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Abstract:
Finite Element (FE) models grow in terms of detail and complexity. They strive to provide a more precise mass
and stiffness distribution in order to achieve better load prediction capabilities. However, they also need to
include damping models to achieve better results for dynamic loads analyses. This is why experiments are usually
carried out to quantify global damping ratios of the final structure and include them in the analytical model for
further calculations. Yet, especially for large aerospace structures assembled from different substructures, the
experimental determination of damping ratios for the assembled structure may be impossible or ineconomical.
Therefore, a consistent approach to predict the damping properties of assembled structures is desirable.
In this work, FE models of a laboratory test structure and its two substructures are built up. Modal tests are carried
out on the substructures. On the basis of correlated substructure modal damping ratios, global proportional
damping models are applied on substructure level in order to build proportional substructure damping matrices,
construct a nonproportional, full structure damping matrix and thus predict the damping properties for the fully
assembled structure. The approach is validated with the help of experimental results from a modal test on the
fully assembled laboratory test structure.
Because of the unsatisfactory reproduction of the substructure damping properties by the selected damping
models and the outcome for the assembled structure in this work, an additional investigation on computational
model updating of damping parameters on substructure level is carried out on a simulated plate.
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1. INTRODUCTION

Vibrations are commonly met in structures in aerospace,
as well as civil and mechanical engineering, as a re-
sult of complex dynamic loads. They contribute to a
decrease in fatigue life and can lead to functional
failure of these structures. Their properties need to be
determined and included in analytical models in order
to guarantee a safe and economical structural design
and allow further modelling of complex external and
system-dependent loads at a preliminary stage of de-
velopment.

Finite Element Analysis (FEA) procedures are exten-
sively used for the analysis of structures and the ana-
lytical calculation of dynamic structural properties. For
their application, the structure is discretised into a set
of finite elements with mass and stiffness properties.

Due to the steady performance improvements of com-
putational systems, FE models tend to grow especially
in terms of a finer structural discretisation to improve
the prediction capabilities of the model. However, they
usually do not include damping.

Damping is an important attribute in the sense that
it balances external forces, limits resonance peaks of
steady-state long-term responses and leads to a more
rapid decay of free vibrations after transient loadings.
Its inclusion would therefore improve the quality of an-
alytical models immensely. Yet, it is the most uncertain
attribute in structural dynamics, because the locations
and causes of energy dissipation in a structure are
very hard to predict theoretically. For this reason, it is
common practise to determine damping properties on
a global level of the final structure in experiments first
and include it as modal damping ratios in analytical
models after that.

Experimental Modal Analysis (EMA) is used as a system
identification tool to determine the modal properties
of a real structure from vibration measurement data
and to validate FE models. Damping properties of a
structure can be determined with a reasonable accu-
racy if the testing and data processing are performed
in a careful way.
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With respect to large complex aerospace structures
assembled from many components, there are two
challenges:

• EMA cannot be carried out because the system
is too large to excite and to measure vibration
responses, or because of economical constraints.

• If damping properties from experiments are avail-
able for the assembled system, proportional damp-
ing models usually fail to reflect the cause and
location of damping in the assembled structure
because the actual damping patterns due to dif-
ferent materials and substructures are unknown.

As an approach, global proportional damping models
on the basis of experimental results of substructures
are developed. They are applied to the substructure FE
models to generate uncondensed substructure damp-
ing matrices which are then coupled to represent an
uncondensed nonproportional damping matrix of the
fully assembled structure. This work investigates how
well this approach predicts the damping properties of
the assembled structure. A laboratory test structure
which can be disassembled is available for experimen-
tal validation.

Four global proportional damping models were se-
lected for this investigation.

• Classic RAYLEIGH damping is a commonly used
textbook model.

• Viscous modal damping is state-of-the-art but led
to severe errors in past response analysis studies
with coupled substructures, e.g. in [1].

• Stiffness proportional structural damping is a
newer textbook model which is part of the Equiv-
alent Structural Damping (ESD) concept applied in
[1]. There, it achieved more consistent results than
constant viscous modal damping for coupled dy-
namic loads analyses.

• Structural modal damping is another model pre-
sented as part of the ESD concept, but is not
studied further in [1].

Because the explained approach does not lead to sat-
isfactory results in the course of this article, a compu-
tational model updating process is later introduced on
the basis of complex eigenvalue sensitivity matrices of
damped systems, studied in [2]. This is done in order to
improve the agreement of substructure damping prop-
erties derived from experiments with analytically calcu-
lated properties and, in the future, to better reproduce
the damping properties of an assembled structure.

