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Abstract

Many computing systems include mechanisms de-
signed to defend against sudden catastrophic losses
of computational state, but few systems treat such
losses as the common case rather than exceptional
events. On the other end of the spectrum are tran-
siently powered computing devices such as RFID
tags and smart cards; these devices are typically
paired with code that must complete its task un-
der tight time constraints before running out of en-
ergy. Mementos is a software system that transforms
general-purpose programs into interruptible compu-
tations that are protected from frequent power losses
by automatic, energy-aware state checkpointing. Me-
mentos comprises a collection of optimization passes
for the LLVM compiler infrastructure and a link-
able library that exercises hardware support for en-
ergy measurement while managing state checkpoints
stored in nonvolatile memory. We evaluate Memen-
tos against diverse test cases and find that, although
it introduces time overhead of up to 60% in our
tests versus uninstrumented code executed without
power failures, it effectively spreads program execu-
tion across zero or more complete losses of power
and state. Other contributions of this work include a

∗This tech report UM-CS-2010-060 expires March 7, 2011.
The final version will appear at the Sixteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2011) that month.

trace-driven simulator of transiently powered RFID-
scale devices.

1 Introduction

Recent demand for tiny, easily deployable comput-
ers has driven the development of a new class of
general-purpose transiently powered computers that
lack both batteries and wired power, operating ex-
clusively on energy harvested from remote supplies
or environmental phenomena. Examples of tran-
siently powered computers range from computational
RFIDs [2]—microcontroller-based devices that har-
vest RF delivered by readers and communicate via
RFID protocols—to general-purpose batteryless sen-
sor devices [39].

Transiently powered computing poses unique chal-
lenges to program execution. Conventional RFID
tags, which are transiently powered but do not sup-
port general-purpose computation, typically use sim-
ple state machines because of limited energy avail-
able from radio-frequency (RF) harvesting. Contact-
less smart cards perform more complicated special-
purpose computations but suffer from similar energy
limitations; they offer no guarantees unless the card is
placed under specific physical conditions for a certain
amount of time. When energy consumption outpaces
energy harvesting, these devices fail to complete their
computations and must accumulate electrical charge
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before restarting their computations from scratch.
Thanks to the availability of ultra-low-power mi-

crocontrollers, transiently powered devices can now
perform limited computation and sensing under
RFID-scale energy constraints. However, these pro-
grammable microcontrollers require so much more
power than conventional RFID circuitry that RFID-
scale devices are not able to fully exploit general-
purpose computation. For applications such as cryp-
tography to run on these devices [9], programs aim
to finish all computation within a fixed time window
before a power loss, often on the order of 100 mil-
liseconds. A challenging problem is how to perform
general-purpose computation on RFID-scale devices
that lose power frequently rather than occasionally.

Mementos is a software system that combines
compile-time instrumentation and run-time energy-
aware state checkpointing to enable long-running
computations to span power loss events. It instru-
ments code at compile time, inserting calls to Me-
mentos functions that estimate available energy. At
run time, Mementos uses energy estimates to pre-
dict power losses and copies computational state to
nonvolatile memory. It restores computational state
when recovering from a power loss and prevents pro-
grams from having to restart execution from scratch.

This paper contributes the following:
1. An energy-aware state checkpointing system

that splits program execution across multiple
lifecycles on transiently powered RFID-scale de-
vices. The state checkpointing system, which re-
quires no hardware modifications to existing de-
vices, operates automatically at run time with-
out user intervention.

2. A suite of compile-time optimization passes that
insert energy checks at control points in a pro-
gram. The optimization passes implement three
different instrumentation strategies for compat-
ibility with programs of different structure.

3. A trace-driven simulator to evaluate the behav-
ior of programs on transiently powered RFID-
scale devices. The simulator, modeled after a
prototype hardware device with an off-the-shelf
microcontroller, takes executable code as input
and simulates power loss events during runs.

The compile-time analysis and program transfor-
mation components of Mementos are built on the
LLVM compiler infrastructure [18]. Our simulation
of a transiently powered device is implemented as a
set of enhancements to MSPsim [12] and is guided
by the hardware parameters of a WISP [33] (Revi-
sion 4.1) prototype computational RFID.

Applications. Mementos is an enabling tech-
nology for long-running or computationally intensive
applications on transiently powered devices. Tran-
siently powering an RFID-scale computer is appro-
priate in environments that are hostile to batteries
and tethered power. Applications of transiently pow-
ered computers include environmental monitoring for
which batteries are difficult to replace, insect-scale
wildlife tracking for which batteries are too heavy
to carry, and implantable medical devices for which
recharging a battery could generate heat that dam-
ages surrounding tissue. Mementos aims to enable
new applications by extending the computational ca-
pabilities of transiently powered computers beyond
simple programs.

An example of a long-running application that
could benefit from Mementos’s automatic checkpoint-
ing is compressive sensing [8]. Prototype RFID-scale
devices provide sensors for physical phenomena such
as temperature, acceleration, and light—all of which
may exhibit informative trends over time spans larger
than a few seconds. Compressive sensing maintains
a set of frequently updated variables in memory that
collectively represent a sparse, compressible signal,
preserving the structure and information of the signal
with high probability. By providing automatic state
checkpointing, Mementos would enable a compressive
sensing program to accumulate measurements over
many lifecycles interspersed with power loss events.
Section 5 includes an evaluation of Mementos on a
simplified sensing application that cannot complete
in a single lifecycle of our trace-driven simulator.
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Figure 1: Because energy harvesting is fickle, energy availability may be difficult to predict on a transiently powered
computer (TPC), threatening the successful completion of long-running programs. These plots show capacitor voltage
on a prototype TPC during three slow human perambles within two meters of an RFID reader. When its capacitor’s
voltage falls below 1.8 V, this TPC loses volatile state regardless of whether it has completed its task.

2 Computing on Transient
Power

Several platforms at various stages of maturity have
been developed for batteryless, RFID-scale, tran-
siently powered computing. The WISP [33], in-
troduced in 2006, relies on an MSP430 microcon-
troller [37] for computation and harvests energy from
(and communicates with) off-the-shelf RFID readers.
The SoCWISP [27] is a WISP-like platform imple-
mented as a custom chip with an active area of only
2.0 mm2; it is designed to be lightweight enough for
attachment to small animals and insects in flight.
The BlueDevil WISP [38] is based on the WISP de-
sign and includes a similar microcontroller but uses a
different analog frontend for RF harvesting and com-
munication. EnHANTs [13] is a nascent platform
that its designers intend to position (figuratively) be-
tween RFID and sensor motes. All share the goal
of enabling general-purpose computation under tran-
sient power.

Transiently powered computers have been pro-
posed for a variety of sensing and computation appli-
cation, including environmental monitoring [14], ac-
tivity recognition [15], and cryptographic protocols.
Constantly powered mote-class devices such as the
Telos mote [31] offer the same computation and sens-
ing capabilities but import major limitations on de-
ployability because of their size, weight, and mainte-
nance cost—all three because of these motes’ depen-
dence on batteries. For many applications, a tran-

siently powered device provides the benefits of pro-
grammability and general-purpose computing with-
out the drawbacks associated with more powerful
mote-class devices.

