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Abstract

This paper shows that the probability of extreme default losses on
portfolios of U.S. corporate debt is much greater than would be esti-
mated under the standard assumption that default correlation arises
only from exposure to observable risk factors. At the high confidence
levels at which bank loan portfolio and CDO default losses are typi-
cally measured for economic-capital and rating purposes, our empirical
results indicate that conventionally based estimates are downward bi-
ased by a full order of magnitude on test portfolios. Our estimates
are based on U.S. public non-financial firms existing between 1979
and 2004. We find strong evidence for the presence of common la-
tent factors, even when controlling for observable factors that provide
the most accurate available model of firm-by-firm default probabilities.
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1 Introduction

This paper provides a more realistic assessment of the risk of large default
losses on portfolios of U.S. corporate debt than had been available with prior
methodologies. At the high confidence levels at which portfolio default losses
are typically estimated for bank capital requirements and for rating collater-
alized debt obligations (CDOs), our empirical results indicate that conven-
tional estimators are downward biased by a full order of magnitude on typical
test portfolios. Our estimates are based on portfolios of U.S. corporate debt
existing between 1979 and 2004. For estimating high-quantile portfolio losses,
conventional methodologies suffer from their failure to correct for a signif-
icant downward omitted-variable bias. We find strong evidence that firms
are exposed to a common dynamic latent factor driving default, even after
controlling for observable factors that on their own provide the most accurate
available model of firm-by-firm default probabilities. Uncertainty about the
current level of this variable, as well as exposure to future movements of this
variable, both cause a substantial increase in the conditional probability of
large portfolio default losses.

A conventional portfolio-loss risk model assumes that borrower-level con-
ditional default probabilities depend on measured firm-specific or market-
wide factors. Portfolio loss distributions are typically based on the correlating
influence of such observable factors. For example, rating agencies typically
estimate the probability of losses to senior collateralized debt obligations
(CDOs), which are intended to occur only when the underlying portfolio
losses exceed a high confidence level, by relying on the observable credit rat-
ings of the underlying collateral debt instruments. Modeled co-movement of
the ratings of the borrowers represented in the collateral pool is intended to
capture default correlation and the tails of the total loss distribution. If the
underlying borrowers are commonly exposed to important risk factors whose
effect is not captured by co-movements of borrower ratings, however, then
the portfolio loss distribution will be poorly estimated. This is not merely
an issue of estimation noise; a failure to include risk factors that commonly
increase and decrease borrowers’ default probabilities will result in a down-
ward biased estimate of tail losses. For instance, in order to receive a triple-A
rating, a CDO is typically required to sustain little or no default losses at
a confidence level such as 99.9%. Although any model of corporate-debt
portfolio losses cannot accurately measure such extreme quantiles with the
limited available historical data, our model of tail losses avoids a large down-
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ward omitted-variable bias, and survives goodness-of-fit tests associated with
large portfolio losses.

Whenever it is possible to identify and measure new significant risk fac-
tors, they should be included. We do not claim to have identified and included
all relevant observable risk factors. Although our observable risk factors
include firm-level and macroeconomic variables leading to higher accuracy
ratios for out-of-sample default prediction than those offered by any other
published model, further research will undoubtedly uncover new significant
observable risk factors that should be included. We discuss some proposed
inclusions later in this paper. It is inevitable, however, that not all relevant
risk factors that are potentially observable by the econometrician will end
up being included in the model. There is also a potential for important risk
factors that are simply not observable. A downward bias in tail-loss esti-
mates is thus inevitable without some form of bias correction. Our approach
is to directly allow for unobserved risk factors whose time-series behavior
and whose posterior conditional distribution can both be estimated from the
available data by maximum-likelihood estimation.

For example, sub-prime mortgage debt portfolios recently suffered losses
in excess of the high confidence levels that were estimated by rating agencies.
The losses associated with this debacle that have been reported by a mere
handful of major commercial banks total in excess of $80 billion as of this
writing, and are still accumulating. An example of an important factor that
was not included in most mortgage-portfolio default-loss models is the degree
to which borrowers and mortgage brokers provided proper documentation of
borrowers’ credit qualities. With hindsight, more teams responsible for de-
signing, rating, intermediating, and investing in sub-prime CDOs might have
done better by allowing for the possibility that the difference between actual
and documented credit qualities would turn out to be much higher than ex-
pected, or much lower than expected, in a manner that is correlated across
the pool of borrowers. Incorporating this additional source of uncertainty
would have resulted in higher prices for CDO “first-loss” equity tranches (a
convexity effect). Senior CDOs would have been designed with more con-
servative over-collateralization, or alternatively have had lower ratings and
lower prices (a concavity effect), on top of any related effects of risk premia.
Perhaps more modelers should have thought to look for, might have found,
and might have included in their models proxies for this moral-hazard effect.
It seems optimistic to believe that they would have done so, for despite the
clear incentives, many apparently did not. Presumably it is not easy, ex ante,
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to include all important default covariates. The next event of extreme port-
folio loss could be based on a different omitted variable. It seems prudent,
going forward, to allow for missing default covariates when estimating tail
losses on debt portfolios.

As a motivating instance of missing risk factors in the corporate-debt
arena on which we focus, the defaults of Enron and WorldCom may have
revealed faulty accounting practices that could have been in use at other
firms, and thus may have had an impact on the conditional default proba-
bilities of other firms, and therefore on portfolio losses. The basic idea of
our methodology is an application of Bayes Rule to update the posterior dis-
tribution of unobserved risk factors whenever defaults arrive with a timing
that is more clustered or less clustered than would be expected based on
the observable risk factors alone. In the statistics literature treating event
forecasting, the effect of such an unobserved covariate is called “frailty.” In
the prior statistics literature, frailty covariates are assumed to be static. It
would be unreasonable to assume that latent risk factors influencing corpo-
rate default are static over our 25-year data period, so we have extended
the prior statistical methodology so as to allow a frailty covariate to vary
over time according to an autoregressive time-series specification, and using
Markov chain Monte Carlo (MCMC) methods to perform maximum likeli-
hood estimation and to filter for the conditional distribution of the frailty
process.

While our empirical results address the arrival of default events, our
methodology can be applied in other settings. Recently, for instance, Cher-
nobai, Jorion, and Yu (2007) have adopted our methodology to estimate a
model of operational-risk events. Our model could also be used to treat the
implications of missing covariates for mortgage pre-payments, employment
events, mergers and acquisitions, and other event-based settings in which
there are time-varying latent variables.

The remainder of the paper is organized as follows. The rest of this in-
troductory section gives an overview of our modeling approach and results,
a summary of the related literature, and a description of our dataset. Sec-
tion 2 specifies the precise probabilistic model for the joint distribution of
default times. Section 3 summarizes some of the properties of the fitted
model and of the posterior distribution of the frailty variable, given the en-
tire sample. Section 4 examines the fit of the model and addresses some
potential sources of misspecification, providing robustness checks. Section
5 concludes. Appendices provide some key technical information, including
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our estimation methodology, which is based on a combination of the Monte
Carlo expectations-maximization (EM) algorithm and the Gibbs sampler.

1.1 Summary of Model and Results

In order to further motivate our approach and summarize our main empiri-
cal results, we briefly outline our specification here, and later provide details.
Our objective is to estimate the probability distribution of the number of
defaults among m given firms over any prediction horizon. For a given firm
i, our model includes a vector Uit of observable default-prediction covariates
that are specific to firm i. These variables include the firm’s “distance to de-
fault,” a volatility-corrected leverage measure whose construction is described
later in this paper, as well as the firm’s trailing stock return, an important
auxiliary covariate suggested by Shumway (2001). Allowing for unobserved
heterogeneity, we include an unobservable firm-specific covariate Zi. We also
include a vector Vt of observable macro-economic covariates, including inter-
est rates and market-wide stock returns. In robustness checks, we explore
alternative and additional choices for observable macro-covariates. Finally,
we include an unobservable macroeconomic covariate Yt whose “frailty” in-
fluence on portfolio default losses is our main focus.

If all of these covariates were observable, our model specification would
imply that the conditional mean arrival rate of default of firm i at time t is

λit = exp (α + β · Wit + γ · Ut + Yt + Zi) ,

for coefficients α, β, and γ to be estimated. If all covariates were observable,
this would be a standard proportional-hazards specification. The conditional
mean arrival rate λit is also known as a default intensity. For example,
a constant annual intensity of 0.01 means Poisson default arrival with an
annual probability of default of 1 − e−0.01 ≃ 0.01.

Because Yt and Zi are not observable, their posterior probability dis-
tributions are estimated from the available information set Ft, which in-
cludes the prior history of the observable covariates {(Us, Vs) : s ≤ t}, where
Ut = (U1t, . . . , Umt), and also includes previous observations of the periods of
survival and times of defaults of all m firms.

Because public-firm defaults are relatively rare, we rely on 25 years of
data. We include all 2,793 U.S. public non-financial firms for which we were
able to obtain matching data from the several data sets on which we rely. Our
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data cover over 400,000 firm-months. We specify an autoregressive Gaussian
time-series model for (Ut, Vt, Yt) that will be detailed later. Because Yt is un-
observable, we find that it is relatively difficult to tie down its mean reversion
rate with the available data, but the data do indicate that Y has substantial
time-series volatility, increasing the volatility of λit by about 40% above and
beyond that induced by time-series variation in Uit and Vt.

Our main focus is the conditional probability distribution of portfolio
default losses given the information actually available at a given time. For
example, consider the portfolio of the 1813 firms from our data set that were
active at the beginning of 1998. For this portfolio, we estimate the probabil-
ity distribution of the total number of defaulting firms over the subsequent 5
years. This distribution can be calculated from our estimates of the default
intensity coefficients α, β, and γ, our estimates of the time-series parameters
governing the joint dynamics of (Ut, Vt, Yt), and from the estimated poste-
rior distribution of Yt and Z1, . . . , Zm given the information Ft available at
the beginning of this 5-year period. The detailed estimation methodology
is provided later in the paper. The 95-percentile and 99-percentile of the
estimated distribution are 216 and 265 defaults, respectively. The actual
number of defaults during this period turned out to be 195, slightly below
the 91% confidence level of the estimated distribution. With hindsight, we
know that 2001-2002 was a period of particularly severe corporate defaults.
In Section 3, we show that a failure to allow for a frailty effect would have
resulted in a severe downward bias of the tail quantiles of the portfolio loss
distribution, to the point that one would have incorrectly assigned negligible
probability to the event that the number of defaults actually realized would
have been reached or exceeded.