2. GLOBAL DAMPING MODELS

The second-order differential equations of motion for
free undamped vibration of a structure, modelled as a
discrete multi-degree-of-freedom (MDOF) system with
n degrees of freedom (DOF), can be written as

[M ] {ü(t)}+ [K] {u(t)} = {0}(1)

where [M ] and [K] ∈ R
n×n are the symmetric system

mass and stiffness matrices and {u(t)} is the time-
dependent DOF displacement vector. The solution of
the eigenvalue problem leads to n pairs of complex
conjugated eigenvalues λn1/n2 = ±iω0,n, containing
the natural undamped frequency ω0,n, and n real
eigenvectors {φn} ∈ R

n×1.

Damping is a structural attribute that makes energy
dissipate out of the vibrating system due to irreversible
processes and transforms it into heat. Internal damp-
ing depends on the material, the temperature, the type
of loading and the vibration frequency and originates
from within the structure. This type of damping can
be modelled by global damping models. Damping can
also result from the layout of the structural assembly
leading to friction at contact areas. This type of damp-
ing can be modelled by local damping models.

It is commonly accepted that damping effects are
stronger at local contact areas. But as a starting point,
global proportional damping models which represent
internal system damping processes are investigated
to set a good foundation for further local damping
modelling.

2.1 RAYLEIGH damping

RAYLEIGH damping is a combination of stiffness pro-
portional viscous (s,v) and mass proportional viscous
(m,v) damping and results in the symmetric viscous
system damping matrix [D] ∈ R

n×n for FE MDOF
systems.

[D] = gm,v[M ] + gs,v[K](2)

The equations of motion for free viscously damped
vibration of a structure are then given by

[M ] {ü(t)}+ [D] {u̇(t)}+ [K] {u(t)} = {0}(3)

The solution of the eigenvalue problem which has
to be formulated in state-space results in n pairs of
complex conjugated eigenvalues λn1/n2 = −Dnω0,n±
iω0,n

√
1−D2

n. Due to the linear dependency of [D]
on [M ] and [K], the resulting eigenvectors {φn} are
the same as for the undamped system and orthogonal
to [D]. Modal decoupling leads to generalised damp-
ing constants dgen and a combined linear and hyper-
bolic dependency of the n-th modal damping ratio Dn

on the n-th natural undamped frequency ω0,n.

Dn =
1

2
gs,vω0,n +

1

2
gm,v

1

ω0,n
(4)

2.2 Stiffness proportional structural damping

Viscoelastic behaviour often is an inadequate assump-
tion for the internal damping of ductile elastic ma-
terials like metal and steel concrete. Instead, the en-
ergy dissipation per cycle, which is described as the
damping ratio D, has been shown to be almost inde-
pendent from the forcing frequency Ω for harmonic
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forced vibrations. This behaviour is approximated by
substituting the loss factor gs,v in the viscous stiffness
proportional damping model with

gs,v =
gs,s
Ω

(5)

This model is only valid for stationary harmonic vi-
brations at a frequency Ω and therefore only in the
frequency domain. Non-harmonic dynamic loads lead
to non-causal behaviour in the time domain.

Assuming that the loaded structure responds with
{u(t)} = {û}eiωt with ω = Ω, the modal damping
ratio is constant.

D =
1

2
gs,s

ω

Ω
≈ 1

2
gs,s = const(6)

The equations of motion change to

[M ] {ü(t)}+ [Kc] {u(t)} = {0}(7)

where the system stiffness matrix [Kc] ∈ C is [Kc] =
[K](1+igs,s) = [K]+i[C]. The solution of the complex
eigenvalue problem is still possible and gives n pairs of
complex eigenvalues λn1/n2 = ±iω0,n

√
1 + i2Dn. Due

to the stiffness proportionality of [C], the n eigenvec-
tors {φn} are the same as for the undamped neigh-
bouring system.

2.3 Modal damping

For viscoelastic behaviour, a modally decoupled, there-
fore diagonal generalised damping matrix [D]gen ∈
R

h×h can be built out of the h chosen modal damp-
ing ratios Dh for the first h structural modes of the
undamped FE MDOF system

[D]gen = [Φ]
ᵀ
[D] [Φ] =

⎡
⎢⎢⎣
dgen,1 0 0 0
0 dgen,2 0 0
...

. . .
0 0 0 dgen,h

⎤
⎥⎥⎦

(8)

where dgen,h = 2Dhω0,hmgen,h is the generalised
damping constant of mode h and the modal matrix
[Φ] ∈ R

h×n contains the first h real structural modes
{φ}h of the neighbouring undamped system.

In case of a modal system with exclusively generalised
DOFs qh(t), [D]gen can be transformed to the corre-
sponding viscous damping matrix [D] with the modal
synthesis

[D] = [M ]

(
h∑
1

2Dhω0,h

mgen,h
{φh}{φh}ᵀ

)
[M ](9)

For structural behaviour, a modally decoupled gener-
alised damping matrix [C]gen ∈ R

h×h is built from
the h chosen modal damping ratios Dh for the first
h structural modes of the undamped FE MDOF system

[C]gen = [Φ]
ᵀ
[C] [Φ] =

⎡
⎢⎢⎣
cgen,1 0 0 0
0 cgen,2 0 0
...