Despite their benefits, designing and deploying
transiently powered systems is challenging. By defi-
nition, these systems cannot depend on a continuous
supply of power. Figure 1 illustrates typical fluctua-
tions in supply voltage that occur under RF energy
harvesting. Prototype transiently powered systems
at the scale of RFID tags, such as the WISP, employ
capacitors that serve as short-term energy buffers.
For a sense of scale, consider that a WISP’s 10 µF
capacitor can store roughly 100 microjoules, whereas
a Telos sensor mote’s two AA batteries can store over
20,000 joules—200 million times more.

The amount of energy harvested from RF, solar,
and other sources varies widely and is difficult to pre-
dict [28, 40]—a problem often compounded by device
mobility. The result is that, unlike traditional com-
puting systems, transiently powered systems experi-
ence power failure and the consequent loss of com-
putational state as a rule, not as a rare exception.
Previous work using a WISP has noted that com-
plete power failures every ∼100 ms are a reasonable
expectation. Under these conditions, long-running
programs may rarely or never be allowed to run to
completion, instead restarting their work every time
they regain the ability to run. In the context of tran-
siently powered devices, we refer to such long-running
programs as Sisyphean tasks.1

1In Greek mythology, Sisyphus was the first king of
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A key to solving the problem of Sisyphean tasks on
RFID-scale devices is that many general-purpose mi-
crocontrollers, notably the MSP430 found on WISP-
derived devices, feature nonvolatile memory that can
be written to at run time. The most common form
of on-chip nonvolatile memory is flash memory, typ-
ically available on prototype RFID-scale devices in
the amount of several kilobytes. Four complications
make it nontrivial to use flash memory for checkpoint
storage. First, even small flash memories are coarsely
divided into segments. Each segment must be erased
all at once, and erasing a segment requires energy
comparable to filling the entire segment with data.
Second, flash memories have a one-way property:
once a bit is set to 0, the only way to set it back to 1 is
to erase—i.e., set to 1—the entire segment that con-
tains the bit in question. Another asymmetry is that
flash reads are nearly as fast as volatile RAM reads,
but flash writes are two orders of magnitude slower.
Finally, many microcontrollers use flash memory for
program storage, which limits the amount of non-
volatile storage available for other purposes.

3 Design of Mementos

The key observation motivating the design of Memen-
tos is that it is difficult to predict the behavior of en-
ergy harvesting on a transiently powered RFID-scale
computer. For example, devices that harvest energy
from RFID readers are subject to fluctuations in volt-
age (Figure 1) that are highly dependent on the op-
erating environment and the device’s physical orien-
tation. With the advent of programmable, general-
purpose transiently powered computing comes a need
for general-purpose power failure recovery mecha-
nisms. Without general-purpose mechanisms, pro-
grams on these devices must either finish quickly—
not always an option—or include potentially com-
plicated application-specific logic to manage their
own computational state. The goal of Mementos
is to furnish transiently powered RFID-scale devices
with system support for automatic suspension and

Corinth and a conniving malefactor. His punishment in
Tartarus was forever to repeat the task of rolling a boulder
to the top of a hill only to have it roll back to the bottom.

resumption of computational state despite contin-
ual power failures. To satisfy this goal, Memen-
tos combines compile-time program instrumentation
with run-time energy-aware checkpointing to non-
volatile memory. Table 1 provides a glossary of terms
we use in our discussion.

Mementos has two parts: a set of program transfor-
mation passes that insert energy-measurement code
at control points in a program, and a compact library
that provides state checkpointing and recovery func-
tions. Mementos can be integrated into a project’s
build system via standard means (e.g., a Makefile).

Following are Mementos’s high-level design goals.
Given the constraints of RFID-scale devices, we con-
sider the goals of minimizing overhead and maximiz-
ing efficiency to be self-evident. Section 5 evaluates
Mementos against our design goals.

Goal #1: Split programs across multiple
lifecycles. Mementos must, at run time, automati-
cally suspend and resume programs without user in-
tervention.

Goal #2: Take no shortcuts. Mementos must
not skip portions of a computation. To remain appli-
cation agnostic at run time, Mementos does not, for
example, reason about quality-of-service metrics.

Goal #3: Move energy reasoning to run
time. Past work has demonstrated that program-
mers cannot be depended upon to reason correctly
about energy [34]. In the case of transiently pow-
ered RFID-scale devices, reasoning about run-time
energy availability at compile time may be impossible
because of inconsistent harvesting and limited com-
putation available for prediction. Mementos imple-
ments run-time energy estimation methods, and its
compile-time instrumentation inserts energy checks
that prevent the programmer from having to imple-
ment complex logic to deal with changing energy con-
ditions.

Goal #4: Require minimal support. Mul-
tiprogramming on RFID-scale devices would make
Mementos’s job of checkpointing state easier, but
existing operating systems—including those that
run wireless sensor nodes—are designed for larger-
memory devices that reboot relatively infrequently;
we are not aware of any transiently powered device
that offers multiprogramming or even a filesystem.
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Mementos therefore does not assume an operating
system. Additionally, Mementos requires no special
hardware support other than the ability to measure
the voltage of the platform’s energy buffer. Circuitry
for voltage measurement is common on computing
devices that operate on batteries or similar power
supplies.

3.1 Compile-Time Instrumentation

Mementos modifies programs in two ways at com-
pile time. First, it places trigger points—calls to a
Mementos library function that estimates available
energy—at control points in the program. Second, it
wraps the program’s main() function with code that
restores execution from an available checkpoint.

The goal of Mementos’s trigger-point placement is
to insert enough energy measurements so that run-
time energy trends are effectively sampled, but not
to insert so many that measurement cost predomi-
nates over execution. If it is to be general purpose,
Mementos must also be compatible with programs
that are structured in different ways. To these ends,
Mementos offers three different instrumentation op-
tions. In loop-latch mode, Mementos places a trig-
ger point at each loop latch (the back-edge from the
bottom to the top of a loop), resulting in an energy
check for each iteration of each loop in the program.
In function-return mode, Mementos places a trigger
point after each call instruction, resulting in an en-
ergy check each time a function returns. In timer-
aided mode, Mementos adds to either the loop-latch
or function-return mode a hardware timer interrupt
that raises a flag at predetermined intervals. Each
trigger point then checks the flag and proceeds with
an energy check only if the flag is up. The flag is
lowered again for the next trigger point.

Besides offering three strategies for automatic
trigger-point placement, Mementos exposes a sim-
ple API. A programmer can opt not to run any of
Mementos’s instrumentation passes and instead in-
sert trigger points manually, simply by including a
header file and placing function calls in the program.
A programmer can also call Mementos’s checkpoint-
ing function in a similar manner to skip energy checks
entirely.