As a robustness check, we provide a Bayesian analysis of the effect of a
joint prior distribution for the mean reversion rate and volatility of Yt on the
posterior distribution of these parameters and on the posterior distribution
of portfolio default losses. We find that this parameter uncertainty causes
additional ”fattening” of the tail of the portfolio loss distribution, notably at
extreme quantiles.

More generally, we provide tests of the fit of frailty-based tail quantiles
that support our model specification against the alternative of a no-frailty
model. We show that there are two important potential channels for the
effect of the frailty variable on portfolio loss distributions. First, as with
an observable macro-variable, the frailty covariate causes common upward
and downward adjustments of firm-level conditional default intensities over
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time. This causes large portfolio losses to be more likely than would be the
case with a model that does not include this additional source of default
intensity covariation. Second, because the frailty covariate is not observable,
uncertainty about the current level of Yt at the beginning of the forecast pe-
riod is an additional source of correlation across firms of the events of future
defaults. This second effect on the portfolio loss distribution would be impor-
tant even if there were certain to be no future changes in this frailty covariate.
In an illustrative example, we show that these two channels of influence of
the frailty process Y have comparably large impacts on the estimated tail
quantiles of the portfolio loss distribution.

After controlling for observable covariates, we find that defaults were
persistently higher than expected during lengthy periods of time, for ex-
ample 1986-1991, and persistently lower in others, for example during the
mid-nineties. From trough to peak, the estimated impact of the frailty co-
variate Yt on the average default rate of U.S. corporations during 1980-2004
is roughly a factor of two or more. As a robustness check, and as an example
of the impact on the magnitude of the frailty effect of adding an observable
factor, we re-estimate the model including as an additional observable macro-
covariate the trailing average realized rate of default,1 which could proxy for
an important factor that had been omitted from the base-case model. We
show that this trailing-default-rate covariate is statistically significant, but
that there remains an important role for frailty in capturing the tails of
portfolio loss distributions.

1.2 Related Literature

A standard structural model of default timing assumes that a corporation
defaults when its assets drop to a sufficiently low level relative to its liabilities.
For example, the models of Black and Scholes (1973), Merton (1974), Fisher,
Heinkel, and Zechner (1989), and Leland (1994) take the asset process to be
a geometric Brownian motion. In these models, a firm’s conditional default
probability is completely determined by its distance to default, which is the
number of standard deviations of annual asset growth by which the asset
level (or expected asset level at a given time horizon) exceeds the firm’s
liabilities. An estimate of this default covariate, using market equity data
and accounting data for liabilities, has been adopted in industry practice

1We are grateful to a referee for suggesting this.
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by Moody’s KMV, a leading provider of estimates of default probabilities
for essentially all publicly traded firms (see Crosbie and Bohn (2002) and
Kealhofer (2003)). Based on this theoretical foundation, we include distance
to default as a covariate into our model for default risk.

In the context of a standard structural default model of this type, Duffie
and Lando (2001) show that if distance to default cannot be accurately
measured, then a filtering problem arises, and the resulting default inten-
sity depends on the measured distance to default and on other covariates,
both firm-specific and macroeconomic, that may reveal additional informa-
tion about the firm’s condition. If, across firms, there is correlation in the
observation noises of the various firms’ distances to default, then one has the
effect of frailty. For reasons of tractability, we have chosen a reduced-form
specification of frailty.

Altman (1968) and Beaver (1968) were among the first to estimate reduced-
form statistical models of the likelihood of default of a firm within one ac-
counting period, using accounting data.2 Although the voluminous subse-
quent empirical literature addressing the statistical modeling of default prob-
abilities has typically not allowed for unobserved covariates affecting default
probabilities, the topic of hidden sources of default correlation has recently
received some attention. Collin-Dufresne, Goldstein, and Helwege (2003)
and Zhang (2004) find that a major credit event at one firm is associated
with significant increases in the credit spreads of other firms, consistent with
the existence of a frailty effect for actual or risk-neutral default probabil-
ities. Collin-Dufresne, Goldstein, and Huggonier (2004), Giesecke (2004),
and Schönbucher (2003) explore learning-from-default interpretations, based
on the statistical modeling of frailty, under which default intensities include
the expected effect of unobservable covariates. Yu (2005) finds empirical
evidence that, other things equal, a reduction in the measured precision of

2Early in the empirical literature on default time distributions is the work of Lane,
Looney, and Wansley (1986) on bank default prediction, using time-independent covari-
ates. Lee and Urrutia (1996) used a duration model based on a Weibull distribution of
default times. Duration models based on time-varying covariates include those of McDon-
ald and Van de Gucht (1999), in a model of the timing of high-yield bond defaults and call
exercises. Related duration analysis by Shumway (2001), Kavvathas (2001), Chava and
Jarrow (2004), and Hillegeist, Keating, Cram, and Lundstedt (2004) predict bankruptcy.
Shumway (2001) uses a discrete duration model with time-dependent covariates. Duffie,
Saita, and Wang (2006) provide maximum likelihood estimates of term structures of de-
fault probabilities by using a joint model for default intensities and the dynamics of the
underlying time-varying covariates.
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accounting variables is associated with a widening of credit spreads. Das,
Duffie, Kapadia, and Saita (2007), using roughly the same data studied here,
provide evidence that defaults are significantly more correlated than would
be suggested by the assumption that default risk is captured by the observ-
able covariates. They do not, however, estimate a model with unobserved
covariates.

Here, we depart from traditional duration-model specifications of default
prediction, such as those of Couderc and Renault (2004), Shumway (2001),
and Duffie, Saita, and Wang (2006), by allowing for dynamic unobserved
covariates. Independently of our work, and with a similar thrust, Delloy,
Fermanian, and Sbai (2005) and Koopman, Lucas, and Monteiro (2005) es-
timate dynamic frailty models of rating transitions. They suppose that the
only observable firm-specific default covariate is an agency credit rating, and
assume that all intensities of downgrades from one rating to the next depend
on a common unobservable factor. Because credit ratings are incomplete
and lagging indicators of credit quality, as shown for example by Lando and
Skødeberg (2002), one would expect to find substantial frailty in ratings-
based models such as these. As shown by Duffie, Saita, and Wang (2006),
who estimate a model without frailty, the observable covariates that we pro-
pose offer substantially better out-of-sample default prediction than does
prediction based on credit ratings. Even with the benefit of these observable
covariates, however, in this paper we explicitly incorporate the effect of ad-
ditional unincluded sources of default correlation, and show that they have
statistically and economically significant implications for the tails of portfolio
default-loss distributions.

1.3 Data

Our dataset, drawing elements from Bloomberg, Compustat, CRSP, and
Moody’s, is almost the same as that used to estimate the no-frailty mod-
els of Duffie, Saita, and Wang (2006) and Das, Duffie, Kapadia, and Saita
(2007). We have slightly improved the data by using The Directory of Obso-
lete Securities and the SDC database to identify additional mergers, defaults,
and failures. We have checked that the few additional defaults and merg-
ers identified through these sources do not change significantly the results of
Duffie, Saita, and Wang (2006). Our dataset contains 402,434 firm-months of
data between January 1979 and March 2004. Because of the manner in which
we define defaults, it is appropriate to use data only up to December 2003.
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For the total of 2,793 companies in this improved dataset, Table I shows the
number of firms in each exit category. Of the total of 496 defaults, 176 first
occurred as bankruptcies, although many of the “other defaults” eventually
led to bankruptcy. We refer the interested reader to Section 3.1 of Duffie,
Saita, and Wang (2006) for an in-depth description of the construction of the
dataset and an exact definition of these event types.

Exit type Number
bankruptcy 176
other default 320
merger-acquisition 1,047
other exits 671

Table I: Number of firm exits of each type between 1979 and 2004.

Figure 1 shows the total number of defaults (bankruptcies and other
defaults) in each year. Moody’s 13th annual corporate bond default study3

provides a detailed exposition of historical default rates for various categories
of firms since 1920.

The model of default intensities estimated in this paper adopts a parsi-
monious set of observable firm-specific and macroeconomic covariates:

• Distance to default, a volatility-adjusted measure of leverage. Our
method of construction, based on market equity data and Compustat
book liability data, is that used by Vassalou and Xing (2004), Crosbie
and Bohn (2002), and Hillegeist, Keating, Cram, and Lundstedt (2004).
Although the conventional approach to measuring distance to default
involves some rough approximations, Bharath and Shumway (2004)
provide evidence that default prediction is relatively robust to varying
the proposed measure with some relatively simple alternatives.

• The firm’s trailing 1-year stock return, a covariate suggested by Shumway
(2001). Although we do not have in mind a particular structural in-
terpretation for this covariate, like Shumway, we find that it offers sig-
nificant incremental explanatory power, perhaps as a proxy for some

3Moody’s Investor Service, “Historical Default Rates of Corporate Bond Issuers, 1920-
1999.”

10



1980 1985 1990 1995 2000
0

10

20

30

40

50

60

70

80

Year

N
u
m

b
er

o
f
d
ef

a
u
lt
s

Figure 1: The number of defaults in our dataset for each year between 1980 and 2003.

unobserved factor that has an influence on default risk beyond that of
the firm’s measured distance of default.

• The 3-month Treasury bill rate, which plays a role in the estimated
model consistent with the effect of a monetary policy that lowers short-
term interest rates when the economy is performing poorly (and de-
faults are high).

• The trailing 1-year return on the S&P 500 index. The influence of
this covariate, which is statistically significant but, in the presence of
distance to default, of only moderate economic importance, will be
discussed later.

Duffie, Saita, and Wang (2006) give a detailed description of these co-
variates and discuss their relative importance in modeling corporate default
intensities. As robustness checks, we have examined the influence of GDP
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growth rates, industrial production growth rates, average BBB-AAA corpo-
rate bond yield spreads, industry average distance to default, and firm-size,
measured as the logarithm of the model-implied assets.4 Each of these was
found to be at best marginally significant after controlling for our basic co-
variates, distance to default, trailing returns of the firm and the S&P 500,
and the 3-month Treasury-bill rate. Later in this paper, we also consider
the implications of augmenting our list of macro-covariates with the trailing
average default rate, which could proxy for important missing common co-
variates. This variable might also capture a direct source of default contagion,
in that when a given firm defaults, other firms that had depended on it as a
source of sales or inputs may also be harmed. This was the case, for example,
in the events surrounding the collapse of Penn Central in 1970-71. Another
example of such a ”contagion” effect is the influence of the bankruptcy of
auto parts manufacturer Delphi in November 2005 on the survival prospects
of General Motors.’ We do not explore the role of this form of contagion,
which cannot be treated within our modeling framework.

