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ABSTRACT

PSNRHVS and PSNRHVSM are two new emerging image
quality assessment methods but they fail when assessing the
quality of some distorted images called as “extreme”
images. In this paper an algorithm is proposed to enhance
their performance on extreme images while keeping their
good performance on “normal” images unchanged. First,
extreme images derived from PSNRHVS are labeled with an
iterative algorithm. Then an SVM classifier is used to decide
if current images are extreme images or not. Next, region
saliency information is computed only for this kind of
images. Then region saliency information is used instead of
point saliency information in image quality assessment. We
use color, intensity and orientation to compute the saliency
of regions. We use also a face descriptor as faces play an
important role in visual perception. The algorithm that we
propose has been tested on the TID2008 database. The
results that we have obtained show that the performance on
extreme images is greatly enhanced compared with the
original PSNRHV'S.

Index Terms— image quality assessment,
saliency map, face detection, image classification.
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1. INTRODUCTION

Since several years there is a trend to assess image
quality with objective methods to decrease computing time,
and to develop real-time algorithms. Many papers proposed
image quality metrics, such as UQI, SSIM, LINLAB,
PSNRHVS, PSNRHVSM, WSNR, IFC and VSNR, which
give better results than PSNR and MSE [1-14]. But
considering the wide range of possible distortion types, none
of these metrics perform well enough. It has been shown in
[15] that with the PSNRHVS and PSNRHVSM metrics we
can nevertheless obtain excellent performance on Noise,
Noise2, Safe and Hard subsets of TID2008 database, and
that these two metrics could be recommended for evaluating
efficiency of image filtering and lossy compressing. But
both fail when assessing the quality of some distorted
images, called “extreme” images. With such images the
Mean Opinion Scores (MOS) of subjective assessments
deviates much from objective values, meanwhile for other
“normal” points, the subjective scores are consistent with
the objective scores.

The aim of this paper was first to define, next to label,
“extreme” images with an iterative algorithm. We have
shown that effectively the lower quality on extreme images
reduces much the performance of image quality metrics than
those computed for other images. We propose to use a SVM
classifier based on a RBF kernel to decide if an image,
assessed with PSNRHVS, is extreme or not. Next, in order
to enhance the performance of image quality metrics we
propose to weight these metrics with saliency region
information based on the presence of extreme images. Most
of saliency maps, such as those proposed in [16-17] are
computed, directly, at each point. Here we propose to
consider additional information, based on image content,
which characterizes the local saliency of regions. Our idea is
to consider not only the saliency of every pixel but also the
relative saliency of the current pixel in regards to its
neighboring field and to the global image.

In section 2 we present briefly PSNRHVS and
PSNRHVSM metrics, next in section 3 we define what we
call “extreme” images and we present the classification
algorithm that we propose to detect extreme images. Then,
in section 4 we propose a new image quality assessment
metrics based on region saliency. Lastly, in section 5 we
present experimental results showing that the performance
on extreme images is greatly enhanced with these new
metrics compared with PSNRHVS. Experimental results
from TID2008 database are discussed; next section 6
concludes the paper.

2. RELATED WORK AND ANALYSIS

Lacks of classical PSNR and MSE metrics are well-
known. As example, Ponomarenko et al. showed in [15] that
these metrics give the worst scores on TID2008 database
according to Spearman’s correlation and Kendall’s
correlation. The TID2008 database contains 1700 test
images [18]. More than 800 image quality subjective
assessments have been done from this database in order to
compute reliable MOS. PSNRHVS and PSNRHVSM are
two recent metrics which had been designed to improve the
performance of PSNR and MSE.