3.2 Run-time Energy Estimation

At run time, Mementos estimates the energy remain-
ing in the device’s energy buffer by measuring the
energy buffer’s voltage. Microcontrollers suitable for
RFID-scale devices typically have on-chip analog-to-
digital converters that sample voltage as a proxy for
any number of environmental phenomena (e.g., tem-
perature and physical orientation); Mementos simply
makes use of this subsystem. For an ideal capacitor,
the amount of energy it presently contains (E) is de-
termined by the capacitor’s present voltage (V ) and
its fixed capacitance (C), via the following equation:
E = CV 2/2.

Each trigger point must quickly and accurately de-
cide whether to initiate a state checkpoint. Since
calculating energy from voltage may require com-
putationally intensive operations such as squaring
or floating-point arithmetic, Mementos uses voltage
measurements directly when making checkpointing
decisions: it compares the measured voltage to a
checkpoint threshold voltage. Above this voltage, Me-
mentos assumes that it does not need to write a state
checkpoint. It interprets a voltage below the thresh-
old as indicating that power failure is imminent and
begins checkpointing state.

Ideally, program state should be saved at the last
practicable opportunity before a power failure in or-
der to minimize unsaved computation. However, un-
predictable energy harvesting and the cost of saving
checkpoints make perfect failure prediction infeasi-
ble. Mementos predicts future power failures conser-
vatively by assuming that no energy will be added to
the device’s energy buffer between the trigger point
and a power failure.

3.3 Run-Time Checkpointing

Mementos provides a run-time checkpointing facility
in the form of a library to be linked against programs
that are instrumented with trigger points. When a
trigger point’s voltage check initiates a checkpoint,
Mementos copies relevant program state to non-
volatile memory along with some meta-information.
When the device resets after a power failure, Me-
mentos searches nonvolatile memory for a restorable
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Term Definition

Checkpoint A copy of program state information from which execution may be restored
after a reboot.

Trigger point A check of available energy that may cause a checkpoint.

Checkpoint threshold voltage The voltage below which Mementos turns trigger points into checkpoints.

Sisyphean task A task that exhausts the platform’s available resources each time it runs,
without finishing.

Loop-latch mode Mode in which Mementos places energy checks at loop latches.

Function-return mode Mode in which Mementos places energy checks after call instructions.

Timer-aided mode Mode in which Mementos performs energy checks only when a hardware
timer has raised a flag.

Computational RFID (or CRFID) A prototype example of an RFID-scale, general-purpose, tran-
siently powered device [2].

Lifecycle (or power lifecycle) Time during which a transiently powered device can
execute code. Mementos splits computations across multiple lifecycles.

Table 1: Terms used in our discussion of Mementos.

checkpoint and, if it finds one, copies the stored state
into volatile memory and resumes execution.

Several factors make checkpointing on RFID-scale
devices more difficult than checkpointing on more
powerful platforms. Without an operating system,
Mementos must be linked into a program destined for
the device. Mementos therefore shares all of the pro-
gram’s resources and must perform in-place check-
pointing to capture the state of the program as it was
immediately before entering the trigger point. Addi-
tionally, because of the limitations of flash memory
(discussed in Section 2 and below), safely managing
checkpoints is not a trivial concern.

In-place checkpointing. Most checkpointing
systems in the literature are designed to run on multi-
programmed operating systems (e.g., [5]) or in hard-
ware environments that support the issuance of com-
mands by other devices (e.g., [26]). Mementos runs
on RFID-scale devices that lack the resources to run
conventional operating systems and may have no elec-
trical connection to their environs. It interacts with
its host program via function calls and shares the pro-
gram’s address space, stack, registers, and globals.

Flash writes are slow and energy intensive relative

to volatile memory writes, so instead of blindly copy-
ing the entire contents of RAM in each checkpoint,
Mementos captures only the regions of RAM that are
in use at the time the trigger point is called. These
comprise the stack, whose depth can be calculated via
the stack pointer; the global variables, whose num-
ber and size are captured by Mementos in an analy-
sis pass at compile time; and the register file, which
is of fixed size and which includes the stack pointer
and program counter. In its current form, Memen-
tos does not capture the program’s executable code
because this code is typically already stored in, and
executed from, nonvolatile memory.

At checkpoint time, Mementos’s first action is to
push all of the registers onto the stack; registers tend
to change during program execution. It adjusts the
stored value of the stack pointer to adjust for the
function call that initiated the checkpoint, and it
sets the stored value of the program counter to the
return address from the checkpoint function’s own
stack frame. It then finds space for a new checkpoint
(details below). It writes at the beginning of the free
space a checkpoint size header that includes the stack
depth (minus the checkpoint function’s frame). It
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then copies to flash the saved registers, the appro-
priate portion of the stack, and all globals. Finally,
it writes a magic number that indicates the end of
the checkpoint. The location of the magic number
is trivial to calculate from the size header, which
means that Mementos can detect incomplete check-
points that are due to power failures during check-
pointing.

At boot, Mementos searches for an active check-
point (details below), then copies its contents into
volatile memory. As when checkpointing, it must
copy carefully so that it restores the saved state
rather than a mixture of the saved state and its own
state. For example, on the MSP430 architecture, it
restores the register file in descending numeric or-
der, leaving the stack pointer (R1) and the program
counter (R0) for last. Restoring the program counter
from the checkpoint implicitly transfers control to the
program where it left off.

Checkpoint management. Unlike past systems
that can exploit OS facilities to simply dump process
memory to a filesystem (e.g., libckpt [30]), Memen-
tos must manage its own checkpoint storage. The
characteristics of flash memory require special con-
sideration.

Mementos is designed to facilitate the execution of
programs from beginning to end; as a result, once a
checkpoint is successfully written to nonvolatile mem-
ory, all previous checkpoints are superseded. Memen-
tos maintains at most one active checkpoint at any
given time. At boot or when searching for free space,
Mementos uses a simple active-checkpoint search al-
gorithm: it walks a reserved region of flash mem-
ory, skipping over sequentially stored valid check-
points (characterized by their ending with correct
magic numbers) and stopping when it discovers a
valid checkpoint that is followed by a byte in the erase
state (0xFF for flash).

Flash is erasable only segment-by-segment, so to
enable it to erase superseded or invalid checkpoints
without destroying active checkpoints, Mementos re-
serves two segments of flash memory to checkpoint
storage. When a checkpoint is completely written to
one of these segments, it supersedes all checkpoints
stored in the other, and so Mementos marks the other
segment erasable by zeroing its first word—an opera-

tion that cannot be reversed in flash without erasing
a whole segment. Mementos erases segments marked
erasable at two times: at boot, when energy is likely
to be plentiful in many scenarios, and when it fails
to locate a suitable location for a new checkpoint in
either segment of flash storage (i.e., during a long
lifecyle when one segment is marked for erasure and
the other is full of checkpoints).