2 A Dynamic Frailty Model

The introduction has given a basic outline of our model. This section pro-
vides a precise specification of the joint probability distribution of covariates
and default times. We fix a probability space (Ω,F , P) and an information
filtration {Gt : t ≥ 0}. For a given borrower whose default time is τ, we say
that a non-negative progressively-measurable process λ is the default inten-
sity of the borrower if a martingale is defined by 1τ≤t −

∫ t

0
λs1τ>s ds. This

means that, as of time t, if the borrower has not yet defaulted, λt is the
conditional mean arrival rate of default, measured in events per unit of time.

We suppose that all firms’ default intensities at time t depend on a Markov
state vector Xt of firm-specific and macroeconomic covariates. We suppose,
however, that Xt is only partially observable to the econometrician. With
complete observation of Xt, the default intensity of firm i at time t would be

4Size may be associated with market power, management strategies, or borrowing abil-
ity, all of which may affect the risk of failure. For example, it might be easier for a big
firm to re-negotiate with its creditors to postpone the payment of debt, or to raise new
funds to pay old debt. In a “too-big-to-fail” sense, firm size may also negatively influence
failure intensity. The statistical significance of size as a determinant of failure risk has been
documented by Shumway (2001). For our data and our measure of firm size, however, this
covariate did not play a statistically significant role.
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of the form λit = Λ (Si(Xt), θ), where θ is a parameter vector to be estimated
and Si(Xt) is the component of the state vector that is relevant to the default
intensity of firm i.

We assume that, conditional on the path of the underlying state pro-
cess X determining default and other exit intensities, the exit times of firms
are the first event times of independent Poisson processes with time-varying
intensities determined by the path of X. This ”doubly-stochastic” assump-
tion means that, given the path of the state-vector process X, the merger
and failure times of different firms are conditionally independent. While this
conditional-independence assumption is traditional for duration models, we
depart in an important way from the traditional setting by assuming that X
is not fully observable to the econometrician. Thus, we cannot use standard
estimation methods.

We depart from the traditional complete-information doubly-stochastic
assumption because it has been shown by Das, Duffie, Kapadia, and Saita
(2007) to understate default correlation for our dataset. One may entertain
various alternatives. For example, we have mentioned the possibility of “con-
tagion,” by which the default by one firm could have a direct influence on
the revenues (or expenses or capital-raising opportunities) of another firm. In
this paper, we examine instead the implications of “frailty,” by which many
firms could be jointly exposed to one or more unobservable risk factors. We
restrict attention for simplicity to a single common frailty factor and to firm-
by-firm idiosyncratic frailty factors, although a richer model and sufficient
data could allow for the estimation of additional frailty factors, for example
at the sectoral level.

We let Uit be a firm-specific vector of covariates that are observable for
firm i from when it first appears in the data at some time ti until its exit time
Ti. We let Vt denote a vector of macro-economic variables that are observable
at all times, and let Yt be a vector of unobservable frailty variables. The
complete state vector is then Xt = (U1t, . . . , Umt, Vt, Yt), where m is the total
number of firms in the dataset.

We let Wit = (1, Uit, Vt) be the vector of observed covariates for company
i (including a constant).5 We let Ti be the last observation time of company
i, which could be the time of a default or another form of exit. While we take
the first appearance time ti to be deterministic, our results are not affected

5Because we observe these covariates on a monthly basis but measure default times
continuously, we take Wit = Wi,k(t), where k (t) is the time of the most recent month end.
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by allowing ti to be a stopping time under additional technical conditions.
The econometrician’s information filtration (Ft)0≤t≤T is that generated

by the observed variables

{Vs : 0 ≤ s ≤ t} ∪ {(Di,s, Ui,s) : 1 ≤ i ≤ m, ti ≤ s ≤ min(t, Ti)},

where Di is the default indicator process of company i (which is 0 before
default, 1 afterwards). The complete-information filtration (Gt)0≤t≤T is gen-
erated by the variables in Ft as well as the frailty process {Ys : 0 ≤ s ≤ t}.

We assume that λit = Λ(Si(Xt); θ), where Si(Xt) = (Wit, Yt). We take
the proportional-hazards form

Λ ((w, y) ; θ) = eβ1w1+···+βnwn+ηy (1)

for a parameter vector θ = (β, η, κ) common to all firms, where κ is a pa-
rameter whose role will be defined below.6

Before considering the effect of other exits such as mergers and acqui-
sitions, the maximum likelihood estimators of Ft-conditional survival prob-
abilities, portfolio-loss distributions, and related quantities such as default
correlations, are obtained under the usual smoothness conditions by treating
the maximum likelihood estimators of the parameters as though they are the
true parameters (γ, θ).7 We will also examine the implications of Bayesian
uncertainty regarding certain key parameters.

6In the sense of Proposition 4.8.4 of Jacobsen (2006), the econometrician’s default
intensity for firm i is

λit = E (λit | Ft) = eβ·WitE
(
eηYt | Ft

)
.

It is not generally true that the conditional probability of survival to a future time
T (neglecting the effect of mergers and other exits) is given by the “usual formula”

E
(
e−

∫
T

t
λis ds | Ft

)
. Rather, for a firm that has survived to time t, the probability of

survival to time T (again neglecting other exits) is E
(
e−

∫
T

t
λis ds | Ft

)
. This is justified

by the law of iterated expectations and the doubly stochastic property on the complete-
information filtration (Gt), which implies that the Gt-conditional survival probability is

E
(
e−

∫
T

t
λis ds | Gt

)
. See Collin-Dufresne, Goldstein, and Huggonier (2004) for another

approach to this calculation.
7If other exits, for example due to mergers and acquisitions, are jointly doubly-

stochastic with default exits, and other exits have the intensity process µi, then the
conditional probability at time t that firm i will not exit before time T > t is

E
(
e−

∫
T

t
(µis+λis) ds | Ft

)
. For example, it is impossible for a firm to default beginning

in 2 years if it has already been acquired by another firm within 2 years.
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To further simplify notation, let W = (W1, . . . , Wm) denote the vector
of observed covariate processes for all companies, and let D = (D1, . . . , Dm)
denote the vector of default indicators of all companies. If the econometrician
were to be given complete observation, Proposition 2 of Duffie, Saita, and
Wang (2006) would imply a likelihood of the data at the parameters (γ, θ)
of the form

L (γ, θ |W, Y, D)

= L (γ |W )L (θ |W, Y, D)

= L (γ |W )

m∏

i=1



e
−

Ti∑
t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)]



 . (2)

We simplify by supposing that the frailty process Y is independent of
the observable covariate process W . With respect to the econometrician’s
limited filtration (Ft), the likelihood is then

L (γ, θ |W, D) =

∫
L (γ, θ |W, y, D)pY (y) dy

= L (γ |W )

∫
L (θ |W, y, D)pY (y) dy

= L (γ |W )E




m∏

i=1



e
−

Ti∑
t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)]




∣∣∣∣ W, D



 , (3)

where pY ( · ) is the unconditional probability density of the path of the un-
observed frailty process Y . The final expectation of (3) is with respect to
that density.8

Most of our empirical results are properties of the maximum likelihood
estimator (MLE) (γ̂, θ̂) for (γ, θ). Even when considering other exits such
as those due to acquisitions, (γ̂, θ̂) is the full maximum likelihood estimator
for (γ, θ) because we have assumed that all forms of exit are jointly doubly-
stochastic on the artificially enlarged information filtration (Gt).

8For notational simplicity, expression (3) ignores the precise intra-month timing of
default, although it was accounted for in the parameter estimation by replacing ∆t with
τi − ti−1 in case that company i defaults in the time interval (tt−1, ti].
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In order to evaluate the expectation in (3) , one could simulate sample
paths of the frailty process Y . Since our covariate data are monthly obser-
vations from 1979 to 2004, evaluating (3) by direct simulation would then
mean Monte Carlo integration in a high-dimensional space. This is extremely
numerically intensive by brute-force Monte Carlo, given the overlying search
for parameters. We now turn to a special case of the model that can be
feasibly estimated.

We suppose that Y is an Ornstein-Uhlenbeck (OU) process, in that

dYt = −κYt dt + dBt, Y0 = 0, (4)

where B is a standard Brownian motion with respect to (Ω,F , P, (Gt)), and
where κ is a non-negative constant, the mean-reversion rate of Y . Without
loss of generality, we have fixed the volatility parameter of the Brownian
motion to be unity because scaling the parameter η, which determines in (1)
the dependence of the default intensities on Yt, plays precisely the same role
in the model as scaling the frailty process Y .

The OU model for the frailty variable Yt could capture the accumulative
effect over time of various different types of unobserved fundamental common
shocks to default intensities, each of which has an impact that decays over
time. For example, as suggested in the introduction, borrower’s measured
credit qualities could be subject to a common source of reporting noise.
While such an accounting failure could be mitigated over time with improved
corporate governance and accounting standards, some new form of common
unobserved shift in default intensities could arise, such as the incentive effects
of a change in bankruptcy law that the econometrician failed to consider, or
a correlated shift in the liquidity of balance sheets that went unobserved, and
so on. The mean-reversion parameter κ is intended to capture the expected
rate of decay of the impact of such successive unobserved shocks to default
intensities.

Although an OU-process is a reasonable starting model for the frailty pro-
cess, one could allow much richer frailty models. From the Bayesian analysis
reported in Section 4, however, we have found that even our relatively large
data set is too limited to identify much of the time-series properties of frailty.
This is not so surprising, given that the sample paths of the frailty process
are not observed, and their distribution can be inferred only from relatively
sparse default time data. For the same reason, we have not attempted to
identify sector-specific frailty effects.
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The starting value and long-run mean of the OU-process Y are taken to be
zero, since any change (of the same magnitude) of these two parameters can
be absorbed into the default intensity intercept coefficient β1. However, we do
lose some generality by taking the initial condition for Y to be deterministic
and to be equal to the long-run mean. An alternative would be to add one or
more additional parameters specifying the initial probability distribution of
Y . We have found that the posterior of Yt tends to be robust to the assumed
initial distribution of Y , for points in time t that are a year or two after the
initial date of our sample.

We estimate the model parameters using a combination of the EM algo-
rithm and the Gibbs sampler that is described in the appendix.

3 Major Empirical Results

This section shows the estimated model and its implications for the distri-
bution of portfolio default losses relative to a model without frailty.

3.1 The Fitted Model

Table II shows the estimated covariate parameter vector β̂ and frailty pa-
rameters η̂ and κ̂, together with estimates of asymptotic standard errors.