PSNRHVS divides the image into 8x8 pixels non-
overlapping blocks. Next, the difference between the
original and the distorted blocks is weighted for every 8x8
block by the coefficients of the Contrast Sensitivity
Function (CSF):


https://core.ac.uk/display/357325631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Spsnruvs(L,)) = [a(i,j) - a(ivj)]-CSFCuef(ilj) (1)

PSNRHVSM is defined in a similar way, but the difference
between the DCT coefficients is further multiplied by a
Contrast Masking metric (CM) for every 8x8 block. The
result is then weighted by the CSF . as follows:

Spsnruvsm (6, )) = ([a(i,j) — ad, H].CM (i, j)). CSFCnef(ivj) (2)

Next, a MSE metric for both PSNRHVS and
PSNRHVSM can be defined by summing differences
between the original image and its distorted version inside
blocks. The idea is therefore to divide the image into 8x8
blocks and inside each of them to compute CSF or CM
metric to improve the absolute difference in MSE and
PSNR. So all 8x8 blocks are treated independently from
each other and contribute equally to the image quality. But
the problem is that some blocks or even large regions are
more salient than others and therefore contribute more to the
image quality than other ones. So PSNRHVS and
PSNRHVSM fail to assess image quality of some images.
Figure 1 illustrates this drawback:

(d) distorted parts in image 2.

(c) distorted image 2.

Figure 1. Examples of distorted images of ‘118’ from TID2008 database.

In Figure 1 (b) the face, neck and breast part are
distorted by noise. The objective image quality of sub-figure
(b) is: 46.3db with PSNR, 33.74db with PSNRHVS and
36.3 db with PSNRHVSM. The objective quality of sub-
figure (c) is: 41.6 db with PSNR, 32.4 db with PSNRHVS
and 35.8 db with PSNRHVSM. These values show that the
quality of sub-figure (b) is better than (c). But visually
speaking (c) is better than (b) as less salient regions are
distorted.

3. EXTREME DISTORTED IMAGES ANALYSIS
3.1. Extreme Images Definition and Labeling

In theory, the output of an ideal image quality
assessment model should be consistent with subjective

score; MOS. MOS can be divided into Low, Middle and
High levels. Likewise, objective assessing scores can be
divided into small, middle and large levels (as example see
Figure 2 (a)). The consistence of subjective assessments and
objective scores is established when their correlation
coefficient is high, i.e. when most of scatter points are in the
areas A;, A; and As. In this paper, the points in the areas Ag
and Ag whose subjective score deviates much from objective
score are called “extreme” images. Here only Ag and Ay
areas are considered as sets of extreme images meanwhile
others are considered as “normal”. As example let us
consider the scatter plot of TID2008 images database, see
Figure 2 (b). According to the above description, extreme
images are underlined by red circles. Likewise, in the
following section we will show that the Spearman and
Kendall correlations also lower for these areas and that they
pull down the performance of all areas. Spearman
correlation and Kendall correlation are two important
indexes used to describe the correlation between MOS and
objective score.

small middle large

(@) Common scatter plot (b) Example with PSNRHVS-MOS.

Figure 2. Set of extreme images computed from the scatter plot.

Extreme images can be labeled according to their
belonging to areas Ag and Aq but there may be images at the
boundary of these areas, such as images between Ag and A,
for which there is an ambiguity in using this delimitation.
To avoid that case and make the extreme image selection
more robust, we propose to detect extreme images with
Spearman and Kendall correlations as follows:

Extreme Points Definition. For the set of images considered, Sy, at each
image i corresponds a point X; (mos; obj;) in the scatter plot of subjective
scores and objective values, which can be defined as extreme image or
normal image according to the following equation:
X, (mos‘.,obj‘. ) eS, if I’(mosi,objj)s I,
X,(mos,,0bj,)eS, else ®)
San = SaUSn (4)

where S, is the set of extreme images and S, is the set of normal images,
obj; is the objective score derived from image quality assessing method,
(e.g. PSNRHVS). ) is a distance function describing the correlation

between MOS and objective score.

. is an adaptive threshold which depends on the
T

results of the previous extreme images selection. In practice,
the first threshold depends of the Spearman correlation SP,



of the subset So. Next, the following thresholds r are

adjusted adaptively by the following iterative algorithm. The
selection of the next set of extreme images is based on the
computation of absolute changes of Spearman and Kendall
correlation coefficients for the current image. It is based also
on the computation of contrast changes (relative change)
between the current selection and the previous selection.
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Figure 3. Flowchart of the extreme images detection process.
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Figure 4. Example of extreme images searching.

