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Abstract—This work presents an experience report on the
architectural decisions taken in the evolution of a Software
Product Line (SPL) of Model-based Testing tools (PLeTs). This
SPL was partially designed and developed with the intention of
minimizing effort and time-to-market during the development
of a family of performance testing tools. With the evolution
of our research and the addition of new features to the SPL,
we identified limitations in the initial architectural design of
PLeTs’ components, which led us to redesign its Software Product
Line Architecture (SPLA). In this paper, we discuss the main
issues that led to changes in our SPLA, as well as present the
design decisions that facilitate its evolution in the context of an
industrial environment. We will also report our experiences on
architecture modifications in the evolution of our SPL with the
intention of allowing easier maintenance in a volatile development
environment.

I. INTRODUCTION

Over a few decades, more and more software development
companies have been using some software engineering strate-
gies, such as reuse-based software engineering, to develop
software with less cost, faster delivery and increased quality.
Reuse-based software engineering is a strategy in which
the development process is focused on the reuse of assets
and on a core architecture, reducing the development effort
and improving the software quality. In recent years, many
techniques have been proposed to support software reuse, such
as Component-based development and Software Product Lines
(SPL) [11]. Component-based development is centered on
developing a software system by integrating components, where
each component can be defined as an independent software
unit that can be used with other components to create a system
module or even a whole software system. In another way,
Software Product Lines are focused on developing a family
of applications based on a common architecture and a shared
set of software assets, where each application is generated,
in accordance with the requirements imposed by different
customers, from these assets and shares a common architecture
[11].

In past years, SPL has emerged as a promising technique
to achieve systematic reuse and at the same time to decrease
development costs and time-to-market [9]. One of the main SPL
development sub-processes is to use the domain requirements
and the product line variability model to define the Software
Product Line Architecture (SPLA). The SPLA is a common,
high level and generic structure that will be used for all the
products derived from the SPL.

In order to take advantage of this approach, we have adopted
the SPL concept to support the development of our applications
[1] [4] [10]. We have found that, although this enabled the reuse
of artifacts, thus reducing the time and cost of development, it
incurred in a cost related to the evolution of each artifact, as
well as that of the SPLA used to manage this evolution.

In this work we report and discuss our experience in
implementing and evolving the architecture of a component-
based SPL to derive Model-based Testing (MBT) tools. In
particular, we describe how we applied software design patterns
[6] to map and to instantiate components, these having their
variability managed by another component [5]. Finally, we
describe two methods of implementing the variable components
(features).

This paper is organized as follows. Section II describes
the context where PLeTs SPL was designed and developed, as
well as briefly presenting its Product Line Architecture (PLA).
In Section III we discuss the main PLA limitations identified
along the SPL evolution. In Section IV we present and discuss
our approach to mitigate these limitations, as well as describe
our PLA in accordance with that approach. In Section V we
discuss the related work and Section VI presents the lessons
learned along the PLA evolution. Finally, the conclusion and
the future work are presented in Section VII.

II. CONTEXT

Our research group on Software Testing1 has been working
to design and develop several testing tools. Our research focus is
to investigate innovative ways to mitigate the effort of repeatedly
creating custom solutions to apply performance, functional and
structural testing. After developing several testing tools, either
from scratch or using a limited opportunistic reuse, but which
had several features in common, we started a collaborative
study with the Technology Development Lab of our partner
company to investigate the use of SPL concepts to generate
these testing tools. As a result of this study we consolidated our
SPL called PLeTs [1] [4] [10]. In this SPL, derived products
are testing tools that receive behavioural models as input and
give either automatic or manual test scripts as output; these
models denote specific test cases, thus leveraging testing teams
to follow a model-based approach [14], a process that we
describe elsewhere [1].

1www.cepes.pucrs.br
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Fig. 1. PLeTs UML Component Diagram

A. PLeTs Architecture

PLeTs was initially designed to support the derivation of a
particular testing tool from a set of shared software components,
which are then glued together with minimal changes. We defined
the use of a replacement mechanism to develop each concrete
feature [13] of the PLeTs feature model [1]. In this way, an
MBT tool derived from PLeTs is assembled by selecting a set
of components and a common software base. We chose this
approach to generate PLeTs products because it presents some
advantages, such as high-level of modularity and a simple 1:1
feature to code mapping. Figure 1 shows the PLeTs component
model.