Coefficient Std. Error t-statistic
constant −1.029 0.201 −5.1
distance to default −1.201 0.037 −32.4
trailing stock return −0.646 0.076 −8.6
3-month T-bill rate −0.255 0.033 −7.8
trailing S&P 500 return 1.556 0.300 5.2
latent-factor volatility η 0.125 0.017 7.4
latent-factor mean reversion κ 0.018 0.004 4.8

Table II: Maximum likelihood estimates of intensity-model parameters. The frailty

volatility is the coefficient η of dependence of the default intensity on the OU frailty

process Y . Estimated asymptotic standard errors are computed using the Hessian matrix

of the expected complete data log-likelihood at θ = θ̂. The mean reversion and volatility

parameters are based on monthly time intervals.
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Our results show important roles for both firm-specific and macroeco-
nomic covariates. Distance to default, although a highly significant covari-
ate, does not on its own determine the default intensity, but does explain a
large part of the variation of default risk across companies and over time. For
example a negative shock to distance to default by one standard deviation
increases the default intensity by roughly e1.2 − 1 ≈ 230%. The one-year
trailing stock return covariate proposed by Shumway (2001) has a highly sig-
nificant impact on default intensities. Perhaps it is a proxy for firm-specific
information that is not captured by distance to default.9 The coefficient
linking the trailing S&P 500 return to a firm’s default intensity is positive
at conventional significance levels, and of the unexpected sign by univariate
reasoning. Of course, with multiple covariates, the sign need not be evidence
that a good year in the stock market is itself bad news for default risk. It
could also be the case that, after boom years in the stock market, a firm’s
distance to default overstates its financial health.

The estimate η̂ = 0.125 of the dependence of the unobservable default
intensities on the frailty variable Yt, corresponds to a monthly volatility of
this frailty effect of 12.5%, which translates to an annual volatility of 43.3%,
which is highly economically and statistically significant.

Table III reports the intensity parameters of the same model after remov-
ing the role of frailty. The signs, magnitudes, and statistical significance of
the coefficients of the observable covariates are similar to those with frailty,
with the exception of the coefficient for the 3-month Treasury bill rate, which
is smaller without frailty, but remains statistically significant.

Coefficient Std. Error t-statistic
constant −2.093 0.121 −17.4
distance to default −1.200 0.039 −30.8
trailing stock return −0.681 0.082 −8.3
3-month T-bill rate −0.106 0.034 −3.1
trailing S&P 500 return 1.481 0.997 1.5

Table III: Maximum likelihood estimates of the intensity parameters in the model without

frailty. Estimated asymptotic standard errors were computed using the Hessian matrix of

the likelihood function at θ = θ̂.

9There is also the potential, with the momentum effects documented by Jegadeesh and
Titman (1993) and Jegadeesh and Titman (2001), that trailing return is a forecaster of
future distance to default.
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Figure 2: Conditional posterior mean E (ηYt | FT ) of the scaled latent Ornstein-

Uhlenbeck frailty variable, with one-standard-deviation bands based on the FT -conditional

variance of Yt.

3.2 The Posterior of the Frailty Path

In order to interpret the model and apply it to the computation of portfolio-
loss distributions, we calculate the posterior distribution of the frailty process
Y given the econometrician’s information.

First, we compute the FT -conditional posterior distribution of the frailty
process Y , where T is the final date of our sample. This is the conditional
distribution of the latent factor given all of the historical default and covariate
data through the end of the sample period. For this computation, we use
the Gibbs sampler described in the appendix. Figure 2 shows the conditional
mean of the latent factor, estimated as the average of 5,000 samples of Yt

drawn from the Gibbs sampler. One-standard-deviation bands are shown
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around the posterior mean. We see substantial fluctuations in the frailty
effect over time. For example, the multiplicative effect of the frailty factor
on default intensities in 2001 is roughly e1.1, or approximately three times
larger than during 1995.10

While Figure 2 illustrates the posterior distribution of the frailty variable
Yt given all information available FT at the final time T of the sample period,
most applications of a default-risk model would call for the posterior distribu-
tion of Yt given the current information Ft. For example, this is the relevant
information for measurement by a bank of the risk of a portfolio of corporate
debt. Although the covariate process is Gaussian, we also observe survivals
and defaults, so we are in a setting of filtering in non-Gaussian state-space
models, to which we can apply the ”forward-backward algorithm” due to
Baum, Petrie, Soules, and Weiss (1970). Appendix D explains how we apply
this algorithm in our setting.

Figure 3 compares the conditional density of Yt for t at the end of January
2000, conditioning on FT (in effect, the entire sample of default times and
observable covariates up to 2004), with the density of Yt when conditioning
on only Ft (the data available up to and including January 2000). Given
the additional information available at the end of 2004, the FT -conditional
distribution of Yt is more concentrated than that obtained by conditioning
on only the concurrently available information Ft. The posterior mean of Yt

given the information available in January 2000 is lower than that given all
of the data through 2004, reflecting the sharp rise in corporate defaults in
2001 above and beyond that predicted from the observed covariates alone.

Figure 4 shows the path over time of the mean E(ηYt | Ft) of this posterior
density.

3.3 Portfolio Loss Risk

In order to illustrate the role of the common frailty effect on the tail risk of
portfolio losses, we consider the distribution of the total number of defaults
from a hypothetical portfolio consisting of all 1,813 companies in our data set
that were active as of January 1998. We computed the posterior distribution,
conditional on the information Ft available for t in January 1998, of the total

10A comparison that is based on replacing Y (t) in E[eηY (t) | Ft] with the posterior mean
of Y (t) works reasonably well because the Jensen effects associated with the expectations
of eηY (t) for times in 1995 and 2001 are roughly comparable.
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Figure 3: Conditional posterior density of the scaled frailty factor, ηYt, for t in January

2000, given FT , that is, given all data, (solid line), and given only contemporaneously

available data in Ft (dashed line). These densities are calculated using the forward-

backward recursions described in Appendix D.

number of defaults during the subsequent five years, January 1998 through
December 2002. Figure 5 shows the probability density of the total number
of defaults in this portfolio for three different models. All three models have
the same posterior marginal distribution for each firm’s default time, but
the joint distribution of default times varies among the three models. Model
(a) is the actual fitted model with a common frailty variable. For models
(b) and (c), however, we examine the hypothetical effects of reducing the
effect of frailty. For both models (b) and (c), the default intensity λit is
changed by replacing the dependence of λit on the actual frailty process Y
with dependence on a firm-specific process Yi that that has the same Ft-
conditional distribution as Y . For model (b), the initial condition Yit of Yi is
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Figure 4: Conditional mean E (ηYt | Ft) and conditional one-standard-deviation bands

of the scaled frailty variable, given only contemporaneously available data (Ft).

common to all firms, but the future evolution of Yi is determined not by the
common OU-process Y , but rather by an OU-process Yi that is independent
across firms. Thus, Model (b) captures the common source of uncertainty
associated with the current posterior distribution of Yt, but has no common
future frailty shocks. For Model (c), the hypothetical frailty processes of
the firms, Y1, . . . , Ym, are independent. That is, the initial condition Yit is
drawn independently across firms from the posterior distribution of Yt, and
the future shocks to Yi are those of an OU-process Yi that is independent
across firms.

One can see that the impact of the frailty effect on the portfolio loss
distribution is substantially affected both by uncertainty regarding the cur-
rent level Yt of common frailty in January 1998, and also by common future
frailty shocks to different firms. Both of these sources of default correlation
are above and beyond those associated with exposure of firms to observ-
able macroeconomic shocks, and exposure of firms to correlated observable
firm-specific shocks (especially correlated changes in leverage).
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Figure 5: The conditional probability density, given Ft for t in January 1998, of the

total number of defaults within five years from the portfolio of all active firms at January

1998, in (a) the fitted model with frailty (solid line), (b) a hypothetical model in which

the common frailty process Y is replaced with firm-by-firm frailty processes with initial

condition at time t equal to that of Yt, but with common Brownian motion driving frailty

for all firms replaced with firm-by-firm independent Brownian motions (dashed line), and

(c) a hypothetical model in which the common frailty process Y is replaced with firm-

by-firm independent frailty processes having the same posterior probability distribution

as Y (dotted line). The density estimates are obtained with a Gaussian kernel smoother

(bandwidth equal to 5) applied to a Monte-Carlo generated empirical distribution.

23



In particular, we see in Figure 5 that the two hypothetical models that
do not have a common frailty variable assign virtually no probability to the
event of more than 200 defaults between January 1998 and December 2002.
The 95-percentile and 99-percentile losses of the model (c) with completely
independent frailty variables are 144 and 150 defaults, respectively. Model
(b), with independently evolving frailty variables with the same initial value
in January 1998, has a 95-percentile and 99-percentile of 180 and 204 defaults,
respectively. The actual number of defaults in our dataset during this time
period was 195.

The 95-percentile and 99-percentile of the loss distribution of the actual
estimated model (a), with a common frailty variable, are 216 and 265 de-
faults, respectively. The realized number of defaults during this event hori-
zon, 195, is slightly below the 91-percentile of the distribution implied by
the fitted frailty model, therefore constituting a quite extreme event. On the
other hand, taking the hindsight bias into account, in that our analysis was
partially motivated by the high number of defaults in the years 2001 and
2002, the occurrence of 195 defaults might be viewed as an only moderately
extreme event for the frailty model.

4 Analysis of Model Fit and Specification

This section examines the ability of our model to survive tests of its fit. We
also examine its out-of-sample accuracy, and its robustness to some alterna-
tive specifications.

4.1 Frailty versus No Frailty

In order to judge the relative fit of the models with and without frailty, we
do not use standard tests, such as the chi-square test. Instead, we compare
the marginal likelihoods of the models. This approach does not rely on large-
sample distribution theory and has the intuitive interpretation of attaching
prior probabilities to the competing models.

Specifically, we consider a Bayesian approach to comparing the quality of
fit of competing models and assume positive prior probabilities for the two
models “noF” (the model without frailty) and “F”(the model with a common
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frailty variable). The posterior odds ratio is

P (F |W, D)

P (noF |W, D)
=

LF (γ̂F , θ̂F |W, D)

LnoF (γ̂noF , θ̂noF |W, D)

P (F)

P (noF)
, (5)

where θ̂M and LM denote the MLE and the likelihood function for a certain
model M, respectively. Plugging (3) into (5) gives

P (F |W, D)

P (noF |W, D)
=

L (γ̂F |W )LF (θ̂F |W, D)

L (γ̂noF |W )LnoF (θ̂noF |W, D)

P (F)

P (noF)

=
LF (θ̂F |W, D)

LnoF (θ̂noF |W, D)

P (F)

P (noF)
, (6)

using the fact that the time-series model for the covariate process W is the
same in both models. The first factor on the right-hand side of (6) is some-
times known as the “Bayes factor.”