According to the flowchart of Figure 3, the searching
algorithm of extreme images can be described by the
following pseudo code:

if (SP;> SP;.; & Ken;> Ken, ;) then As isgoodand oS¢ § ;
else
if (SP<SP.; & Ken< Ken;.; & (SP.;-SP)/ SP.;<T, & (Ken;-
Ken;)/Ken;.; < Ty) then AS S,;
else AS e S,
end
end
STEPA. check if all subsets are detected,

if all subsets have been detected go to step 5;
else Si.4=S;; go to step 2;
end

STEPS. end

STEPL. select the initial subset Sy, next check the Spearman correlation
SPyand Kendall correlation Kenof the subset S,

if (SPy >Tspyg & Keny>Tkeny) chose the current subset Sy as the initial S,
S, €8, .

else reduce the member in subset Sy, and re-check Sy,
end

% Usually SPy and Ken, can be settled as a target correlation with range
from 0to 1.

STEP2. create the current subset by extending last subset S;.; with AS as
follow: S=Si.;+AS

STEP3. check the performance of the current subset S; by calculating the
Spearman correlation SP;and Kendall correlation Ken;,

The process is repeated until all the subsets of extreme
images have been detected. As illustration see Figure 4. 7, is
an experiential threshold which describes contrast changes
(relative change) between the current selection and the
previous selection. Thanks to the above iterative searching
algorithm the extreme images in the scatter plot of
PSNRHVS can be labeled. As example, extreme images of
TID2008 images database are labeled in Figure 5 by red
points. This figure shows that most of the TID2008 images
can be considered as normal images except only few of
them. That means that PSNRHVS work well for most of
images except for images on which the distance between
MOS and objective score is higher than those of normal
images (i.e. extreme images). Moreover, the Spearman and
Kendall correlation coefficients are much lower for these
images than for normal images, as shown in Table 1.
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Figure 5. Scatter plot of PSNRHVS-MOS.

Table 1. Correlation coefficient on the TID2008 images database.

Full distortion subsets
Subset Coeficient Spearman Kendall
PSNR 0.525 0.369
PSNRHVS-FULL 0.594 0.476
PSNRHVS-NORMAL 0.88 0.7033
PSNRHVS-EXTREME 0.3896 0.2698
PSNRHVSM-FULL 0.559 0.449
PSNRHVSM-NORMAL 0.8797 0.7015
PSNRHVSM-EXTREME 0.2586 0.1843

No matter PSNRHVS or PSNRHVSM, Spearman and
Kendall correlation coefficients are high on normal subsets
and low on extreme subset. Furthermore, on full subset the
Spearman and Kendall correlation coefficients are not very
high. That means that the lower values of extreme images



pull down the average value of all images. If we can identify
extreme images then correspondingly we could enhance
their correlation coefficients, and thus the overall correlation
coefficient could be definitely raised. In this paper, we
propose to use a SVM classifier to predict which images are
extreme or normal.

3.2. Extreme Points Decision with SVM Classifier

With the above iterative algorithm, all images can be
labeled into normal subset and extreme subset thanks to
their MOS and objective scores. Then they can be used as
training dataset for any learning machine algorithm.
Usually, when we want to assess an image we have no MOS
information. In order to enhance the relevance of
PSNRHVS for such images, we propose to use a SVM
classifier to decide if the current image belongs or not to the
subset of extreme images. The idea is to improve image
quality assessment metric in adding region saliency
information to PSNRHVS, and this only for extreme
images. The flowchart of the new image quality assessment
metric based on a SVM classifier that we propose is
illustrated by Figure 6.

Training Images

SVM classifier

| H PSNRHVS!
PSNRHVSM
| in block

image quality score.

Figure 6. The flowchart of new image quality assessment metric proposed.

A two-label SVM classifier has been used with four
inputs including the PSNRHVS and the three other features
defined below. These three features have been used for
SSIM [2, 3].
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Where 4,4 ,0,,0, are the average value and standard

square error of image x and image y. The SVM used is
based on a RBF kernel and the LIBSVM toolbox has been
used to train and predict images with this classifier [19].