Since we are using a component replacement mechanism,
each provided interface represents a variation point and each
variable component implementation represents a variant. The
interfaces provided by the PLeTs components are (see Figure
1): a) IParser: this interface is a mandatory variation point that
has two exclusive variant components, UmlPerf and UmlStruct;
b) ITestCaseGen: this interface is a mandatory variation point
that has one mandatory component: TestCaseGenerator. This
component provides two interfaces: IAbstractTestGen and
IseqGen. The former interface can be realized by one of the
following components: PerformanceTesting or StructuralTesting.
The latter interface can be realized by one of the following
components: FiniteStateMachineHsi or RandomDataGenerator;
c) IScriptGenerator: this interface is an optional variation point
that can be realized by one of the following components: Vi-
sualStudioScript, LoadRunnerScript, EmmaScript, JabutiScript
and JmeterScript; d) IExecutor: is an optional variation point
that can be realized by one of the following components: Vi-
sualStudioScript, LoadRunnerScript, EmmaScript, JabutiScript
and JmeterScript. For a detailed description of component
functionalities, see [3].

In accordance with Figure 1, a valid configuration of
a MBT tool derived from PLeTs could have the following
components: PLeTs, UmlParser, TestCaseGenerator, Perfor-
manceTesting, FiniteStateMachineHsi, LoadRunnerScript, Load-
RunnerParameters. Based on the selected components, the
generated tool supports the extraction of test information from
UML models (UmlParser component), then generates test cases
(TestCaseGenerator component) using a Finite State Machine

and the HSI method (FiniteStateMachineHsi component) to
apply performance testing (PerformanceTesting component).
The generated test cases could be used as a input to generate
scripts to the LoadRunner testing tool (LoadRunnerScript
component) and then the scripts could be loaded in the tool
and run the test (LoadRunnerParameters component).

III. PLETS ARCHITECTURE LIMITATIONS

During the design and development of an SPL, some of the
main issues faced by an SPL Architect are caused by changes
in the requirements, as these may result in the inclusion of
unpredicted features to the SPL (reactive approach [7]), i.e.
features that may not fit into the initial design of the SPLA
[12]. In our experience, this has often meant that some of the
core components of the SPL must be altered to make use of
this new feature, which in some cases could imply in changes
to the SPLA. This may in turn result in the propagation of
these modifications to other unrelated software components in
order for them to comply with the changes in the SPLA.

In the early versions of PLeTs [1] [3] [4] [10], we have
attempted to solve the problem of SPLA volatility with two
different approaches: Component Interfaces to map the access
between components and, compile-time definitions to isolate
statements that instantiate variability [2].

For Component Interfaces, we assumed that we would be
able to create a coarse-grained relationship between a Feature
Model and a Component Diagram, that is, a 1:1 mapping be-
tween features and components. Though we were able to create
certain components that could be shared between different
systems, our final result required high maintenance due to the
volatility of our SPLA. Furthermore, any features that could
not be directly translated into a single component inevitably
became entangled in dependencies, sometimes limiting reuse
in the SPL.

To address the difficulties imposed by a coarse-grained
relationship, we allowed for the finer-grained representation
offered by compile-time definitions. By doing this, we were able
to create a more suitable mapping between software features and
implemented code. We were also able to concentrate most of the
instantiation of variability management within a (comparatively)



Fig. 2. PLeTs Improved - UML Component Diagram

small section of the code. Before the use of compile-time
definitions, we had variability management spread across the
entire source code, whereas now we are able to contain it
within a well-defined section with few statement blocks.

Another difficulty we constantly faced was the maintenance
caused by any changes in a data structure used by more
than one component of the SPL. Such changes would often
impose the modification of several components. Sometimes
these modifications would be of such a degree that the effort
required to update all related components was higher than that
of creating a new data structure. We soon came to realize that
this option was merely mitigating the update effort, as several
adapters and converters had to be made over time to suitably
enable the new data structure to work with certain product
configurations.

Though each of the two approaches described had their
merits, neither fully addressed the difficulties we found in
evolving the SPLA in our research center environment. This en-
vironment is volatile due to the need to assign team members to
different projects during certain parts of the development phase
and the shifting of team members throughout the development
cycle. For an SPL framework to fit into this environment, we
found it necessary to establish certain guidelines (see Sections
IV-1 and IV-5) and mechanisms (see Sections IV-2, IV-3 and
IV-4) for the maintenance and extension of the SPLA.

IV. PLETS ARCHITECTURE EVOLUTION

In order to tackle the issues raised by our previous
development paradigms, we have adopted a mixed approach that
is largely based on the use of the Factory Method design pattern
[6] to externalize variability points from the implementation of
concrete features [13]. We kept the component-based approach.
The difference is that our SPL now has a well-defined core
that centralizes the variability management, as well as serving
as a starting point to the execution of any derived product.