Following Kass and Raftery (1995) and Eraker, Johannes, and Polson
(2003), we focus on the size of the statistic Φ given by twice the natural
logarithm of the Bayes factor, which is on the same scale as the likelihood
ratio test statistic. A value for Φ between 2 and 6 provides positive evi-
dence, a value between 6 and 10 strong evidence, and a value larger than
10 provides very strong evidence for the alternative model. This criterion
does not necessarily favor more complex models due to the marginal nature
of the likelihood functions in (6). See Smith and Spiegelhalter (1980) for a
discussion of the penalizing nature of the Bayes factor, sometimes referred
to as the “fully automatic Occam’s razor.” In our case, the outcome of the
test statistic is 22.6. In the sense of this approach to model comparison, we
see strong evidence in favor of including a frailty variable.11

4.2 Misspecification of Proportional Hazards

A comparison of Figures 1 and 2 shows that the frailty effect is generally
higher when defaults are more prevalent. In light of this, one might suspect
misspecification of the proportional-hazards intensity model (1), which would
automatically induce a measured frailty effect if the true intensity model has

11Unfortunately, the Bayes factor cannot be used for comparing the model with frailty to
the model with frailty and unobserved heterogeneity, since for the latter model evaluating
the likelihood function is computationally prohibitively expensive.
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a higher-than-proportional dependence on distance to default, which is by far
the most economically and statistically significant covariate. If the response
of the true log-intensity to variation in distance to default is faster than
linear, then the estimated latent variable in our current formulation would
be higher when distances to default are well below normal, as in 1991 and
2003. Appendix E provides an extension of the model that incorporates
non-parametric dependence of default intensities on distance to default. The
results indicate that the proportional-hazards specification is unlikely to be
a significant source of misspecification in this regard. The response of the
estimated log intensities is roughly linear in distance to default, and the
estimated posterior of the frailty path has roughly the appearance shown in
Figure 2.

4.3 Unobserved Heterogeneity

It may be that a substantial portion of the differences among firms’ default
risks is due to heterogeneity in the degree to which different firms are sensitive
to the covariates, perhaps through additional firm-specific omitted variables.
Failure to allow for this could result in biased and inefficient estimation. We
consider an extension of the model by introducing a firm-specific heterogene-
ity factor Zi for firm i, so that the complete-information (Gt) default intensity
of firm i is of the form

λit = eXitβ+γYtZi = λ̃ite
γYtZi, (7)

where Z1, . . . , Zm are independently and identically gamma-distributed12 ran-
dom variables that are jointly independent of the observable covariates W
and the common frailty process Y .

Fixing the mean of the heterogeneity factor Zi to be 1 without loss of
generality, we found that maximum likelihood estimation does not pin down
the variance of Zi to any reasonable precision with our limited set of data. We
anticipate that far larger datasets would be needed, given the already large
degree of observable heterogeneity and the fact that default is, on average,
relatively unlikely. In the end, we examine the potential role of unobserved

12Pickles and Crouchery (1995) show in simulation studies that it is relatively safe to
make concrete parametric assumptions about the distribution of static frailty variables.
Inference is expected to be similar whether the frailty distribution is modeled as gamma,
log-normal or some other parametric family, but for analytical tractability we chose the
gamma distribution.

26



heterogeneity for default risk by fixing the standard deviation of Zi at 0.5. It
is easy to check that the likelihood function is again given by (3), where in this
case the final expectation is with respect to the product of the distributions
of Y and Z1, . . . , Zn.

Appendix C shows that our general conclusions regarding the economic
significance of the covariates and the importance of including a time-varying
frailty variable remain in the presence of unobserved heterogeneity. More-
over, the posterior mean path of the time-varying latent factor is essentially
unchanged.

4.4 Parameter Uncertainty

Until this point, our analysis is based on maximum-likelihood estimation of
the frailty mean reversion and volatility parameters, κ and σ. Uncertainty
regarding these parameters, in a Bayesian sense, could lead to an increase
in the tail risk of portfolio losses, which we next investigate. We are also
interested in examining our ability to learn these parameters, in a Bayesian
sense. We will see that the mean-reversion parameter κ is particularly hard
to tie down.

The stationary variance of the frailty variable Yt is

σ2
∞ ≡ lim

s→∞
var (Ys | Gt) = lim

s→∞
var (Ys | Yt) =

σ2

2κ
.

Motivated by the historical behavior of the posterior mean of the frailty, we
take the prior density of the stationary standard deviation, σ∞, to be Gamma
distributed with a mean of 0.5 and a standard deviation of 0.25. The prior
distribution for the mean-reversion rate κ is also assumed to be Gamma, with
a mean of log 2/36 (which corresponds to a half-life of three years for shocks
to the frailty variable) and a standard deviation of log 2/72. The joint prior
density of σ and κ is therefore of the form

p (σ, κ) ∝
(

σ√
2κ

)3

exp

(
− 8σ√

2κ

)
κ3 exp

(
−κ

144

log 2

)
.

Figure 6 shows the marginal posterior densities of the volatility and mean
reversion parameters of the frailty variable. Figure 7 shows their joint pos-
terior density. These figures indicate considerable posterior uncertainty re-
garding these parameters. From the viewpoint of subjective probability, es-
timates of the tail risk of the portfolio loss distribution that are obtained
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Figure 6: Marginal posterior densities, given FT , of the frailty volatility parameter η

and the frailty mean reversion rate κ in the Bayesian approach of Section 4.4.

by fixing these common frailty parameters at their maximum likelihood es-
timates might significantly underestimate the probability of certain extreme
events.

Although parameter uncertainty has a minor influence on portfolio loss
distribution at intermediate quantiles, Figure 8 reveals a moderate impact of
parameter uncertainty on the extreme tails of the distribution. For example,
when fixing the frailty parameters η and κ at their maximum likelihood esti-
mates, the 99-percentile of the portfolio default distribution is 265 defaults.
Taking posterior parameter uncertainty into account, this quantile rises to
275 defaults.

4.5 Do Trailing Defaults Proxy for Unobserved Co-

variates?

Table IV reports the fitted model coefficients for a model without frailty, but
with trailing 1-year average yearly default rate as a covariates. We emphasize
that this model violates the assumptions that justify our likelihood function,
for the obvious reason that defaults cannot be independent across different
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Figure 7: Isocurves of the joint posterior density, given FT , of the frailty volatility

parameter η and mean reversion rate κ.

firms conditional on the path of the covariate process if we include average
realized default rates as a covariate. It may be, however, that trailing default
rates will proxy for an important source of default risk covariation that is
otherwise unobserved, and reduce the relative importance of frailty.

The signs, magnitudes, and statistical significance of the coefficients on
the observable covariates are similar to those of the model that does not
include the trailing default rate as a covariate. The trailing default rate
plays a significant auxiliary role. For example, when trailing average default
rates increase by 1% per year, a large but plausible shift given our data set,
the model estimates imply a proportional increase in the conditional mean
arrival rates of all firms of about 7.1%. This would cause a shift in the default
intensity of a particular firm from, say, 2% to about 2.14%.

For the reason described above (the distribution of trailing default is an
endogenous property of the default intensity model), we cannot examine the
influence of trailing default on the posterior of the frailty process. We are
able, though, to see whether including trailing default rates is an effective
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Figure 8: Density, on a logarithmic scale, of the number of defaults in the portfolio

when fixing the volatility and mean reversion parameter at their MLE estimates (dashed

line), and in the Bayesian estimation framework (solid line). The density estimates were

obtained by applying a Gaussian kernel smoother (with a bandwidth of 10) to the Monte

Carlo generated empirical distribution.

alternative to frailty in capturing the distribution of portfolio tail losses. In
the sense of the tests described in the next sub-section, it is not.

4.6 Model Accuracy

We turn to the ability of our model to capture portfolio default risk.
In terms of firm-by-firm default prediction, Duffie, Saita, and Wang (2006)

showed that the observable covariates of our basic model already provide the
highest out-of-sample accuracy ratios documented in the default prediction
literature. Allowing for frailty does not add significantly to firm-by-firm de-
fault prediction. Results reported in Appendix F show that accuracy ratios
with frailty are essentially the same as those without. Likewise, accuracy
ratios are roughly unaffected by adding trailing average default rate as a
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Coefficient Std. Error t-statistic
constant -2.364 0.955 -2.5
distance to default -1.189 0.052 -23.1
trailing stock return -0.678 0.301 -2.3
3-month T-bill rate -0.086 0.135 -0.6
trailing S&P 500 return 1.766 1.001 1.8
trailing 1-year default rate 7.154 1.000 7.2

Table IV: Maximum likelihood estimates of the intensity parameters in the model without

frailty but with trailing 1-year average yearly default rate as a covariate. Estimated

asymptotic standard errors were computed using the Hessian matrix of the likelihood

function at θ = θ̂.

covariate. At the level of individual firms, most of our ability to sort firms
according to default probability is coming from the firm-level covariates, par-
ticularly distance to default. The coefficients on these variables are relatively
insensitive to the alternative specifications that we have examined.

Our main focus is the distribution of portfolio losses. In order to gauge the
ability of our model to capture this distribution, we proceed as follows. At the
beginning of each year between 1980 and 2003, we calculate for the companies
in our dataset the model-implied distribution of the number of defaults during
the subsequent twelve months, and then determine the quantile of the realized
number of defaults with respect to this distribution.

