. 56, no. 8, pp. 2035–43, 2009.

[16] H. Cecotti, B. Rivet, M. Congedo, C. Jutten, O. Bertrand, E. Maby, and
J. Mattout, “A robust sensor selection method for P300 brain-computer
interfaces,” J. Neural Eng., vol. 8, p. 016001, 2011.

[17] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4,
no. 3, pp. 415–447, 1992.

[18] U. Hoffmann, J. Vesin, K. Diserens, and T. Ebrahimi, “An efficient
P300-based brain-computer interface for disabled subjects,” Journal
of Neuroscience Methods, vol. 167, no. 1, pp. 115–125, 2008.

1285