4 Implementation

We use the LLVM compiler infrastructure [18] as a
framework for program manipulation. LLVM allows
us to formulate program manipulations as simple op-
timization passes that operate on LLVM’s interme-
diate representation of a program. Hypothetically,
by virtue of its operating on LLVM assembly code,
Mementos can instrument programs in any language
that has an LLVM compiler frontend, but we have
tested it only against C programs compiled with the
clang frontend [1].

Inspired by a prototype RFID-scale device that
is transiently powered (a WISP [33], revision 4.1),
we implemented Mementos for the MSP430 family
of low-power microcontrollers. The WISP gathers
energy and communicates on the RFID radio fre-
quency band. Its MSP430F2132 microcontroller fea-
tures 8 KB of flash memory divided into 512-byte
segments; all segments of the flash memory are indi-
vidually erasable but not partially erasable. The mi-
crocontroller supports clock rates of up to 16 MHz,
but because lower clock rates consume less energy,
the prototype’s firmware keeps the clock rate below
6 MHz. The prototype’s energy buffer is a 10 µF ca-
pacitor, a size chosen for its ability to charge to the
microcontroller’s operating voltage quickly enough to
respond to an RFID reader’s queries. An analog fron-
tend comprising an antenna and harvesting circuitry
feeds incoming harvested energy to the capacitor for
storage. We instrumented programs that we had pre-
viously written for the WISP and compiled using
LLVM.

Mementos’s LLVM passes are implemented in
C++ and comprise a total of 758 lines of code in-
cluding whitespace, comments and header files. Me-
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mentos’s run-time library comprises, counting simi-
larly, an additional 628 lines of C and inline MSP430
assembly.

Using Mementos. Integrating Mementos into an
existing project targeting an MSP430 microcontroller
involves a short sequence of steps and two choices.
Mementos provides example Makefiles.

1. Change the compiler to LLVM (for C, the clang
frontend is largely a drop-in replacement for
GCC).

2. Pass the -emit-llvm argument to the LLVM
frontend to instruct it to emit LLVM assembly
instead of object code.

3. Choose a trigger point insertion strategy
(Section 3) appropriate for the structure of the
program being modified. For example, if the
program’s primary work occurs in a loop (a
common paradigm, especially in sensing appli-
cations, cryptography, compression, and so on),
it may be appropriate to choose Mementos’s
loop-latch mode. Function-return mode may be
appropriate for programs that consist of many
function calls. Timer-aided mode may be ap-
propriate for event-driven programs.

4. Call LLVM’s opt tool to run the Mementos op-
timization passes for the desired trigger point
insertion strategy.

5. Choose a checkpoint threshold voltage
(Section 5).

6. Compile Mementos’s C source using a similar se-
quence of LLVM commands, this time omitting
the extra optimization passes.

7. Call LLVM’s linker, llvm-ld, to link the pro-
gram to Mementos.

8. Use LLVM’s llc tool to translate the linked
LLVM assembly program to target-specific as-
sembly.

9. Use an appropriate target-specific toolchain to
generate an executable.

We provide a simulator based on MSPsim [12] that
a programmer can use to debug compiled programs
and evaluate Mementos’s behavior. Section 5 details
our use of this simulator for evaluation.

Mementos is available for download via the first
author’s web page.

5 Evaluation

In this section, we evaluate Mementos’s ability to
correctly and efficiently preserve computational state
across frequent power failures. We replay mea-
sured energy conditions (10 traces) using a cycle-
accurate trace-driven simulator, to observe the im-
pact of checkpointing strategy, voltage threshold tun-
ing, and application workload on the efficiency and
overhead of Mementos. Finally, we discuss a variety
of techniques—including compression and run-time
adaptation—for improving Mementos’s performance.

5.1 Methodology and Tools

Mementos is designed with RFID-scale devices in
mind, so we developed a flexible testbed around a
simulated microcontroller modeling the one found
on a real device (a WISP [33]; see Section 4). The
WISP’s hardware parameters guide the design of our
simulations.

We augmented MSPsim [12], a cycle-accurate
MSP430 simulator that accepts MSP430 ELF bina-
ries, with a simulated capacitor that obeys the ba-
sic capacitor equations for charging and discharging.
The simulated capacitor stops and restarts execution
whenever the capacitor voltage falls below the mi-
crocontroller’s minimum operating level (1.8 V) or
returns to an operable level from an energy shortfall,
respectively; it is typical for embedded hardware to
have protection circuitry that prevents components
from operating outside their specified voltage ranges.
We added to MSPsim a notion of electrical current,
which governs the speed at which a capacitor’s en-
ergy is depleted, and associated each of the micro-
controller’s operating modes with current values we
measured from a hardware WISP’s microcontroller
using a multimeter. We made other minor changes
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to MSPsim to simulate hardware failures (e.g., pre-
serving nonvolatile memory contents across resets).

In order to simulate RFID-scale energy harvest-
ing, we extended MSPsim to accept voltage traces
recorded using real hardware. Our simulation takes
(time, voltage) pairs and adds energy to the sim-
ulated capacitor when the voltage in the trace in-
creases. We isolated a WISP’s radio-harvesting ana-
log frontend and attached it to a resistor that ap-
proximated the load of the WISP’s microcontroller
during active computation. We recorded ten volt-
age traces representing different patterns of motion
near an RFID reader. Figure 1 shows several exam-
ple voltage traces.

Test cases. Our evaluation of Mementos considers
three test cases representing common tasks for low-
power embedded systems.

The sense test case takes 64 consecutive analog-
to-digital converter samples of a simulated accelerom-
eter and computes the minimum, maximum, mean,
and standard deviation of the samples, then stores
these statistics to nonvolatile memory. Such compu-
tations are common in sensing applications that sam-
ple environmental phenomena. The sense program
consists of two platform-specific functions—setup()

and sense()—and several loops to perform com-
putations (including division and square root). In
loop-latch mode, Mementos instruments three loop
latches, one in the sensing function and two in sta-
tistical computations. In function-return mode, Me-
mentos instruments four function returns, one for
each of the aforementioned platform-specific func-
tions and one each for division and square root. The
median and mean checkpoint size for the sense test
case was 204 bytes—large relative to RAM size be-
cause of the size of the global array that holds sensor
readings.

The crc test case computes a CRC16–CCITT
checksum over 2 KB of onboard nonvolatile memory.
Such a task is typical for devices that check the in-
tegrity of their own firmware, for example. The crc

program consists of a loop of eight calls to a CRC
function that checksums 256 bytes per call. In loop-
latch mode, Mementos instruments the loop of eight
calls as well as the outer and inner loops of the CRC
computation. In function-return mode, Mementos in-

struments only the CRC function’s return. The mean
and median checkpoint size for the crc test case were
60 bytes and 60 bytes, respectively.