. . .
0 0 0 cgen,h

⎤
⎥⎥⎦

(10)

where the imaginary generalised stiffness cgen,h =
2Dhkgen,h is part of the generalised complex stiffness
kcgen,h = kgen,h + icgen,h [1].

The corresponding imaginary part of the complex stiff-
ness system matrix [C] can be acquired by using

[C] = [M ]

(
h∑
1

2Dhω
2
0,h

mgen,h
{φh}{φh}ᵀ

)
[M ](11)

Both uncondensed modal damping matrices [D] and
[C] are proportional and are rank-deficient with a
rank h � n. Additionally, both behave equivalently
at the peak resonances and therefore yield the same
modal damping ratios, but behave differently for
steady-state harmonic loads with forcing frequencies
in between the resonant frequencies. Plus, the un-
condensed damping matrices are fully populated and
therefore cause significant numerical effort on com-
puter systems for FE models with a high number of
DOFs.

A very important difference of modal damping in com-
parison to damping models in section 2.1 and sec-
tion 2.2 is that modal damping distributes damping
in the structure only with respect to the target modal
damping ratios of specific mode shapes at specific
frequencies. Because of this intransparent distribution,
it does not give any clues as to how or where damping
is located in the structure. Additionally, only those
h modes which are assigned a modal damping ra-
tio Dh are damped, the others are undamped. For
these reasons, an uncondensed damping matrix is not
truly physical because it relies on mathematics and
the system specifications. Consequently, a change of
constraints or interfaces or a coupling procedure may
lead to different mode shapes and frequencies, re-
sulting in strongly divergent modal damping ratios, a
phenomenon known as damping paradox [1].

2.4 Nonproportional damping

As noted in section 1, experimental modal damping
ratios of the full structure may not be available so
that modal damping is not an option. If, in addition,
the mechanical system consists of different materials,
elements or substructures with individual energy dissi-
pation behaviours, its damping pattern can most prob-
ably not be approximated by proportional damping
models based on just one or two loss factors g in a
satisfying manner.

However, one approach can be the application of
global proportional damping models to the substruc-
tures of the system on the basis of experimental data
of the substructures. Coupling of the substructure pro-
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portional damping matrices results in a system damp-
ing matrix [D] or [C] which is nonproportional with
respect to the full coupled system.

With nonproportional damping, the solution of the
eigenvalue problem of viscously damped, nonpropor-
tional systems leads to n complex conjugated pairs
of eigenvectors {ψ}n1/n2. The solution of structurally
damped, nonproportional systems is characterised by
n complex eigenvectors {ψ}n.

3. TEST BED MODELLING AND TESTING

The test structure "Aircraft Model" (AIRMOD) of the
DLR Göttingen is an almost identical duplicate of the
test bed which was investigated in a multinational
EMA study performed by the Group for Aeronautical
Research and Technology in Europe (GARTEUR), de-
partment Structures and Materials, Action Group 19
(SM-AG19) [3][4].

It consists of strictly rectangular aluminum plates and
beams connected by bolted joints and has the simpli-
fied shape of a conventional fixed-wing aircraft. It has
a length of 1.5 m, a wingspan of 2 m and a height of
0.46 m. The most notable difference of the DLR test
bed in comparison to the GARTEUR test bed is the
absence of the constrained-layer damping treatment
applied to the wing of the GARTEUR model. FIG. 1
shows a sketch of AIRMOD on the left side.

The connection box which is located at the joint of the
wing and the fuselage consists of two thin aluminum
plates joined together by 4 screws. At this location, it is
simple to split up the AIRMOD into two substructures:
the wing (including the upper connection box plate
and the two winglets) and the fuselage (including
the lower connection box plate and the vertical and
horizontal tailplanes).

AIRMOD has been tested several times in the fre-
quency range between 0 and 400 Hz, but was retested
on the basis of recent results in [5] and [6] because of
a newly built support frame and the strong sensitivity
of modal damping properties.

The identified modal damping ratios of the two sub-
structures are intended as a basis to model substruc-
ture damping according to the damping models in
section 2. The identified damping ratios of the full

FIG 1. Sketch of AIRMOD (left), full structure FE model
without suspension (right)

structure are intended for comparison against the nu-
merically calculated modal damping ratios from the
solution of the eigenvalue problem of the full structure
with coupled damped substructures.

Modal damping ratios Dn are unique for the corre-
sponding mode shapes {ψ}n. Thus, if modal damping
ratios of the substructures are used to model and
predict the dynamic behaviour of the full structure,
the mode shapes of the substructure in test conditions
should very well match the mode shapes of the sub-
structure when coupled.