3.3. Image Quiality Analysis of Extreme Images

In order to show that the overall image quality deviate
much from MOS subjective score, when the quality of
salient regions of extreme images is not fully assessed, we
used the following reference images. The first image used
corresponds to the TID2008 reference image ‘114’ and to
two distorted versions of this image ‘114-17-2" and ‘114-17-
3’ (see Figure 7). This image has been used as ‘114-17-2’
and °‘114-17-3’ belong to the set of extreme images
according to the SVM classifier.

RefmcendoTOZO8 dston

(b) distorted image ‘114-17-2.

‘saliency mep with skin hue detection of 114 in TICE008

(c) distorted image ‘114-17-3".

(d) saliency map of ‘114°.

Figure 7. reference image ‘114’ and corresponding distorted images.

According to TID2008, the subjective score of “114-17-
2’ is lower than that of ‘114-17-3’, meanwhile PSNRHVS
and PSNRHVSM are higher for ‘114-17-2’ than for *114-17-
3’. For ‘114-17-2’, PSNRHVS and PSNRHVSM are 23.3
db, 23.95db. For ‘114-17-3’, PSNRHVS and PSNR-HVS_M
are 19.3db and 19.87 db. But if we look at these images, our
attention is much more focused by saliency regions, such as
face, hands etc. than by other regions (see Figure 7 (d)).
Consequently, these salient regions contribute more to
subjective image quality than other ones. When the quality
of these salient regions is acceptable, the overall image
quality is also perceived as good. For extreme images,
saliency perception influences significantly image quality
assessment. That means that for extreme images we must
more focus on saliency regions than for normal images as if
these regions have been enlarged behind a magnifying glass.
That also means that the distortions in salient regions should
be much more taken into account with high weights than
non-saliency regions, such as the “water” region in the
background of image “114°.



4. IMAGE QUALITY ASSESSMENT BASED ON
REGION SALIENCY

4.1. Saliency map with face detection

To compute the saliency we used the mixed saliency
model introduced in [20]. This saliency model is based on
three low level features (color, intensity and orientation),
such as the Itti’s saliency map model [21], and one high
level features (faces and hands), such as the Koch’s face
detection model [22]. Cerf et al. showed in [23, 24] that
faces are features which focus more attention than other
features in many images. Psychological tests have proven
that face, head or hands can be perceived by observers prior
to any other details. For this reason we have considered
faces as high level feature in our saliency map model.

The mixed saliency model based on Itti’s model and
face detection model (based on skin hue detection) can be
defined with linear weights as follow:

SM[X = f(SIm' ! S/hce) (8)

Here, the linear weights have been defined empirically from
the TID2008 database as follow:

Sux= a - S, +(L-a)-S,,. ©

For most of images containing faces, heads or hands,
we obtain better results with the mixed model (with ¢ = 3/7)

than with the Itti’s model, i.e. more accurate saliency maps.
4.2. Image Quality Assessment Based on Salient Regions

In order to analyze image quality, we propose here to
take into account regions saliency maps instead of pixels
saliency maps. First, a one-zero mark metric, B;; is defined
as follow:

B . =

L

0 if S lij)<T,

1 else (10)
Where T; is an experimental threshold that can be adaptively
adjusted accordingly to the average of S, values, and Sy;x
(i,j) is the mixed saliency value of pixel (i,;).

Next, the image is divide is divided block by block and
the saliency of the pixel A(i,) is analysed in function of its
neighboring field N(,) and relatively to the saliency of the
corresponding block (7.J) (see Figure 8). The size of
neighboring field is fixed to k£ x k pixels.

For each block (Z.J) a saliency flag ¢, | is thus defined

as follow:
(11)

8 8
é = Jalse if z ZBBIOCk([,J) GN)<T,
1,J i=1

=
true else

Where T, is an experimental threshold that can be adaptively
adjusted accordingly to the average of By, Values, and
(i,j) 1s the pixel position in the Block(l,J).