The modpow test case performs eight exponentia-
tions of 16-bit integers modulo a 16-bit prime num-
ber. Modular exponentiation is a common task in
public-key cryptography, though typically with num-
bers much larger than 16 bits; lacking a large-integer
library, we did not attempt to fully implement a
public-key algorithm such as RSA. The modpow pro-
gram consists of a main loop that calls a modular
exponentiation subroutine and a loop within mod-
pow. Mementos instruments both of these loops in
loop-latch mode; in function-return mode it instru-
ments the function call within the main loop. The
mean and median checkpoint size for the modpow test
case were 95.7 bytes and 98 bytes, respectively.

We ran each of the three test cases against
many configurations of Mementos, each differing
by a small change in one configuration variable
(e.g., checkpoint threshold voltage). Our testbed
compiles each test case with each of Mementos’s
instrumentation strategies—loop-latch instrumenta-
tion, function-return instrumentation, and timer-
aided loop-latch instrumentation—producing sepa-
rate executables. For each such executable, the
testbed sets the checkpointing threshold to a succes-
sion of values from 2.0 to 3.5 volts, then runs the re-
sulting program against an energy trace in MSPsim.
For the timer-aided loop-latch version, the testbed
additionally tests a variety of timer intervals from
5, 000 to 90, 000 cycles (between 5 and 90 ms, the
latter being roughly the time the simulated capaci-
tor takes to decay from 4.5 V to 1.8 V under active
computation).

5.2 Performance and Overhead

Mementos protects computations from failures
caused by power loss, but it imposes some overhead
in terms of time and storage space. This section de-
tails our simulation results, then characterizes and
measures the overhead Mementos imposes.
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5.2.1 Correctness

The key feature of Mementos is that it enables
computations to complete despite intervening power
losses. Figure 2 illustrates the operation of Memen-
tos as it supervises the execution of a crc test case
from beginning to end despite 22 such resets in our
simulator; it also zooms in on a single power lifecycle
(reset–compute–reset) from the same run.

To enable the CPU to properly resume execution
after a reset, Mementos’s checkpoints must capture
all relevant state (registers, stack, and globals) as
it was before checkpointing began. At run time,
the simulator watches for entry to and exit from
the checkpointing function. Immediately before the
checkpointing function runs, the simulator captures
a snapshot of the CPU’s register file and RAM, a su-
perset of what Mementos captures. When the check-
pointing function returns after saving a checkpoint,
the simulator compares the saved checkpoint against
its pre-checkpoint snapshot. If the saved checkpoint
contains incorrect information, the simulator halts
execution. In a full run-through of Mementos’s test
suite against all test cases, we observed no such halts.

Because it may suffer power loss during a check-
pointing operation, Mementos exhibits defensive be-
havior that ensures correctness at a cost of time—
i.e., its precautions err on the conservative side and
may increase the amount of redundant computation
during a complete execution. Mementos’s first pre-
caution is that it writes checkpoints head first and
tail last : the first word of data it writes to non-
volatile memory contains enough length information
for a complete checkpoint to be reconstructed and an
incomplete checkpoint to be detected; the last word
it writes is the magic number that ends every valid
checkpoint. Second, if Mementos detects an incom-
plete checkpoint during recovery or next-checkpoint
location, it refuses to write any more information to
the containing segment of nonvolatile memory and
marks the segment for deletion. Mementos erases
such marked segments immediately after boot when
energy is most likely to be plentiful.

Our simulator’s accuracy derives in part from
MSPsim’s cycle-for-cycle simulation of an MSP430
microcontroller. We manually verified that MSP-

sim counted a correct number of cycles for each class
of MSP430 instruction, and after completing an un-
finished portion of MSPsim we confirmed that flash
write and erase timings were accurate. Mementos
checks capacitor voltage by reading a special mem-
ory address; we confirmed that the simulated current
draw and read timing for that address were the same
as we measured on a real MSP430. As for the sim-
ulated capacitor, we tested it under a suite of sim-
ulated electrical currents (drawn from our measure-
ments of a real MSP430 in its various modes) and
confirmed that its decay time under each regime was
accurate to within 5 ms.

In some cases, a program instrumented with Me-
mentos performs no better than an uninstrumented
program. For example, when the checkpoint thresh-
old voltage is too close to the power loss threshold
voltage (i.e., the shaded area depicted in Figure 2
becomes too narrow) and the platform does not con-
currently gather enough energy to offset the cost of
the checkpointing operation, Mementos’s checkpoint-
ing operations always fail and the program must start
from the beginning in every lifecycle. Under such
conditions the program may never complete. While
this behavior is undesirable, we do not consider it
incorrect because the energy supply is not under Me-
mentos’s control. We discuss the effect of threshold
tuning in Section 5.2.2 and suggest some appropriate
adaptations of Mementos in Section 5.3.

5.2.2 Efficiency, Tuning, and Overhead

Mementos has two tunable parameters: checkpoint
threshold voltage and checkpoint timer interval.
Checkpoint threshold voltage (Vthresh) refers to the
voltage below which Mementos takes checkpoints ev-
ery time it encounters a trigger point. Checkpoint
timer interval (Tchk), which applies only in timer-
aided checkpointing mode, refers to the interval at
which a timer interrupt (added by Mementos) raises
a flag indicating that a checkpoint should be taken
at the next trigger point if the voltage is below the
checkpoint threshold voltage. Each parameter affects
two key metrics: Mementos’s share of the total num-
ber of CPU cycles required to finish the program,
and the amount of waste from start to finish. For the
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Figure 2: Simulated voltage versus time as Mementos spreads a long-running computation across 23 power lifecycles
(22 resets). The simulated capacitor charges (dotted gray line) according to an input trace and discharges (solid black
line) during computation and storage. When capacitor voltage falls between a voltage threshold (here 2.5 V) and
the CPU’s reset threshold (1.8 V—shaded region), energy checks trigger checkpointing. The bottom plot highlights
a single power lifecycle from the top plot. Mementos uses the CPU (vertical lines) to check energy, find space for
checkpoints, collect state, and write state to flash.
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purpose of quantifying redundant computation, we
define waste or wasted work as computation done be-
fore power failure but after booting or completing a
checkpoint, whichever comes later. Intuitively, there
is no value in work whose results are not saved.

Table 2 shows the relationships among Vthresh, Me-
mentos’s share of CPU cycles, and waste for a single
test case (sense) instrumented in two different ways
(loop-latch mode and function-return mode). With-
out Mementos instrumentation, the sense test case
requires 122, 285 CPU cycles to complete. However,
when run against a voltage trace like those shown in
Figure 1, the uninstrumented program cannot com-
plete because it never receives enough energy to run
for that many cycles; this uninstrumented program
satisfies our definition of a Sisyphean task. Mementos
spreads the otherwise Sisyphean task across two or
more lifecycles, although it increases the total num-
ber of CPU cycles needed for program completion.
In Mementos’s loop-latch and function-return modes,
the number of CPU cycles increases by a factor of be-
tween 2.8 and 55.2, depending on the value of Vthresh
chosen at compile time.