Therefore, the full structure was modelled and tested
in a free condition. To achieve a state of suspension
which has almost no influence on the elastic modes,
AIRMOD was hung into a support frame using soft
bungee cords.

The substructures were modelled and tested while
being fixed at their interfaces. For clamped boundary
conditions, an air-cushioned seismic foundation was
available.

3.1 Finite Element Modelling

An MSC.NASTRAN FE model of AIRMOD was made
available where the original element type choices were
reviewed to avoid idealisation errors.

All of the aluminum components are modelled by
CHEXA solid elements. The elasticity of the screws
used for component connections and clamping of
the substructures are modelled as multiple CELAS1
scalar springs located at at coincident nodes of the
adjacent component surfaces, in all three translational
directions. CONM2 lumped mass elements comprise
the masses of single elements which are fixed to the
structure. Massless, pinned-end CBAR first-order bar
elements model the elasticity of the bungee cords.

To verify the convergence properties of the FE models,
an h-convergence analysis was conducted using natu-
ral frequencies. Due to the size of the FE model, the
investigation was limited on half a wing which has the
strongest influence on the AIRMOD modes.

The full structure FE model, also shown in FIG. 1, uses
1990 elements and 10075 nodes and has 30222 DOFs.

The substructure FE models originating from the full
structure model have the same mesh, element and
material properties as the full structure. In FIG. 1, the
wing substructure is marked in red and the fuselage
substructure is marked in blue colour.

3.2 Modal Testing

Modal data in the frequency range of interest between
0 and 400 Hz was gained from AIRMOD and its two
substructures by means of experimental modal analysis
(EMA).
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FIG 2. Sensor locations and directions (as blue, green, orange
dots), driving point locations (as red circles)

The phase separation method was applied by means
of impulse excitation with a modal hammer. Each
acceleration sensor weighed 2 g.

50 uniaxial sensor locations were selected for the
full structure. The wing carried 32 sensors and the
fuselage 18 sensors. The locations are shown in FIG. 2
for the full structure.

8 driving point locations in total, 4 on the wing and
4 on the fuselage, were selected in and beyond the
symmetry planes of AIRMOD in order to excite sym-
metric as well as antisymmetric mode shapes. They
were chosen according to the occurrence of large
vibration amplitudes expected by the preliminary FE
models. They are also shown in FIG. 2 as red circles
around the corresponding sensors. At least three up to
five out of the 8 different locations were used for full
structure and substructure tests.

The modal test setups are shown in FIG. 3 and FIG. 4.

For the processing of the acquired FRFs and the iden-
tification of modes and their properties, the Poly-

FIG 3. Experimental setup of the fully assembled AIRMOD

FIG 4. Experimental setups of wing (left) and fuselage (right)

Reference Least-Squares Complex Frequency Domain
(pLSCF) method, also known as PolyMAX, was em-
ployed [7].

The identified modes and their properties were evalu-
ated by using quality indicators, especially the Modal
Phase Collinearity (MPC) criterion, the Mean Phase
Deviation (MPD) criterion, the phase of the modal a
agen ∈ C, and the generalised mass mgen, with the
aid of the DLR in-house software Correlation Tool.
This process enables a classification of the reliability of
identified modes and eigenvalues and ensures that the
resulting modal models of the 3 test cases represent
the respective dynamic behaviour with good accuracy.
These modal test results are used for model validation.

The modal properties and some quality criteria values
of the first five and the last identified elastic modes of
each test are listed in TAB. 1, TAB. 2 and TAB. 3.

For the wing substructure, 18 elastic modes were
identified. Only one of them could not be identified
well enough and was removed from further analyses.

For the fuselage substructure, 11 modes were identi-
fied, all of them in a high quality. Mode #3 at 49.34
Hz was a rigid body mode because of the elastic fixing
between fuselage and baseplate and the high moment
of inertia of the fuselage. Therefore, its modal damp-

Mode
#

f0
[Hz]

Dgen

[%]
MPC
[%]

MPD
[◦]

Phase
agen [◦]

mgen

[kgm2]

1 5.15 0.26 98.33 5.49 -77.53 5.49
2 5.18 0.09 99.54 5.04 -69.84 1.97
3 33.33 0.16 100.00 0.12 -91.76 0.67
4 33.40 0.23 99.99 0.63 -90.29 0.58
5 43.93 0.27 99.43 4.16 -89.02 1.59
: : : : : : :
18 343.38 0.50 99.97 1.05 -84.07 1.12

TAB 1. Modal properties of wing elastic modes

Mode
#

f0
[Hz]

Dgen

[%]
MPC
[%]

MPD
[◦]