Figure 9 shows these quantiles for (i) our benchmark model with frailty,
(ii) our benchmark model adjusted by removing frailty, and (iii) the model
without frailty variable but including trailing one-year average default rate
as an additional covariate. The quantiles of the two models without frailty
variable seem to cluster around 0 and 1, which suggests that these models
underestimate the probabilities of unusually low portfolio losses and of un-
usually high portfolio losses. For example, in 1994 the realized number of
defaults lies below the estimated 1-percentile of the portfolio default distri-
bution for the model without frailty, while in 1990 and 2001 the realized
number of defaults lies above the 99.9-percentile of estimated distribution.
For the model that in addition includes the trailing one-year average default
rate as a covariate, these quantiles are only slightly less extreme. On the
other hand, the quantiles for the model with frailty are distributed relatively
evenly in the unit interval, indicating a more accurate assessment of credit
risk on the portfolio level.
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Figure 9: Quantile of the realized number of defaults with respect to the predicted

one-year portfolio loss distribution as implied by the model with frailty variable (crosses),

without frailty variable (circles), and without frailty variable but with trailing one-year

average default rate as covariate (triangles)

Moreover, the forecasting errors for the two models without frailty tend
to be serially correlated over time, which is most evident for the periods
1994-1997 as well as 2000-2003. The null hypothesis of no serial correlation
in the quantiles is indeed rejected at the 1% significance level for the model
without frailty (p-value of 0.004). For the model without frailty variable but
with trailing one-year average default rate as covariate, the null hypothesis of
no serial correlation in the quantiles can still be rejected at the 5% significance
level (p-value of 0.019). On the other hand, with a p-value of 0.62, the null
hypothesis of no serial correlation in the quantiles cannot be rejected for the
model with frailty.
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5 Concluding Remarks

Our results have important implications for the risk management of portfo-
lios of corporate debt. For example, as backing for the performance of their
loan portfolios, banks retain capital at levels designed to withstand default
clustering at extremely high confidence levels, such as 99.9%. Some banks
do so on the basis of models in which default correlation is assumed to be
captured by common risk factors determining conditional default probabili-
ties, as in Vasicek (1987) and Gordy (2003). If, however, defaults are more
heavily clustered in time than currently captured in these default-risk mod-
els, then significantly greater capital might be required in order to survive
default losses with high confidence levels. An understanding of the sources
and degree of default clustering is also crucial for the rating and risk analysis
of structured credit products that are exposed to correlated defaults, such as
collateralized debt obligations (CDOs) and options on portfolios of default
swaps. While we do not address the pricing of credit risk in this paper, frailty
could play a useful role in the market valuation of relatively senior tranches
of CDOs, which suffer a loss of principal only when the total default losses
of the underlying portfolio of bonds is extreme.

This paper finds significant evidence among U.S. corporates of a com-
mon unobserved source of default risk that increases default correlation and
extreme portfolio loss risk above and beyond that implied by observable com-
mon and correlated macroeconomic and firm-specific sources of default risk.
We offer a new model of corporate default intensities in the presence of a
time-varying latent frailty factor, and with unobserved heterogeneity.

Applying this model to data for U.S. firms between January 1979 and
March 2004, we find that corporate default rates vary over time well beyond
levels that can be explained by a model that includes only observable covari-
ates. In particular, the posterior distribution of the frailty variable shows
that the expected rate of corporate defaults was much higher in 1989-1990
and 2001-2002, and much lower during the mid-nineties and in 2003-2004,
than those implied by an analogous model without frailty. An out-of-sample
test for data between 1980 and 2003 indicates that a model without frailty
significantly underestimates the probability of extreme positive as well as
negative events in portfolios of corporate credits, while a model with frailty
gives a more accurate assessment of credit risk on the portfolio level.

We estimate that the frailty variable represents a common unobservable
factor in default intensities with an annual volatility of over 40%. The esti-
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mated rate of mean reversion of the frailty factor, 1.8% per month, implies
that when defaults cluster in time to a degree that is above and beyond
that suggested by observable default-risk factors, the half life of the impact
of this unobservable factor is roughly 3 years. We show that the mean-
reversion rate is difficult to pin down with the available data. Without mean
reversion, however, the variance of the frailty effect would explode over time.

Our methodology could be applied to other situations in which a com-
mon unobservable factor is suspected to play an important role in the time-
variation of arrivals for certain events, for example mergers and acquisitions,
mortgage prepayments and defaults, or leveraged buyouts.
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Appendices

A Parameter Estimation

This appendix provides our estimation methodology. The parameter vector
γ determining the time-series model for the observable covariate process W is
specified and estimated in Duffie, Saita, and Wang (2006). This model, sum-
marized in Appendix G, is vector-autoregressive Gaussian, with a number of
structural restrictions chosen for parsimony and tractability. We focus here
on the estimation of the parameter vector θ of the default intensity model.

We use a variant of the expectation-maximization (EM) algorithm (see
Demptser, Laird, and Rubin (1977)), an iterative method for the computa-
tion of the maximum likelihood estimator of parameters of models involving
missing or incomplete data. See also Cappé, Moulines, and Rydén (2005),
who discuss EM in the context of hidden Markov models. In many potential
applications, explicitly calculating the conditional expectation required in
the “E-step” of the algorithm may not be possible. Nevertheless, the expec-
tation can be approximated by Monte Carlo integration, which gives rise to
the stochastic EM algorithm, as explained for example by Celeux and Diebolt
(1986) and Nielsen (2000), or to the Monte-Carlo EM algorithm (Wei and
Tanner (1990)).

Maximum likelihood estimation (MLE) of the intensity parameter vector
θ involves the following steps:

0. Initialize an estimate of θ = (β, η, κ) at θ(0) = (β̂, 0.05, 0), where β̂ is
the maximum likelihood estimator of β in the model without frailty,
which can be obtained by maximizing the likelihood function (2) by
standard methods such as the Newton-Raphson algorithm.

1. (E-step) Given the current parameter estimate θ(k) and the observed
covariate and default data W and D, respectively, draw n independent
sample paths Y (1), . . . , Y (n) from the conditional density pY ( · |W, D, θ(k))
of the latent Ornstein-Uhlenbeck frailty process Y . We do this with the
Gibbs sampler described in Appendix B. We let

Q
(
θ, θ(k)

)
= Eθ(k) (logL (θ |W, Y, D)) (8)

=

∫
logL (θ |W, y, D) pY

(
y |W, D, θ(k)

)
dy, (9)
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where Eθ denotes expectation with respect to the probability mea-
sure associated with a particular parameter vector θ. This “expected
complete-data log-likelihood” or “intermediate quantity,” as it is com-
monly called in the EM literature, can be approximated with the sample
paths generated by the Gibbs sampler as

Q̂
(
θ, θ(k)

)
=

1

n

n∑

j=1

logL
(
θ |W, Y (j), D

)
. (10)

2. (M-step) Maximize Q̂(θ, θ(k)) with respect to the parameter vector θ,
for example by Newton-Raphson. The maximizing choice of θ is the
new parameter estimate θ(k+1).

3. Replace k with k + 1, and return to Step 1, repeating the E-step and
the M-step until reasonable numerical convergence is achieved.

One can show (Demptser, Laird, and Rubin (1977) or Gelman, Carlin,
Stern, and Rubin (2004)) that L(γ, θ(k+1) |W, D) ≥ L(γ, θ(k) |W, D). That is,
the observed data likelihood (3) is non-decreasing in each step of the EM al-
gorithm. Under regularity conditions, the parameter sequence {θ(k) : k ≥ 0}
therefore converges to at least a local maximum (see Wu (1983) for a pre-
cise formulation in terms of stationarity points of the likelihood function).
Nielsen (2000) gives sufficient conditions for global convergence and asymp-
totic normality of the parameter estimates, although these conditions are
usually hard to verify. As with many maximization algorithms, a simple
way to mitigate the risk that one misses the global maximum is to start the
iterations at many points throughout the parameter space.

Under regularity conditions, the Fisher and Louis identities (see for ex-
ample Proposition 10.1.6 of Cappé, Moulines, and Rydén (2005)) imply that

∇θL
(
θ̂ |W, Y, D

)
= ∇θQ

(
θ, θ̂
)
|θ=θ̂

and

∇2
θL
(
θ̂ |W, Y, D

)
= ∇2

θQ
(
θ, θ̂
)
|θ=θ̂.

The Hessian matrix of the expected complete-data likelihood (9) can there-
fore be used to estimate asymptotic standard errors for the MLE parameter
estimators.
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We also estimated a generalization of the model that incorporates unob-
served heterogeneity, using an extension of this algorithm that is provided in
Appendix C.

B Applying the Gibbs Sampler with Frailty

A central quantity of interest for describing and estimating the historical
default dynamics is the posterior density pY ( · |W, D, θ) of the latent frailty
process Y . This is a complicated high-dimensional density. It is prohibitively
computationally intensive to directly generate samples from this distribution.
Nevertheless, Markov Chain Monte Carlo (MCMC) methods can be used for
exploring this posterior distribution by generating a Markov Chain over Y ,
denoted {Y (n)}N

n≥1, whose equilibrium density is pY ( · |W, D, θ). Samples
from the joint posterior distribution can then be used for parameter inference
and for analyzing the properties of the frailty process Y . For a function f ( · )
satisfying regularity conditions, the Monte Carlo estimate of

E [f (Y ) |W, D, θ] =

∫
f (y) pY (y |W, D, θ) dy (11)

is given by

1

N

N∑

n=1

f
(
Y (n)

)
. (12)

Under conditions, the ergodic theorem for Markov chains guarantees the
convergence of this average to its expectation as N → ∞. One such function
of interest is the identity, f (y) = y, so that

E [f (Y ) |W, D, θ] = E [Y |W, D, θ] = {E (Yt | FT ) : 0 ≤ t ≤ T} ,

the posterior mean of the latent Ornstein-Uhlenbeck frailty process.
The linchpin to MCMC is that the joint distribution of the frailty path

Y = {Yt : 0 ≤ t ≤ T} can be broken down into a set of conditional distribu-
tions. A general version of the Clifford-Hammersley (CH) Theorem (Ham-
mersley and Clifford (1970) and Besag (1974)) provides conditions under
which a set of conditional distributions characterizes a unique joint distribu-
tion. For example, in our setting, the CH Theorem indicates that the density
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pY ( · |W, D, θ) is uniquely determined by the following set of conditional dis-
tributions,

Y0 | Y1, Y2, . . . , YT , W, D, θ
Y1 | Y0, Y2, . . . , YT , W, D, θ
...
YT | Y0, Y1, . . . , YT−1, W, D, θ,

using the naturally suggested interpretation of this informal notation. We
refer the interested reader to Robert and Casella (2005) for an extensive
treatment of Monte Carlo methods, as well as Johannes and Polson (2003) for
an overview of MCMC methods applied to problems in financial economics.

In our case, the conditional distribution of Yt at a single point in time
t, given the observable variables (W, D) and given Y(−t) = {Ys : s 6= t}, is
somewhat tractable, as shown below. This allows us to use the Gibbs sampler
(Geman and Geman (1984) or Gelman, Carlin, Stern, and Rubin (2004)) to
draw whole sample paths from the posterior distribution of {Yt : 0 ≤ t ≤ T}
by the algorithm:

0. Initialize Yt = 0 for t = 0, . . . , T .

1. For t = 1, 2, . . . , T , draw a new value of Yt from its conditional distri-
bution given Y(−t). For a method, see below.