Table 3 shows the effects of choosing the timer-
aided checkpointing strategy in concert with loop
latch instrumentation of the sense test case. The
missing rows in Table 3 illustrate that some timer
values are infelicitous with respect to checkpointing
this program. Because timer interrupts cause check-
points only at trigger points encountered when volt-
age is below the checkpoint threshold voltage, multi-
ples of the timer interval may simply not fall within
the appropriate region.

Practically useful values for the checkpoint thresh-
old voltage Vthresh are bounded below by the power
loss threshold voltage—1.8 V in the case of our sim-
ulator (and the minimum specified operating voltage
of an MSP430)—and the minimum checkpoint size.
Programs that keep more global state, for example,
will require higher Vthresh values to allow checkpoints
to complete. A practical upper bound is the wakeup
threshold voltage of the platform. In our simulator,
Vthresh values of 3.0 V and above elicit identical be-
havior because the simulator restarts the CPU as
soon as it charges the capacitor to 3.0 V. As Vthresh
increases, the amount of computation doable between

boot and the first checkpoint decreases, so Memen-
tos’s share of computation increases.

Overhead. Although Mementos endows RFID-
scale devices with the ability to split computations
across power failure events, it adds run-time overhead
in terms of time and code space.

Mementos’s impact on execution time is smallest
when energy is plentiful, such as when the micro-
controller is in physical contact with a power supply.
We simulated physical contact by holding the simu-
lated capacitor’s voltage above the checkpoint thresh-
old voltage. Table 4 shows these best-case execution
times for three variants of each test case. For the
sense and modpow test cases, Mementos adds only a
few thousand CPU cycles over uninstrumented ver-
sions’ execution time. For the crc test case, we ob-
serve a hazard of loop latch instrumentation: when
the loop body is small and executed many times, as is
the case for the CRC checksum, allowing Mementos
to instrument every loop latch results in a significant
slowdown.

Mementos allows programmers to selectively dis-
able instrumentation for sections of code. Appending
the token _mnotp (mnemonic: “Mementos, no trigger
points!”) to any function’s name causes Mementos to
skip the function, i.e., not instrument its loops or a
return from it. A programmer can disable instru-
mentation even for functions that are to be inlined,
which means she can direct Mementos to ignore any
piece of code she wishes. For the crc test case, a
slight restructuring—turning off instrumentation for
the CRC’s nested for-loops by putting them inside an
_mnotp function, and calling the CRC function more
often on smaller chunks of data—reduces Mementos’s
best-case time overhead in loop-latch mode by over
280, 000 cycles, from 51.0% to 0.7%.

Mementos adds space overhead in two ways: by in-
creasing code size and by reserving two flash segments
(1 KB on the MSP430) for checkpoint storage. With-
out compiler optimizations for code size, Mementos
increases executable size by a constant amount (just
under 2.4 KB) plus several bytes per instrumentation
point (for inserted function calls).
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CycM Waste
Vthresh Cycles L (% Cycles) (% Cycles)

Baseline (uninstrumented, unlimited energy)
— 122, 285 1 — 0 (0)

Uninstrumented, vs. voltage trace
— DNF — — — (100)

Loop latches instrumented, vs. voltage trace
≤ 2.3 DNF — — — (100)

2.4 469, 112 8 38.9 4.9
2.5 627, 232 9 43.0 5.0
2.6 1, 476, 209 16 41.8 7.2
2.7 1, 316, 502 17 56.3 12.8
2.8 2, 119, 688 26 57.3 16.1
2.9 6, 871, 676 73 56.6 13.2

≥ 3.0 DNF — — —

Function returns instrumented, vs. voltage trace
≤ 2.3 DNF — — — (100)

2.4 2, 325, 644 37 44.8 2.6
2.5 624, 123 9 43.1 5.1
2.6 799, 844 11 47.2 8.2
2.7 1, 381, 695 16 47.0 11.4
2.8 1, 831, 248 24 60.7 17.0

≥ 2.9 DNF — — —

Table 2: Choice of checkpoint threshold voltage Vthresh influences the run-time behavior of two variants of the
sense test case under Mementos. When Vthresh is too high, frequent checkpoints mean that Mementos dominates
CPU usage and the test case makes little or no progress during each power lifecycle. When Vthresh is too low, the
test case fails to terminate (DNF ) because checkpointing begins too to write a complete checkpoint. In between,
decreasing Vthresh tends to result in fewer CPU cycles and power lifecycles (L) to completion, a lesser share (CycM)
of CPU cycles used by Mementos, and decreased waste (as defined in Section 5.2.2). We took these measurements
in simulation against the rightmost trace in Figure 1.

5.3 Improvements

We suggest several partially implemented or unim-
plemented improvements to Mementos that may im-
prove its performance.

Techniques to reduce trigger point fre-
quency. As we observed above for the crc test case,
Mementos’s loop latch instrumentation can result in
excessively frequent trigger points when applied to
loops with small bodies and large trip counts. Detect-
ing small loop bodies and large trip counts, whether
via static analysis or profiling or a combination, may
prove useful toward reducing Mementos’s share of

CPU cycles.

Compression. Reducing checkpoint sizes has
been a concern for previous checkpointing systems;
past approaches have included memory exclusion [29]
and straightforward file compression via external pro-
grams. On an RFID-scale device with flash mem-
ory that is expensive to write and erase, Mementos
should minimize checkpoint sizes to minimize the cost
of writing them (and the amortized cost of erasing
them). However, Mementos is designed to run with-
out an operating system or filesystem, and we found
that most implementations of well-known compres-
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Tint Best Average
(ms) Vt Cycles CM W Cycles CM W

10 2.6 403, 980 24.7 5.8 2, 504, 952 45.6 11.2
20 2.8 482, 832 48.5 14.8 1, 216, 910 42.4 9.9
40 — — — — — — —
60 — — — — — — —
80 2.6 415, 481 54.0 13.1 415, 481 54.0 13.1
100 — — — — — — —

Table 3: In timer-aided checkpointing mode, Mementos raises a flag every Tint cycles to indicate that a checkpoint
should occur at the next opportunity if the voltage is below the checkpoint threshold voltage Vt. The table shows
the best-case number of CPU cycles to completion (Cycles), the percentage CM of those cycles that occurred inside
Mementos during that run, and the percentage W of cycles wasted during that run. For each timer interval, we also
show the average values over all voltages for which the program completed.

Test case variant Cycles
Overhead
(% cycles)

sense (Uninstrumented) 122, 285 —
sense+latch 125, 579 2.7
sense+return 123, 750 1.2
sense+timer 126, 214 3.2

crc (Uninstrumented) 573, 925 —
crc+latch 866, 854 51.0
crc+return 574, 442 0.1
crc+timer 906, 162 57.9

modpow (Uninstrumented) 478, 175 —
modpow+latch 479, 622 0.3
modpow+return 478, 915 0.2
modpow+timer 480, 440 0.5

Table 4: Run-time overhead of Mementos under plenti-
ful energy (simulated capacitor held at a high voltage).

sion algorithms were too large to fit in our devices’
limited code space. We have partially implemented
several custom compression schemes.