Phase
agen [◦]

mgen

[kgm2]

1 25.08 0.48 99.98 0.79 -75.49 3.37
2 43.16 0.47 99.99 0.69 -86.95 3.08
4 68.11 0.41 100.00 0.34 -70.46 0.53
5 97.69 0.42 99.98 0.76 -77.22 3.70
6 108.39 1.12 100.00 0.25 -82.31 0.56
: : : : : : :
11 321.45 0.50 99.94 1.42 -86.82 5.14

TAB 2. Modal properties of fuselage elastic modes

Mode
#

f0
[Hz]

Dgen

[%]
MPC
[%]

MPD
[◦]

Phase
agen [◦]

mgen

[kgm2]

5 5.52 0.36 100.00 0.31 -87.23 4.48
6 15.15 0.30 100.00 0.17 -88.40 4.37
7 32.73 0.28 99.75 2.87 -93.29 1.03
8 33.09 0.35 99.85 2.20 -92.95 0.93
9 34.99 0.44 99.97 1.07 -89.30 2.23
: : : : : : :
30 355.68 0.29 99.75 2.90 -87.93 10.43

TAB 3. Modal properties of AIRMOD elastic modes
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ing ratio represents the damping from the mounting
rather than from the structure.

For the fully assembled AIRMOD, 26 elastic modes
were identified of which 2 showed an insufficient
identification quality and had to be removed from
further processing. 4 rigid body modes were identified
in a frequency range of 0.42 up to 0.98 Hz.

In a first comparison to the experimental data, the FE
models showed good agreement in terms of natural
undamped frequencies and mode shape prediction
of the elastic modes. They were further improved by
accounting for the mass and positions of measurement
equipment and adjusting the elasticity of the bolted
joints.

The precise correlation of modal properties from the
improved FE models and the experimental test data
is necessary to check the validity of the FE models.
For this reason, the linear independence among the
analytical real mode shapes and the realised, weakly
complex mode shapes from the modal tests were
checked with the Modal Assurance Criterion (MAC) [8]

MACjk =
({φj}ᵀ{φk})2

({φj}ᵀ{φj}) ({φk}ᵀ{φk})
(12)

where MACjk is the normed scalar product of vectors
{φj} and {φk} can take values between 1 for fully
linearly dependent and 0 for linearly independent vec-
tors.

The MAC matrix of the clamped fuselage structure is
shown in FIG. 5, with the correlated modes framed

FIG 5. MAC matrix of fuselage structure FE and EMA data

FIG 6. Mode shape of fuselage, EMA: 7, FE: 7 (MAC: 89%)

in green. One example of correlated mode shapes is
depicted in FIG. 6.

The correlation process resulted in allocating all numer-
ically predicted elastic modes to experimentally identi-
fied modes.

4. DAMPING MATRIX COUPLING AND RESULTS

On the basis of experimental data and the corre-
lated FE models of the substructures, the substructure
damping will be modelled, coupled and fed to the
eigenvalue problem of the full AIRMOD FE model.

MSC.NASTRAN is not used further in this process be-
cause the software package does not offer possiblities
of allocating RAYLEIGH damping to confined FE areas
without having to resort to superelements and the
thereby mandatory CRAIG-BAMPTON condensation. In-
stead, the a-set substructure stiffness and mass matri-
ces [K] and [M ] are exported from the corresponding
MSC.NASTRAN FE models and imported into MATLAB.

First, the substructure damping matrices [D] are calcu-
lated with the help of the substructure system matrices
and the experimental data.

In case of the RAYLEIGH damping, the loss factors
gm,v and gs,v are estimated by fitting EQ. (4) to the
experimental modal damping ratios with the aid of
linear least squares. In case of stiffness proportional
structural damping, the loss factor gs,s is estimated
by calculating the doubled mean of the experimentally
identified modal damping ratios, according to EQ. (6).
Modal damping ratios from modes which could not
be identified correctly or do not reflect the dynamic

damping model Wing Fuselage

RAYLEIGH gm,v = 0.14
gs,v = 3.81e-6

gm,v = 1.92
gs,v = 7.55e-6

stiffness prop.
structural

gs,s = 0.0054 gs,s = 0.012

TAB 4. Fitted loss factors g
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FIG 7. Loss factor g estimates: wing
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FIG 8. Loss factor g estimates: fuselage
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behaviour of the structure but rather of the fixture
were not included in this process.

The estimated values for the two damping models
are listed in TAB. 4. The respective damping patterns
are displayed in FIG. 7 and FIG. 8. For the wing,
both models are good estimates due to low damping
ratio scattering. For the fuselage, neither of the two
modelling approaches are adequate to reflect all modal
damping ratios.