N(i,j) Current Block(1,J)
\—lé [l
A(ij)

Figure 8. Current block, current pixel and corresponding neighboring
field.

As salient regions focus more the observers’ attention
than non-salient regions, we propose to give less weight to
pixels belonging to non-salient regions. This means that the
saliency value of each pixel has to be weighted relatively to
the saliency values of pixels belonging to its neighboring
field. In this study, we have considered several weighting
functions to compute the relative saliency of the current
neighboring field, current block and current pixel.

Let us define , () and Pregion (i )) the relative saliency

degree of the current block and of the current neighboring
field as follow:

1 8 8 .
P (1, ) = (zz Syx (lv])J
SGlnbm 643 Jj=1 (12)
- - S 0Cd.
p}‘(’gion (ll ]) = L:] (13)
SGlohal
with
_ 1 k&
SLm‘al = 7ZZSMIX (i: J)
kxk T =) (14)
1 M N o
Siobat = WZZSMIX (@) (15)

i=1 j=1

Let us now define, (i, ,)and (i, j) the relative

ppixel_max
saliency degree of the current pixel as a function of its
neighboring field and of the global image.

p ; (l ]) - max{SAWIX (l’]) SM[X (l’.])}
pixel _average \*1 o [

Local S tobat )
N (A
P pixel _max @ j) = M
Star_tocal -
with
S.wax,Lom/ = maX{S‘WX @, ])‘l <k j< k} (18)

Next, to decrease the influence of non-salient regions, we
propose to compute a weighted saliency map , (;, ;) defined

as follow:

1,07) = Vs 601) | Pronin ) > T} (19)



Where T is an experimental threshold that can be adjusted
accordingly to the average of Pregonlin J) values.

As illustration, let us consider for example the reference
image ‘118’ (see Figure 1 (a)). Meanwhile the corresponding
mixed saliency map is shown in Figure 9 (a), the weighted

saliency mapw, is shown in Figure 9 (b). Comparing
Figures 9 (a) and (b), we can see that w_ better reflects the

fact that observers usually focus on the most salient parts
instead of all locally salient parts. Most salient regions
correspond to regions which are not only locally salient but
which are also salient with regards to the global image.

(a) surface plot of mixed saliency map.

(b) surface plot of W .

Figure 9. Surface plot of mixed saliency map and W, metric.

For extreme images, in order to improve the efficiency
of image quality metrics, we propose to weight image
difference metrics by taking into account salient regions
instead of salient pixels. Considering that human observers
are unable to focus on several areas at the same time and
that they assess the quality of an image firstly/mainly from
the most salient areas, we propose to weight image

difference metrics by the weighted saliency map w,

defined above. The corresponding improved PSNRHVS
metric can be computed by the following pseudo code:

While (img_num) {
if (img_num ¢ Se) {
/I for the current block of an image belonging to extreme set
fori=1:8
for j=1:8 {
if (¢N is false)

. [ CSFay (i) )
5;,“,?_,,,,1?_5(1,]):5(1,])-(*]

CSFgy (i) +1
else
If ( ( ppmlimax > T:&) & ( ppL\'eliavemge > TS) )

6PSZ\4’RIIVSS (l' /) = é‘PSNRIIV.S‘ (IV /) : C()S (l! j) '
else
5PSNR[IVSS(I" ./) = 5PSNRI[VS(’" j)'
end
end

}
}
else  PSNRHVS img mum:

img_num = img_num - I,

Where (i,j) is the position of a pixel in an 8x8 block.

The thresholds 73, T,, Tshave been empirically defined
to 15, 0.5 and 40 respectively from the TID2008 database.
In our experiments, parameters 7;, T, Ts were selected via
an exhaustive process in a 3D search space {73, T, Ts}. In
this space, every parameter T3, T, Ts was normalized to a
scale which were next separated into m sub-scales in order
to get a data gird of m® grid points. Then we have chosen in
the grid points set the best grid point (i.e. the values T3, T,
T5) with the highest performance in regards to the dataset
considered (cf. [20]).