2. Store the sample path {Yt : 0 ≤ t ≤ T} and return to Step 1 until the
desired number of paths has been simulated.

We usually discard the first several hundred paths as a “burn-in” sample,
because initially the Gibbs sampler has not approximately converged13 to the
posterior distribution of {Yt : 0 ≤ t ≤ T}.

It remains to show how to sample Yt from its condition distribution given
Y(−t). Recall that L (θ |W, Y, D) denotes the complete-information likelihood

13We used various convergence diagnostics, such as trace plots of a given parameter as
a function of the number of samples drawn, to assure that the iterations have proceeded
long enough for approximate convergence and to assure that our results do not depend
markedly on the starting values of the Gibbs sampler. See Gelman, Carlin, Stern, and
Rubin (2004), Chapter 11.6, for a discussion of various methods for assessing convergence
of MCMC methods.
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of the observed covariates and defaults, where θ = (β, η, κ). For 0 < t < T,
we have

p
(
Yt |W, D, Y(−t), θ

)
=

p(W, D, Y, θ)

p(W, D, Y(−t), θ)
∝

∝ p(W, D, Y, θ) =

= p(W, D | Y, θ)p(Y, θ) ∝
∝ L (θ |W, Y, D) p(Y, θ) =

= L (θ |W, Y, D) p(Yt | Y(−t), θ)p
(
Y(−t), θ

)
∝

∝ L (θ |W, Y, D) p(Yt | Y(−t), θ),

where we repeatedly made use of the fact that terms not involving Yt are
constant.

From the Markov property it follows that the conditional distribution of
Yt given Y(−t) and θ is the same as the conditional distribution of Yt given
Yt−1, Yt+1 and θ. Therefore

p
(
Yt | Y(−t), θ

)
= p (Yt | Yt−1, Yt+1, θ) =

=
p (Yt−1, Yt, Yt+1 | θ)
p (Yt−1, Yt+1 | θ)

∝

∝ p (Yt−1, Yt, Yt+1 | θ) =

= p (Yt−1, Yt | θ) p (Yt+1 | Yt−1, Yt, θ) ∝

∝ p (Yt−1, Yt | θ)
p (Yt−1 | θ)

p (Yt+1 | Yt, θ) =

= p (Yt | Yt−1, θ) p (Yt+1 | Yt, θ) ,

where p (Yt | Yt−1, θ) is the one-step transition density of the OU-process (4).
Hence,

p
(
Yt |W, D, Y(−t), θ

)
∝ L (θ |W, Y, D) · p (Yt | Yt−1, θ) · p (Yt+1 | Yt, θ) (13)

Equation (13) determines the desired conditional density of Yt given Yt−1

and Yt+1 in an implicit form. Although it is not possible to directly draw
samples from this distribution, we can employ the Random Walk Metropolis-
Hastings algorithm (Metropolis and Ulam (1949), and Hastings (1970)).14

14Alternatively, we could discretize the sample space and approximate the conditional
distribution by a discrete distribution, an approach commonly referred to as the Griddy
Gibbs method (Tanner (1998)). However, the Metropolis-Hastings algorithm is usually a
couple of times faster in cases where the conditional density is not known explicitly.
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We use the proposal density q(Y
(n)
t |W, D, Y (n−1), θ) = N(Y

(n−1)
t , 4), that is,

we take the mean to be the value of Yt from the previous iteration of the
Gibbs sampler, and the variance to be twice the variance of the standard
Brownian motion increments15. The Metropolis-Hastings step to sample Yt

in the n − th iteration of the Gibbs sampler therefore works as follows:

1. Draw a candidate y ∼ N(Y
(n−1)
t , 4).

2. Compute

α
(
y, Y

(n)
t

)
= min




L
(
θ |W, Y

(n−1)
(−t) , Yt = y, D

)

L (θ |W, Y (n−1), D)
, 1



 . (14)

3. Draw U with the uniform distribution on (0, 1) , and let

Y
(n)
t =

{
y if U < α

(
y, Y

(n)
t

)

Y
(n−1)
t otherwise.

}
.

The choice of the acceptance probability (14) ensures that the Markov

chain {Y (n)
t : n ≥ 1} satisfies the detailed balance equation

p
(
y1|W, D, Y(−t), θ

)
φy1,4 (y2) α (y1, y2) = p

(
y2|W, D, Y(−t), θ

)
φy2,4 (y1) α (y2, y1) ,

where φµ,σ2 denotes the density of a normal distribution with mean µ and

variance σ2. Moreover, {Y (n)
t : n ≥ 1} has p

(
Yt|W, D, Y(−t), θ

)
as its sta-

tionary distribution (see for example Theorem 7.2 in Robert and Casella
(2005)).

C With Unobserved Heterogeneity

The Monte Carlo EM algorithm described in Appendix A and the Gibbs sam-
pler described in Appendix B are extended to treat unobserved heterogeneity
as follows.

The extension of the Monte Carlo EM algorithm is:

15We calculated the conditional density for various points in time numerically to assure
that it does not have any fat tails. This was indeed the case so that using a normal proposal
density does not jeopardize the convergence of the Metropolis-Hastings algorithm. See
Mengersen and Tweedie (1996) for technical conditions.

40



0. Initialize Z
(0)
i = 1 for 1 ≤ i ≤ m and initialize θ(0) = (β̂, 0.05, 0), where

β̂ is the maximum likelihood estimator of β in the model without frailty.

1. (Monte-Carlo E-step.) Given the current parameter estimate θ(k), draw
samples

(
Y (j), Z(j)

)
for j = 1, . . . , n from the joint posterior distribu-

tion pY,Z( · | W, D, θ(k)) of the frailty sample path Y = {Yt : 0 ≤ t ≤ T}
and the vector Z = (Zi : 1 ≤ i ≤ m) of unobserved heterogeneity vari-
ables. This can be done, for example, by using the Gibbs sampler de-
scribed below. The expected complete-data log-likelihood is now given
by

Q
(
θ, θ(k)

)
= Eθ(k) (logL (θ | W, Y, Z, D))

=

∫
logL (θ | W, y, z, D) pY,Z

(
y, z | W, D, θ(k)

)
dy dz. (15)

Using the sample paths generated by the Gibbs sampler, (15) can be
approximated by

Q̂
(
θ, θ(k)

)
=

1

n

n∑

j=1

logL
(
θ |W, Y (j), Z(j), D

)
. (16)

2. (M-step.) Maximize Q̂(θ, θ(k)) with respect to the parameter vector θ,
using the Newton-Raphson algorithm. Set the new parameter estimate
θ(k+1) equal to this maximizing value.

3. Replace k with k + 1, and return to Step 2, repeating the MC E-step
and the M-step until reasonable numerical convergence.

The Gibbs sampler for drawing from the joint posterior distribution of
{Yt : 0 ≤ t ≤ T} and {Zi : 1 ≤ i ≤ m} works as follows:

0. Initialize Yt = 0 for t = 0, . . . , T . Initialize Zi = 1 for i = 1, . . . , m.

1. For t = 1, . . . , T draw a new value of Yt from its conditional distribution
given Yt−1, Yt+1 and the current values for Zi. This can be done using
a straightforward modification of the Metropolis-Hastings algorithm
described in Appendix B by treating log Zi as an additional covariate
with corresponding coefficient in (1) equal to 1.
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2. For i = 1, . . . , m, draw the unobserved heterogeneity variables Z1, . . . , Zm

from their conditional distributions given the current path of Y . See
below.

3. Store the sample path {Yt, 0 ≤ t ≤ T} and the variables {Zi : 1 ≤ i ≤ m}.
Return to Step 1 and repeat until the desired number of scenarios has
been drawn, discarding the first several hundred as a burn-in sample.

It remains to show how to draw the heterogeneity variables Z1, . . . , Zm

from their conditional posterior distribution. First, we note that

p (Z |W, Y, D, θ) =

m∏

i=1

p (Zi |Wi, Y, Di, θ) ,

by conditional independence of the unobserved heterogeneity variables Zi.
In order to draw Z from its conditional distribution, it therefore suffices to
show how to draw the Zi’s from their conditional distributions. Recall that
we have chosen the heterogeneity variables Zi to be gamma distributed with
mean 1 and standard deviation 0.5. A short calculation shows that in this
case the density parameters a and b are both 4. Applying Bayes’ rule,

p (Zi |W, Y, D, θ) ∝ pΓ (Zi; 4, 4)L (θ |Wi, Y, Zi, Di)

∝ Z3
i e

−4Zie
−

Ti∑
t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)] , (17)

where pΓ ( · ; a, b) is the density function of a Gamma distribution with pa-
rameters a and b. Plugging (7) into (17) gives

p (Zi |W, Y, D, θ) ∝ Z3
i e

−4Zi exp

(
−

Ti∑

t=ti

λ̃ite
γYtZi

)
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)]

= Z3
i e

−4Zi exp (−AiZi) ·
{

BiZi if company i did default
1 if company i did not default

}
, (18)

for company specific constants Ai and Bi. The factors in (18) can be com-
bined to give

p (Zi |Wi, Y, Di, θ) = pΓ (Zi; 4 + Di,Ti
, 4 + Ai) . (19)
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This is again a Gamma distribution, but with different parameters, and it is
therefore easy to draw samples of Zi from its conditional distribution.

Table V shows the MLE of the covariate parameter vector β and the
frailty parameters η and κ together with estimated standard errors. We see
that, while including unobserved heterogeneity decreases the coefficient η
of dependence (sometimes called volatility) of the default intensity on the
OU frailty process Y from 0.125 to 0.112, our general conclusions regarding
the economic significance of the covariates and the importance of including
a time-varying frailty variable remain. Moreover, Figure 10 shows that the
posterior distribution of the frailty qualitatively remains essentially the same.

Coefficient Std. error t-statistic
constant −0.895 0.134 −6.7
distance to default −1.662 0.047 −35.0
trailing stock return −0.427 0.074 −5.8
3-month T-bill rate −0.241 0.027 −9.0
trailing S&P 500 return 1.507 0.309 4.9
latent factor volatility 0.112 0.022 5.0
latent factor mean reversion 0.061 0.017 3.5

Table V: Maximum likelihood estimates of the intensity parameters in the model with

frailty and unobserved heterogeneity. Asymptotic standard errors are computed using the

Hessian matrix of the likelihood function at θ = θ̂.