In case of modal damping, the generalised substruc-
ture damping matrices [Dgen] or [Cgen] are con-
structed, each according to EQ. (8) and EQ. (10) with
the help of the analytical substructure FE modal prop-
erties and the identified modal damping ratios Dh. In
order to achieve substructure damping matrices [D]
and [C], a modal synthesis according to EQ. (9) and
EQ. (11) is required.

In a following step, the calculated substructure damp-
ing matrices are appropriately coupled for all four
cases of damping models to construct a nonpropor-
tional, uncondensed system damping matrix of the
full test bed structure AIRMOD. The system damping
matrix has the following structure for all cases.

[D] =

[
[Dwing] [0]

[0] [Dfuselage]

]
or

[C] =

[
[Cwing] [0]

[0] [Cfuselage]

](13)

For both modal damping models, under the circum-
stances as in EQ. (13), the solution of the MDOF equa-
tions of motion must lead to equivalent damping ratios
and equal behaviour at resonance peaks.

With the full structure uncondensed system matrices at
hand, damping included, the uncondensed equations
of motions for the full structure are set up. They are
used to formulate the quadratic damped eigenvalue
problem.

In case of the stiffness proportional structural damp-
ing, the system matrices [Kc] and [M ] are well-
conditioned, in accordance with statements in [1], and
the problem yields stable solutions. In case of RAYLEIGH
damping, the system matrices [A] and [B] are not
well conditioned and require modal condensation for
stable solutions. In case of modal damping, the sys-
tem matrices are badly conditioned and require modal
condensation for improved solution stability. Further
approximations as in [1] are avoided to get the most
accurate results.

A residual sum of squares Z is calculated on the basis
of the correlated modal damping ratio differences
ε = Dh,EMA − Dh,FE of the elastic modes, with a
weighting matrix [Wε] according to the confidence in
the experimental results.

Z = {ε}ᵀ[Wε]{ε}(14)
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FIG 9. Coupling results: RAYLEIGH damping (Z = 2.03×10−4)
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FIG 10. Coupling results: Stiffness proportional structural
damping (Z = 1.17× 10−4)
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FIG 11. Coupling results: Modal damping (Z not applicable
due to erroneous results)

4.1 RAYLEIGH damping

FIG. 9 shows the results of the eigenvalue problem
regarding RAYLEIGH damping. The predicted modal
damping ratios of the elastic modes are displayed in
red bars next to the correlated, experimentally iden-
tified modal damping ratios for the full structure in
black bars for mode per mode comparison. Grey bars
indicate experimental results with a low confidence
level. The damping ratios of the fuselage and the wing
for the respective estimates at the same frequency
are shown as plus markers. The chart shows that
all predicted modal damping ratios lie between the
substructure estimates. Each of them is closer to the
estimate of the substructure which is involved stronger
in the mode shape. Altogether, the predictions are of
an insufficient quality and do not reflect the damping
pattern of the assembled structure.

4.2 Stiffness proportional structural damping

FIG. 10 shows the results regarding stiffness propor-
tional structural damping, in the same way as FIG. 9.
Here also, all predicted predicted modal damping ra-
tios lie between the substructure estimates. The modal
damping ratios of most modes are better predicted,
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especially the low-frequency elastic wing-only modes.
This observation is supported by a comparison of the
residual sum of squares Z, shown in the caption. How-
ever, experimental damping ratios of modes with elas-
tic fuselage displacement poorly match with calculated
results.

4.3 Modal damping

FIG. 11 shows the results regarding modal damping.
Bars in red represent predicted FE results which are the
same for viscous and modal damping. Bars in yellow
represent predicted results which are different for both
modal damping models. These results are suspected to
suffer from numerical error for both modal damping
applications, because the calculated rigid body modes
showed too high modal frequencies and extremely
unphysical modal damping ratios in both cases, de-
spite modal condensation. This probably influenced
the modes in yellow, because they are exactly those
modes which exhibit considerable bungee strain. Yet,
even when only the valid results are considered, the
prediction quality is not significantly better than for the
other models.

4.4 Preliminary Assessment

The prediction results are unsatisfactory. Modal damp-
ing, although reproducing substructure damping very
well, suffers from an unphysical approach, fully popu-
lated matrices and bad matrix conditioning. RAYLEIGH
viscous and stiffness proportional structural damping
lead to comprehensible results, but these results do not
reflect the full structure damping pattern due to the
limited damping modelling capacity on substructure
level, especially for the fuselage.

5. UPDATING SYSTEM DAMPING PARAMETERS

One approach to improve the damping modelling
on substructure level is the further separation of the
substructures into their individual components. These
components shall have proportional damping matrices
which are dependent on the component and loss fac-
tors g. Coupling these component damping matrices
shall lead to non-proportional substructure damping
matrices which should improve the agreement be-
tween the experimentally identified modal damping
ratios and the correlated analytically calculated modal
damping ratios due to more damping parameters and
improved damping localisation. In the end, the im-
proved damping modelling of the substructures shall
also lead to a better prediction of the overall damping
pattern of the full structure after a coupling process.