5. EXPERIMENT RESULTS ANALYSIS

In this paper, the TID2008 database has been used to
test our image quality assessment model. TID2008 is the
largest database of distorted images intended for verification
of full reference quality metrics [18]. The TID2008 database
contains many distorted images, types of distortion and
MOS computed from numerous subjective experiments. The
TID2008 database contains 1700 distorted images (25
reference images x 17 types of distortions x 4 levels of
distortions). The MOS (Mean Opinion Score) of image
quality was computed from the results of 838 subjective
experiments carried out by observers from Finland, Italy,
and Ukraine. The higher the MOS is (0 - minimal, 9 -
maximal, MSE of each score is 0.019), the higher the visual
quality of the images is.

5.1. Experiment Results from saliency map and extreme
images classification

Thanks to extreme images detection and region saliency
map computation, the Spearman coefficients of PSNRHVS
and PSNRHVSM are remarkably enhanced on all subsets.
The two new metrics that we have proposed are called
PSNRHVS-E and PSNRHVSM-E. In Tables 2 and 3, we
can see that both PSNRHVS-E and PSNRHVSM-E metrics
improve the image quality assessment. Spearman and
Kendall correlation coefficients are enhanced by 20.2% and
15.97% on the full subset in regards to PSNRHVS.

Table 2. Spearman correlation coefficients.

Spearman coefficients

odel psnr | PSNR | PSNR A PSNR PSNR A
Subset HVS | HVS-E (%) HVSM | HVSM-E (%)
Noise 0.704 0.917 0.92 0.32 0.918 0.923 0.54
Noise2 0.612 0.933 0.937 0.42 0.93 0.932 0.21
Safe 0.689 0.932 0.937 0.53 0.936 0.94 0.42
Hard 0.697 0.791 0.845 6.82 0.783 0.831 6.13
Simple 0.799 0.939 0.946 0.74 0.942 0.946 0.42
Exotic 0.248 0.275 0.6 118.1 0.274 0.56 104.3
Exotic2 0.308 0.324 0.621 91.66 0.287 0.548 90.94
Full 0.525 0.594 0.714 20.20 0.559 0.659 17.88




For PSNRHVSM, the Spearman and Kendall
correlation coefficients are enhanced by 17.89% and
13.14% on the full subset. For the Exotic subset and Exotic2
subset, the performance is enhanced more than 85.23%. The
performance with the original PSNRHVS on Noise, Noise2
and Simple subsets etc. are quite identical, meanwhile the
performance on Exotic and Exotic2 subsets is much raised.

Table 3. Kendall correlation coefficients.

To analyze the influence of extreme images classification on
image quality assessment, we have also computed the
correlation coefficients of the PSNRHVS and PSNRHVSM
metrics enhanced by only region saliency information,
without taking into account of extreme images
classification. The corresponding Spearman and Kendall
correlation coefficients are shown in Tables 6 and 7.

Table 6. Spearman correlation coefficients on all subsets.

Kendall coefficients Model | wg | PSNR PSNR A(%) | PSNR PSNR A(%)
Model | R | PSNR PSNR A PSNR | PSNR A Subset HVS | HVSS HVSM | HVSM.S
Subsel HVS HVS-E @) | HVSM | HVSM-E | (g) Noise 0.704 0917 | 0914 032 | 0918 | 092 021
Noise 0.501 0.751 0.752 0.13 0.752 0.757 0.66 Noise2 0.612 0.933 0.863 75 0.93 0871 -6.34
Noise2 | 0.424 0.78 0.783 0384 | 0771 0.774 0.38 Safe 0.689 0932 | 092 128 | 093 | 0924 128
Hard 0.697 0791 | 0814 2.90 0783 | 0.816 421
Safe 0.486 0772 0.775 038 0.778 0.782 051
Simple 0.799 0939 | 0933 063 | 0942 | 0935 -0.74
Hard 0516 0614 0.659 7.32 0.606 0.643 6.10
Exotic 0.248 0275 | 0465 69.09 | 0274 | 0.442 61.31
Simple 0.598 0.785 0.79 0.63 0.789 0.794 063
P Exotic2 | 0.308 0324 | 0877 1636 | 0087 | 9381 15.33
Exotic 0178 0195 0.424 1174 | 0194 0391 1015 — e o5oa | 0622 VEz) 0559 | 0595 6.44
Exotic2 | 0225 0.238 0.448 88.2 0.21 0389 85.23
Full 0.369 0.476 0.552 15.96 0.449 0.508 13.14 Table 7. Kendall correlation Coeﬁicien[S.