Because many programs do not use all available
registers, one promising but not fully implemented
scheme compresses the register file by using a 16-bit
bitmask to indicate which of the CPU’s 16 registers
are zero valued. During checkpointing, Mementos
walks the register file, builds the bitmap, and avoids
storing any registers that are zero valued.

We have also considered compressing full check-

points instead of just the register file; all of the op-
tions predictably traded checkpoint size for run time.
Our simulator saves checkpoints to files as it validates
them, so we used checkpoint files as inputs to com-
pression algorithms running in a separate MSP430
simulator. We implemented a reduced variant of the
WK compression algorithm [16] but found that, while
it reduced checkpoint sizes by an average of 55% for
the crc example, it required 3.5 times as many CPU
cycles as it would have taken to write the full check-
point to flash. We implemented a variant of the pop-
ular LZ compression algorithm and found that it re-
duced checkpoint sizes less than WK (30%) and was
18 times slower than simply writing the checkpoint
to flash.

A third type of compression is incremental com-
pression of checkpoints. We have not yet imple-
mented incremental compression because of the com-
plexity of doing so.

Run-time adaptations. As the rest of Section 5
illustrates in detail, compile-time tuning of Memen-
tos’s parameters can significantly change its behavior.
We have designed but not implemented schemes by
which Mementos could adapt its behavior at run time
based on its measurement of key metrics. For ex-
ample, to avoid executing time- and energy-intensive
flash erasures at the beginning of lifecycles, Memen-
tos could decrease the frequency of failed checkpoints
by including in each checkpoint header the current
value of the checkpoint threshold voltage. If Memen-
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tos were to notice an aborted checkpoint, it could
adjust the checkpoint threshold voltage as appropri-
ate. A similar technique might enable Mementos to
gradually minimize the amount of wasted work.

We have not designed an energy prediction model
for Mementos’s run-time system because we as-
sume that such a scheme would be prohibitively
time intensive. Relaxing some of our assumptions
about unpredictability might lead us to develop
lightweight prediction schemes—integer versions of
first- and second-order voltage trend approximations,
for example—that could allow Mementos to avoid
checkpointing if it believes power failure is not im-
minent.

Interrupts instead of polling. Mementos is de-
signed to work on prototype RFID-scale devices with-
out any modification to their hardware, so for maxi-
mum flexibility it polls for supply voltage. However,
Mementos’s awareness of voltage could be improved
by adding circuits that fire interrupts at salient volt-
age levels. Mementos’s checkpointing and restora-
tion functions work the same way regardless of how
Mementos detects available energy, so we expect Me-
mentos to be easily portable to hardware with these
interrupt circuits.

Sleeping when appropriate. Most microcon-
trollers have RAM-retention modes that retain pro-
cessor state and the contents of volatile memory.
Such modes typically require two orders of magni-
tude less electrical current than active-mode com-
putation, which slows—but does not stop—capacitor
drain. We designed Mementos to be useful when en-
ergy delivery is arbitrarily sporadic. Some energy-
harvesting mechanisms, such as solar panels, exhibit
sudden or prolonged periods of harvesting nothing;
in this case, Mementos’s strategy of checkpointing
to nonvolatile memory would be more suitable than
simply entering RAM-retention mode. However, we
suspect that a hybrid approach incorporating both
RAM retention and nonvolatile checkpoints would be
a fruitful avenue for improvements to Mementos.

Wear leveling for flash. Mementos is designed
to work with nonvolatile memory of any type, al-
though its present implementation is specialized for
characteristics of flash memory. A factor that com-
plicates Mementos’s use of flash memory is that seg-

ment erasure, an operation that Mementos uses in
checkpoint maintenance, causes irreversible wear to
flash cells. It is well known that flash cells can toler-
ate only 10,000 to 1 million erasures before becoming
unusable. To mitigate the effect of its bundle man-
agement scheme on flash lifetime, Mementos could be
extended to use information coding schemes to allow
rewrites without erasures [6]. Future RFID-scale de-
vices might provide nonvolatile memory in the form
of phase-change memory (PCM), magneto-resistive
RAM (MRAM) or ferroelectic RAM (FeRAM), all of
which import fewer complications and are more for-
giving with respect to erasure, but flash remains the
most widespread form of nonvolatile memory in use
today.

6 Discussion and Future Work

In this section, we discuss the use of Mementos in the
context of several alternatives an application devel-
oper might consider. We then suggest some future
extensions to Mementos.

6.1 Alternative approaches

Mementos provides automatic state checkpointing
under the assumption that manual checkpointing—
that is, incorporating state-saving code into applica-
tions at key junctures—is not, in the general case, ap-
propriate for RFID-scale devices that are transiently
powered. In particular, even under controlled con-
ditions (as in Figure 1), predicting the availability
of energy supplied via RF harvesting is notoriously
difficult [28, 40]. Radio-based devices that behave
one way in the lab tend to behave differently once
deployed. Mementos allows programmers to keep
program logic simple and unencumbered by manual
checkpointing code. Additionally, programmers are
free to manually insert calls to Mementos’s check-
pointing function if they want to guarantee that it
runs at certain points; these calls are resolved at link
time.

Another alternative is to reduce the need for check-
pointing by abbreviating computations. Many exist-
ing RFID-scale devices that perform nontrivial com-

15



putations, such as contactless smart cards, require
a minimum exposure time to ensure that their com-
putations have enough time to finish. Mementos re-
laxes this requirement by splitting program execution
across power failures. If an application requires more
time or energy than is typically available in one life-
cycle, it is appropriate to use Mementos. Instead
of suggesting that Mementos should be back-ported
onto existing devices that already perform brief com-
putations, we propose that Mementos enables new
classes of applications that perform onboard compu-
tation at RFID scale without batteries.

Recent work [3, 25] has studied the effect of pro-
gram modifications that shorten computations, often
for the purpose of saving energy, but may be precise
only within a quality-of-service (QoS) bound. These
approaches are especially appropriate when the appli-
cation’s computations are already lossy or noisy. Me-
mentos cannot in general assume that omitting part
of the computation is acceptable, so it executes every
program instruction at least once; this may make Me-
mentos unappealing if the application must merely
meet a QoS constraint.

One might ask why computation should be per-
formed on transiently powered devices at all. Our
answer is twofold: first, it is true that, for RFID-
scale devices powered by radio signals, the device
transmitting the signals is likely to have access to
more computing resources than the devices it pow-
ers. (RFID readers, for example, often connect to
PCs or run modified Linux kernels themselves.) How-
ever, outsourcing computation has significant secu-
rity and privacy implications; even if a cryptograph-
ically secure mechanism existed, the computational
cost of its cryptographic operations could overwhelm
a constrained RFID-scale device. A second reason
is that, to save power, prototype RFID-scale de-
vices use low-throughput radio hardware or facil-
itate low-throughput radio communication in soft-
ware. The difficulty of outsourcing computation via a
low-throughput channel leads us to believe that there
will continue to be a need for computation that oc-
curs on board transiently powered devices.