For this task, computational model updating (CMU)
will be applied to adjust the FE component damping
parameters governing the substructure damping ma-
trix in order to improve the agreement of analytical and
experimental results. It is based on the minimisation

of an objective function Z which is a sum of squared
residuals as in EQ. (14).

The mathematical theory for the CMU of damped
systems must first be developed and then checked
on an arbitrary, simulated structure to evaluate its
suitability before it can be applied on real structures
like AIRMOD.

5.1 Theoretical Background

The sensitivity method is the most common and most
successful method to the problem of updating FE
models of engineering structures based on vibration
test data. It is based upon linearization of the generally
non-linear relationship between experimental results,
such as natural frequencies and mode shapes, and the
parameters of the model in need of correction.

For example, the non-linear relationship of the j-th
output of the analytical model za,j on the k-th system
parameter pk can be developed from a TAYLOR series
expansion truncated after the linear term at pk = pk,0

za,j(pk) ≈ za,j(pk,0) +
∂za,j
∂pk

∣∣∣∣
0

(pk − pk,0)(15)

If the error νj = zm,j − za,j(pk) and the residual
εj = zm,j − za,j(pk,0) are introduced as the difference
between the measured output zm,j and the corre-
sponding calculated output za,j at pk or pk,0 respec-
tively, EQ. (15) can be transformed to

εj = νj +
∂za,j
∂pk

∣∣∣∣
0

Δpk(16)

An equation system can be established⎧⎪⎨
⎪⎩
ε1 − ν1

...
εj − νj

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎣

∂za,1

∂p1
· · · ∂za,1

∂pk

...
...

...
∂za,j

∂p1
· · · ∂za,j

∂pk

⎤
⎥⎥⎦
p=p0

⎧⎪⎨
⎪⎩
Δp1

...
Δpk

⎫⎪⎬
⎪⎭

= [Gz]{Δp}

(17)

where [Gz] is a first-order sensitivity matrix. If [Gz] has
full rank and is invertible, the equation system can
be solved by linear least squares for the parameter
changes {Δp} which are then used to update the
parameters {p} for a next iteration.

For the problem at hand, relevant outputs zj are the
complex eigenvalues λj of the elastic modes. The ana-
lytical formulation in [9] to calculate eigenvalue sensi-
tivity is valid only for undamped systems and cannot be
employed here. Instead, the complex eigenvalue sen-
sitivity for viscously damped systems, developed and
studied in [2], must be used.

∂λj

∂pk
= λj

{ψj}ᵀ
(

∂[K]
∂pk

+ λ2
j
∂[M ]
∂pk

+ λj
∂[D]
∂pk

)
{ψj}

{ψj}ᵀ
(−λ2

j [M ] + [K]
) {ψj}

(18)

The derivation of a formulation for structurally damped
systems can also be achieved with EQ. (7) as fun-
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FIG 12. Plate - Sketch with dimensions

damping model A B

RAYLEIGH gm,v,A = 28.19
gs,v,A = 2.11e-5

gm,v,B = 35.24
gs,v,B = 2.64e-5

stiffness prop.
structural

gs,s,A = 0.08 gs,s,B = 0.1

TAB 5. Example loss factors g

damental assumption. Then, the derivation succeeds
in the very same way as the derivation for EQ. (18)
presented in [2].

∂λj

∂pk
= λj

{ψj}ᵀ
(

∂[Kc]
∂pk

+ λ2
j
∂[M ]
∂pk

)
{ψj}

{ψj}ᵀ
(−λ2

j [M ] + [Kc]
) {ψj}

(19)

5.2 Example

Instead of AIRMOD, the numerical test case consists of
a linear elastic, stiff, thin rectangle plate, simply sup-
ported along all sides. It has side lengths of 0.8 m and
1.0 m, is 0.01 m thick and consists of homogenous
isotropic aluminum. In addition, this plate is subdivided
into two firmly connected plate components A and B
which have the dimensions shown in FIG. 12.

It is modelled according to the KIRCHHOFF theory. The
NASTRAN FE model consists of 32 times 40 square
CQUAD4 plate elements and has 6527 nodes. Its mesh
is converged for the first 10 modes. In a following step,
the a-set stiffness and mass matrices are exported from
NASTRAN and imported to MATLAB.

5.3 Sensitivity Analysis

Relevant inputs p for the problem of adjusting the
FE substructure modal damping ratios are component
loss factors g. Therefore, arbitrarily chosen loss factors
g, listed in TAB. 5, are first assigned to the plate
components according to the damping model. In each
case, the solution of the eigenvalue problem of the
damped system leads to j complex pairs of eigenvalues
λj and complex eigenvectors {ψj}.