We have computed also Spearman and Kendall correlation
coefficients on extreme images. We can see in Table 4 and 5
that these coefficients have been even enhanced by 31.5%
and 25.07% for PSNRHVSM.

Table 4. Spearman Correlation on extreme points.

Extreme subset original | Extreme subset new A (%)
PSNRHVS 0.3896 0.4353 1173
PSNRHVSM | 0.2586 034 3148

Table 5. Kendall Correlation on extreme points.
Extreme subset original Extreme subset new A (%)
PSNRHVS 0.2698 0.2982 10.53
PSNRHVSM 0.1843 0.2305 25.07

As we can see on Figure 10, the extreme images detected in
the scatter plot of modified PSNRHVS or PSNRHVSM,
(underlined by blue points) are more clustered than the
original extreme images detected (underlined by red points).
Moreover more images belong to the “ideal” region shown
in the Figure 2 (a).

Figure 10. Scatter plot for extreme images.

5.2. Experimental Results from saliency without extreme
images classification

I KT S O B ol o R D
Noise 0501 | 0.751 0.745 -0.79 0.752 0.752 0
Noisez | 0424 | 0.78 0.68 1282 | 0.771 0.689 -10.63
Safe 0486 | 0.772 0.752 -259 0.778 0.757 -2.69
Hard 0516 | 0.614 0634 3.25 0.606 0.637 511
Simple | 0598 | 0785 0773 152 0.789 0777 152
Exoic | 0178 | 0.195 0313 60.51 | 0.194 0.294 51.55
Exoticc | 0225 | 0.238 0.254 6.72 021 022 476
Full 0369 | 0476 0472 -0.8 0.449 0.455 134

The corresponding metrics based on weighted saliency
map are called PSNRHVS-S and PSNRHVSM-S. In Tables
6 and 7, A(%) describes the enhancement of performance in

regards to PSNRHVS and PSNRHVSM metrics.
Considering Spearman correlation coefficients, PSNRHVS
and PSNRHVSM perform well on Noise, Noise2, Safe,
Hard and Simple subsets of TID2008. But they don’t
perform well on Exotic and Exotic2 subsets. With the
weighted saliency map, the Spearman coefficients of
PSNRHVS and PSNRHVSM are enhanced on full subsets
but there is a little reduction on Noise2 subset. On Exotic
and Exotic2 distorted subsets, the performance of the
modified PSNRHVS and PSNRHVSM based on saliency
map are remarkably enhanced. For PSNRHVS, the
Spearman correlation coefficient on Exotic is enhanced
nearly 69.1% and the Kendall correlation coefficient nearly
60.5%. Exotic and exotic2 are two subsets with contrast
changes, i.e. shift distortions. The problem with PSNRHVS
and PSNRHVSM metrics is that they are only based on
intensity information while the improved metrics that we
propose, based on salient information, includes color
contrast, intensity and other information.

Next, we have compared the correlation coefficients
computed for all images without extreme images
classification with the results given in section 5.1. This
comparison shows that the saliency information enhances




the performance of PSNRHVS and PSNRHVSM metrics for
all images but this enhancement is not as significant as for
extreme images.

6. CONCLUSION

A novel image quality assessing method based on saliency
map and extreme images classification has been proposed in
this paper. Thanks to the enhancement of the performance of
image quality metrics for extreme images, the performance
of the image quality assessing model proposed has been
enhanced remarkably. Experiments done with the TID2008
database have shown that the new metrics proposed are
effective. The next step of our study will be focused on the
assumption that the saliency is scalable.
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