Alternative hardware designs. Mementos’s
simulator models an energy-harvesting computer
with parameters that match a specific prototype

RFID-scale device–viz. a computational RFID [2]—
but these parameters are trivially adjustable in soft-
ware. Gummeson et al. [14] discuss the scaling effects
of changing various hardware parameters, such as ca-
pacitor size and harvesting technique, on a related
RFID-scale device.

Other natural scaling effects are worth considering.
Trends in the density of traditional batteries suggest
that there is no analogue to Moore’s Law for batter-
ies [28]. Alternative types, such as thin-film batter-
ies, present an appealing alternative for RFID-scale
devices [13] but are not yet widely available. A fun-
damental limitation of large reserves of energy is that
they require time to fill; it is therefore reasonable to
believe that responsive RFID-scale devices will con-
tinue to have small energy buffers.

6.2 Future Work

An obvious extension to the present work is an eva-
lution of Mementos on real hardware instead of in
simulation. While we have measured our simulator’s
individual components and found them to represent
reality faithfully, we lack end-to-end measurements
from real-world applications.

We also plan to implement most of the improve-
ments listed in Section 5.3, particularly checkpoint
compression, run-time adaptation of Mementos’s be-
havior via introspection, and an extension of Memen-
tos to support the strategic use of the MSP430’s low-
power modes.

An ancillary contribution of the Mementos project
has been extensive testing of and bug fixes to LLVM’s
MSP430 backend. Ongoing work in this vein will in-
volve further testing and enhancement of appropriate
intrinsic functions.

7 Related Work

There has been a wealth of research on checkpoint-
ing at various levels of computer systems. Most of
the related work on program checkpointing adopts
a similar (if broader) approach to Mementos’s: cap-
ture relevant program state. A key difference between
Mementos and previous work is that, because of the
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kinds of devices for which it is designed, Mementos
must consider catastrophic failure to be the common
case rather than an occasional event. We group re-
lated work into general checkpointing papers and pa-
pers related to tolerating failures on small-scale de-
vices.

Checkpointing. We borrow our definition of
checkpointing from Bernstein et al. [4], who define
checkpointing as “an activity that writes informa-
tion to stable storage during normal operation in or-
der to reduce the amount of work [the system] has
to do after a failure.” Work on automatic check-
pointing has long focused on providing insurance
against occasional failures. Systems in the 1980s
and 1990s explored checkpointing for distributed sys-
tems [24, 23, 17], particularly for process migra-
tion or high-assurance computing. Checkpointing
is especially useful for systems that handle pre-
cious data or make promises about fidelity, such as
databases [4, 22] or filesystems [32, 36].

Plank et al. [30] discuss checkpointing strategies
in detail. Their portable libckpt library for UNIX
implements both automatic (periodic, checkpoint-
on-write) and user-directed checkpointing strategies.
In the terminology of libckpt, Mementos implements
sequential checkpointing, wherein the checkpoint-
ing procedure stops execution of the main program
to capture its state. Like Mementos in timer-
aided mode, libckpt automatically captures applica-
tion state (registers and RAM) at a predefined fre-
quency. Unlike Mementos, libckpt also supports in-
cremental checkpointing by using page protection
mechanisms to keep track of pages dirtied since the
last checkpoint operation. We have not implemented
a similar system because Mementos is designed to run
directly on hardware.

Previous work has considered the use of static
analysis and compile-time modifications to facilitate
checkpointing. Compiler-assisted checkpointing sys-
tems [20, 21] require users to insert checkpointing
cues into programs, unlike Mementos, although Me-
mentos shares the notion of using compile-time in-
strumentation to make programs amenable to check-
pointing. The Porch source-to-source compiler [35]
enables programs to be suspended, migrated and re-
sumed on different architectures. Porch uses compile-

time analysis to generate program-specific checkpoint
and resume functions specific to each possible stop-
ping point. We consider Porch to be too heavyweight
for Mementos’s target platforms (owing to its lofty
goals) although the checkpointing mechanism is sim-
ilar.

Also relevant, perhaps surprisingly, are checkpoint-
ing systems that work on large-scale computers.
These computers must tolerate frequent node fail-
ures, so job migration is a key feature. Bronevet-
sky et al. [5] propose a compile- and run-time system
that modifies shared-memory programs and coordi-
nates checkpointing and recovery among application
threads. Their compiler techniques are essentially the
same as Porch’s and import the same differences ver-
sus Mementos.

Checkpointing for small-scale devices. Re-
cent work in sensor networks considers the problem
of whole-network checkpointing. In fact, Österlind
et al. have used MSPsim as part of a whole-network
checkpointing system [26] that facilitates experimen-
tation on sensor networks with continuously pow-
ered sensor nodes running the Contiki operating sys-
tem [11]. They have implemented a checkpointing
mechanism that saves the entire contents of a sensor
node’s memory, plus the state of several peripher-
als, via the node’s serial port. A master node freezes
and restores nodes by issuing serial-port commands
to them. This checkpointing mechanism, essentially
a memory dump performed by an OS thread, is con-
siderably simpler than Mementos, but it is not appli-
cable to the same kinds of devices. Mementos is de-
signed to make local decisions about when and what
to checkpoint, and its goal is to enable computing
despite frequent power failures rather than migration
between testbeds.

The Neutron operating system for sensor network
nodes [10], based on TinyOS [19], performs a function
similar to that of Mementos. Neutron uses compile-
time analysis and run-time program supervision to
isolate and restart misbehaving components, includ-
ing the TinyOS kernel. It relies on TinyOS’s mul-
tithreading to isolate groups of components (called
recovery units) from one another. Neutron allows
programmers to mark “precious” state that must be
preserved across restarts of recovery units—but not
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across hardware reboots. Neutron is able to infer
recovery unit boundaries at compile time via a sim-
ple examination of a TinyOS application’s compo-
nent graph. Mementos assumes no operating system,
operates on LLVM intermediate code rather than
TinyOS programs, does not require users to mark
precious state, and must work despite reboots.

Specific to RFID-scale devices, Buettner et al. [7]
describe WISP-based RFID sensor networks (RSNs)
and the difficulty of predicting energy availability.
They suggest, but do not implement, program split-
ting as an approach to the execution of large pro-
grams.

8 Conclusions

Transiently powered RFID-scale devices enable
general-purpose computation in scenarios where en-
ergy is scarce. However, the lack of a steady supply
of energy results in frequent complete losses of power
and state. Today, programmers either write short
programs or hand-tune assembly code to ensure that
computation finishes before a power loss—severely
limiting the application space for these devices and
making programming cumbersome and error prone.

Mementos addresses the challenge of enabling long-
running programs to make steady progress on tran-
siently powered devices. It instruments programs
with energy checks at compile time and provides
automatic state checkpointing and recovery at run
time.
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