Sensitivities are then calculated. Because loss factors
do not have an influence on the mass and stiffness
properties of a structure, EQ. (18) and EQ. (19) can be
simplified.

FIG 13. Sensitivity matrix [Gλ], split into real and imaginary
part: RAYLEIGH damping

∂λj

∂gk
= λj

{ψj}ᵀ
(
λj

∂[D]
∂gk

)
{ψj}

{ψj}ᵀ
(−λ2

j [M ] + [K]
) {ψj}

(20)

∂λj

∂gk
= λj

{ψj}ᵀ
(

∂[C]
∂gk

)
{ψj}

{ψj}ᵀ
(−λ2

j [M ] + [Kc]
) {ψj}

(21)

The derivatives of the damping matrices ∂[D]
∂gk

and ∂[C]
∂gk

are calculated by finite differences. This means, a small
fraction ∂gk = 0.01%gk is added to the original value
of the loss factor gk and the difference between the
original and the new damping matrix is calculated.

The calculated complex sensitivity matrix [Gλ] regard-
ing RAYLEIGH damping is shown in FIG. 13 in a
coloured pattern for the first 10 modes, split into
real and imaginary part. It was calculated with the
eigenvalues with a positive imaginary part and the
corresponding eigenvector only. It shows that growing
loss factors gk lead to a growth of D and a drop of the
damped natural frequency. Generally, �(λk) displays a
stronger sensitivity to changes of loss factors g for the
larger and heavier plate section A than for B which is
reasonable. The complex sensitivity matrix for stiffness
proportional structural damping reveals equivalent re-
sults.

Both sensitivity matrices have full rank and can there-
fore be inverted and used for computational model
updating. The condition numbers for each matrix are
low enough for this example to guarantee an almost
lossless numerical inversion.

5.4 Consistent and inconsistent error cases

The updating procedure is iterative and starts at q = 0
with a set of loss factors gq=0 which result into eigen-
values λq and eigenvectors {ψ}q. With this informa-
tion, a complex sensitivity matrix [Gλ,q] can be calcu-
lated. The distance of the target eigenvalues λm to
the corresponding λq makes up the vector of complex
residuals {ε}q = {λm} − {λq} which is needed for the
equation system and complex objective function Zλ.

Both, residuals and elements of the sensitivity matrix
are weighted with the absolute target eigenvalue |λm|.
Finally, EQ. (17) is solved by weighted linear least
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FIG 14. Consistent test case: stiffness proportional structural

damping
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FIG 15. Inconsistent test case: RAYLEIGH damping

squares. The solution {Δg} is weakly complex such
that its real part is a good approximation to update
the loss factors {g}q=1 = {g}q=0 + �({Δg}).
For the consistent error test case, the difference to the
simulated target eigenvalues {λm} is only dependent
on the loss factors g. Therefore, arbitrary errors are
added on a chosen set of loss factors starting values
gq=0 and target eigenvalues are calculated. In this case
for structural damping, +15% were added on gs,s,A
and -35% were put on gs,s,B from TAB. 5.

The results are shown in FIG. 14. Within two iterations,
the starting values of the loss factors change by the
chosen error percentage and all of the complex sys-
tem eigenvalues approach the target eigenvalues very
closely so that the iteration is stopped.

The inconsistent error case is quite similar to the con-
sistent test case. In this case for RAYLEIGH damping,
+15% were put on gm,v,A, -35% on gs,v,A, -20% on
gm,v,B and +30% on gs,v,B . But this time, the loss
factor gm,v,A is excluded from updating.

The results are shown in FIG. 15. After already two
iterations, the loss factors converge, indicating the
stability of the approach with respect to inconsistent
updating cases. The unblocked loss factors change in
such a way that the complex objective function Zλ

is minimal. The deviation of the eigenvalues from the
target eigenvalues drops visibly.

6. CONCLUSION

The numerical prediction quality of modal damping
properties of assembled structures with proportion-

ally damped substructures was assessed for different
damping models on the basis of experimental results.
It was shown in section 4 on behalf of the AIRMOD
structure that the application of stiffness proportional
structural damping leads to the best predictive results,
although the substructure damping pattern is approx-
imated only very roughly with this model. However,
even these results are unsatisfactory and show that
proportional damping models on substructure level
cannot sufficiently describe the full structure damping
pattern.

Therefore, a computational model updating approach
on the basis of complex eigenvalue sensitivity was
introduced in section 5 in order to adjust loss fac-
tors of substructure components. It was successfully
checked on a numerical test case with consistent and
inconsistent errors for stiffness proportional structural
and RAYLEIGH damping models. For future use, this
approach must be reviewed, checked on the AIRMOD
and further matured for applications to real structures.
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