D Forward-Backward Filtering for Frailty

For this, we let R (t) = {i : Di,t = 0, ti ≤ t ≤ Ti} denote the set of firms
that are alive at time t, and ∆R (t) = {i ∈ R(t − 1) : Dit = 1, ti ≤ t ≤ Ti}
be the set of firms that defaulted at time t. A discrete-time approximation
of the complete-information likelihood of the observed survivals and defaults
at time t is

Lt (θ |W, Y, D) = Lt (θ |Wt, Yt, Dt) =
∏

i∈R(t)

e−λit∆t
∏

i∈∆R(t)

λit∆t.

The normalized version of the forward-backward algorithm allows us to cal-
culate the filtered density of the latent Ornstein-Uhlenbeck frailty variable
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Figure 10: Conditional posterior mean {E (ηYt | FT ) : 0 ≤ t ≤ T } with one-standard-

deviation bands, for the scaled Ornstein-Uhlenbeck frailty variable ηYt in the model that

also incorporates unobserved heterogeneity.

by the recursion

ct =

∫ ∫
p (yt−1 | Ft−1) φ (yt − yt−1)Lt (θ |Wt, yt, Dt) dyt−1 dyt

p (yt | Ft) =
1

ct

∫
p (yt−1 | Ft−1) p (yt | yt−1, θ)Lt (θ |Wt, yt, Dt) dyt−1,

where p (Yt | Yt−1, θ) is the one-step transition density of the OU-process (4).
For this recursion, we begin with the distribution (Dirac measure) of Y0

concentrated at 0.
Once the filtered density p (yt | Ft) is available, the marginal smoothed

density p (yt | FT ) can be calculated using the normalized backward recursions
(Rabiner (1989)). Specifically, for t = T − 1, T − 2, . . . , 1, we apply the
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Figure 11: Population density estimate of distance to default for 402,434 firm-months

between January 1979 and March 2004. The estimate was obtained by applying a Gaussian

kernel smoother (bandwidth equal to 0.2) to the empirical distribution.

recursion for the marginal density

αt|T (yt) =
1

ct+1

∫
p (yt | yt−1, θ)Lt+1 (θ |Wt+1, yt+1, Dt+1) αt+1|T (yt+1) dyt+1

p (yt | FT ) = p (yt | Ft)αt|T (yt) ,

beginning with αT |T (yt) = 1.
In order to explore the joint posterior distribution p

(
(y0, y1, . . . , yT )′ | FT

)

of the latent frailty variable, one may employ, for example, the Gibbs sampler
described in Appendix B.

E Non-Linearity Check

So far, see (1), we have assumed a linear dependence of the log-intensity on
the covariates. This assumption might be overly restrictive, especially in the
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Figure 12: Non-parametric estimate of the dependence of annual default frequency on

the current level of distance to default (DTD). For values of distance to default less than 9,

a Gaussian kernel smoother with bandwidth of 1 was used to obtain the intensity estimate.

For DTD larger than 9, a log-linear relationship was assumed.

case of the distance to default (DTD), which explains most of the variation
of default intensities across companies and across time. It is indeed possible
that, if the response of the true log-intensity to DTD is faster than linear,
then the latent variable in our current formulation would be higher when
DTDs go well below normal and vice versa.

To check the robustness of our findings with respect to the linearity as-
sumptions, we therefore re-estimate the model using a non-parametric model
for the contribution of distance to default, replacing DTD(t) with − log U(t)
in (1), where U(t) = f(DTD(t)), and f(x) is the non-parametric kernel-
smoothed fit of 1-year frequency of default in our sample at distance to
default of x. Figure 11 shows the historical occurrence of different levels of
distance-to-default for 402,434 firm-months, while Figure 12 shows the es-
timated relationship between the current level of DTD and the annualized
default intensity. For values of DTD ≤ 9, a Gaussian kernel smoother with
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bandwidth equal to one was used to obtain the intensity estimate, whereas
due to lack of data the tail of the distribution was approximated by a log-
linear relationship, smoothly extending the graph in Figure 11.

Using this extension, we re-estimate the model parameters as before. Ta-
ble VI shows the estimated covariate parameter vector β̂ and frailty param-
eters η̂ and κ̂ together with “asymptotic” estimates of standard errors.

Coefficient Std. Error t-statistic
Constant 2.279 0.194 11.8
− log(f(DTD)) −1.198 0.042 −28.6
Trailing stock return −0.618 0.075 −8.3
3-month T-bill rate −0.238 0.030 −8.1
Trailing S&P 500 return 1.577 0.312 5.1
Latent factor volatility 0.128 0.020 6.3
Latent factor mean reversion 0.043 0.009 4.8

Table VI: Maximum likelihood estimates of the intensity parameters θ in the model

with frailty, replacing distance to default with − log(f(DTD)), where DTD is distance to

default and f( · ) is the non-parametric kernel estimated mapping from DTD to annual

default frequency, illustrated in Figure 12. The frailty volatility is the coefficient η of

dependence of the default intensity on the standard Ornstein-Uhlenbeck frailty process

Y . Estimated asymptotic standard errors were computed using the Hessian matrix of the

expected complete data log-likelihood at θ = θ̂.

Comparing Tables II and VI, we see that none of the coefficients link-
ing a firm’s covariates to its default intensity has changed noteworthily. In
particular, the coefficient now linking the default intensity and − log U(t) is
virtually the same as the coefficient for DTD in the original model. Note
however that the intercept has changed from -1.20 to 2.28. This difference
is due to the fact that − log U(t) ≈ DTD − 3.5. Indeed, for the intercept
at DTD = 0 in Figure 12 we have 10−1.5 ≈ 0.032 ≈ exp(−1.20 − 2.28). In
addition, the posterior path of the latent Ornstein-Uhlenbeck frailty variable
looks as before (not shown here). In view of these findings we decided the
keep the model with a log-linear relationship between a firm’s DTD and its
default intensity.
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F Out-of-Sample Accuracy Ratios

This appendix provides out-of-sample accuracy ratios for our model and some
variants.

Given a future time horizon and a particular default prediction model,
the “power curve” for out-of-sample default prediction is the function f that
maps any x in [0, 1] to the fraction f(x) of firms that default before the
time horizon that were initially ranked by the model in the lowest fraction
x of the population. For example, for the model without frailty, on average
over 1993 to 2004, the highest quintile of firms ranked by estimated default
probability at the beginning of a year accounted for 92% of firms defaulting
within one year. Power curves for the model without frailty are provided in
Duffie, Saita, and Wang (2006).

The “accuracy ratio” of a model with power curve f is defined as

2

∫ 1

0

(f(x) − r(x)) dx,

where x 7→ r(x) = x, the identity, is the expected power curve of a completely
uninformative model, one that sorts firms randomly. So, a random-sort model
has an expected accuracy ratio of 0. A “crystal ball” perfect-sort model has
an accuracy ratio of 1 minus the total ex-post default rate. The accuracy ratio
is a benchmark for comparing the default prediction accuracy of different
models.

Duffie, Saita, and Wang (2006), who do not allow for frailty, already find
accuracy ratios are an improvement on those of any other model in the avail-
able literature. A comparison of the accuracy ratios found in Duffie, Saita,
and Wang (2006) with those for the frailty model shown in Figure 13 shows
that accuracy ratios are essentially unaffected by allowing for frailty. This
may be due to the fact that, because of the dominant role of the distance-to-
default covariate, firms generally tend to be ranked roughly in order of their
distances to default, which of course do not depend on the intensity model.
Accuracy ratios, however, measure ordinal (ranking) quality, and do not fully
capture the out-of-sample ability of a model to estimate the magnitudes of
default probabilities. Our results, not reported here, suggest that the frailty
model that we have proposed does not improve the out-of-sample accuracy
of the magnitudes of firm-level estimates of default probabilities, over the
model without frailty.
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Figure 13: Out-of-sample accuracy ratios (ARs), based on models estimated with data

up to December 1992. The solid line provides one-year-ahead ARs based on the model

without frailty. The dashed line shows one-year-ahead ARs for the model with frailty. The

dash-dot line shows 5-year-ahead ARs for the model with frailty.

Figure 14 shows accuracy ratios for the variant of our model that replaces
the unobserved frailty variable Y with the one-year trailing average default
rate. The accuracy ratios are comparable to those of the model with frailty.

G Summary of Covariate Time-Series Model

We summarize here the particular parameterization of the time-series model
for the covariates that we adopt from Duffie, Saita, and Wang (2006). Be-
cause of the high-dimensional state-vector, which includes the macroeco-
nomic covariates as well as the distance to default and size of each of almost
3000 firms, we have opted for a Gaussian first-order vector auto-regressive
time series model, with the following simple structure.
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Figure 14: Out-of-sample one-year (solid line) and five-year (dashed line) accuracy ratios

(ARs), based on the DSW model enhanced with the trailing one-year default rate as an

additional covariate.

The 3-month and 10-year Treasury rates, r1t and r2t, respectively, are
modeled by taking rt = (r1t, r2t)

′ to satisfy

rt+1 = rt + kr(θr − rt) + Crǫt+1 ,

where ǫ1, ǫ2, . . . are independent standard-normal vectors, Cr is a 2×2 lower-
triangular matrix, and the time step is one month. Provided Cr is of full
rank, This is a simple arbitrage-free two-factor affine term-structure model.
Maximum-likelihood parameter estimates and standard errors are reported
in Duffie, Saita, and Wang (2006).

For the distance to default Dit and log-assets Vit of firm i, and the trailing
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one-year S&P500 return, St, we assume that

[
Di,t+1

Vi,t+1

]
=

[
Dit

Vit

]
+

[
kD 0
0 kV

]([
θiD

θiV

]
−
[
Dit

Vit

])
+

+

[
b · (θr − rt)

0

]
+

[
σD 0
0 σV

]
ηi,t+1 , (20)

St+1 = St + kS(θS − St) + ξt+1, (21)

where

ηit = Azit + Bwt , (22)

ξt = αSut + γSwt,

for {z1t, z2t, . . . , znt, wt : t ≥ 1} that are iid 2-dimensional standard-normal,
all independent of {u1, u2, . . .}, which are independent standard normals.
The 2 × 2 matrices A and B have A12 = B12 = 0, and are normalized so
that the diagonal elements of AA′ + BB′ are 1. For estimation, some such
standardization is necessary because the joint distribution of ηit (over all
i) is determined by the 6 (non-unit) entries in AA′ + BB′ and BB′. Our
standardization makes A and B equal to the Cholesky decompositions of
AA′ and BB′, respectively. For simplicity, although this is unrealistic, we
assume that ǫ is independent of (η, ξ). The maximum-likelihood parameter
estimates, with standard errors, are provided in Duffie, Saita, and Wang
(2006), and are relatively unsurprising.
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