The core of our SPL is composed by four components
(see Components marked with the stereotype core in Figure

2), described below: Control Unit; Factory Interfaces; Control
Structures and; Conversion Unit. Our goal has been to simplify
variability management as much as possible by ensuring the
independence between the SPL core and the feature instantia-
tions, specifying sections (i.e. Factory Interfaces component)
of the core to manage variability.

1) Control Unit: The Control Unit component is responsible
for orchestrating the execution of the system, providing access
to the functions of those components that implement features
and organizing the data structures necessary for the proper
execution of the system. It is designed and implemented without
any dependencies on components external to the SPL core,
which protects it from modifications in them.

2) Factory Interfaces: In order to access the components
that are external to the core, that is, all features, the Control
Unit makes use of the Factory Interfaces component, which is
an abstract representation of the variability points of the SPLA.
It contains interface definitions for each variability point, each
serving as a connection point for a variable component. Each
variability point in the SPL Architecture is represented here by
one interface.

In Figure 2, we can see that within the Factory Interfaces
component we have five interfaces represented. Each of these
interfaces, for example IExecutor [3], contains a signature to
all operations that must be available in a component that fulfills
the role of the equivalent abstract feature2, for example, the
Executor feature. All references contained in the Control Unit
with the intention of accessing a variable component will be
made with one of these interfaces, so that the Control Unit
may know what it is able to do without relying on access to
the libraries of the variable components.

3) Control Structures: To access the data structures held
by the components external to the core without establishing
dependencies to the libraries that define these data structures,

2In our approach, abstract features represent the variability points of the
system.



the Control Unit makes use of the Control Structures component.
Like the Factory Interfaces component, Control Structures
is an abstract representation of part of the SPLA, in this
case, the data structures required by the SPL. While the
Factory Interfaces component represents variability, the Control
Structures component represents commonality, that is, any
representations that are common to two or more data structures
of the system. These are abstract data structures that serve as
a surface representation of the concrete structures of the SPL.
These abstract structures can either be a number of detailed
ones that make use of inheritance or a single structure to serve
as a placeholder for all others. To enable the identification of
a specific instance of a Control Structure by the Control Unit
without creating dependencies between it and the data structure
components, we have specified that all Control Structures must
have an identification attribute. Specifically, we have used an
enumerator, created inside the Control Structures library itself,
listing the data structures present in the system.

4) Conversion Unit: The Conversion Unit is responsible for
parsing structures that are equivalent, i.e. any parsing process
that does not change the content of a structure, such as the
refactoring of a structure to execute different functions or the
updating of a structure to a newer version. The Conversion Unit
is a subsystem within the SPL, serving as a centralizer to the
inclusion and updating of data structures. This part of the SPL
core has been essential to the evolution of our project, greatly
lowering the effort required to adapt product configurations
to changes in data structures and vice-versa. By having all of
the converters available to one another, we are able to create a
directed graph of possible structural conversions and identify
entry points to easily include new structures to the system.
Rather than having to create adapters and converters for all
combinations of data structures, the Conversion Unit makes
use of the commonalities between them.

Fig. 3. Conversion Unit Diagram for PLeTs

Figure 3 shows the conversions currently available in the
Conversion Unit. We have a single modeling format, based on
UML diagrams, and a single test script format, called Test Plan.
Additionally, we have the state transition models Finite State
Machine (FSM) and (VFSM), from which the test sequences
are generated. When the inclusion of VFSM was made, our
requirement was that it be convertible to and from the UML
and FSM formats, and to the model Test Plan, resulting in a
total of five converters. As shown by the cycles in the graph,
by implementing two of these converters (“UML to VFSM”
and “VFSM to FSM”), we were able to fulfill all five of
the requirements for the inclusion of this new structure. For
example, the conversion “VFSM to Test Plan” is made by first
converting the VFSM into an FSM, and then converting the
resulting FSM into a Test Plan. We are aware that this composite
conversion of structures may be detrimental to performance, but

in our experience this has not been an issue. Should performance
be critical to a certain conversion, a specific converter can be
added.

For every abstract structure defined in the Control Structures
component, the Conversion Unit has a factory capable of
reading its type, as well as the return type desired, and
forwarding it to the appropriate concrete structure converter. If
a new structure component is developed for the system, specific
converters will have to be implemented for that structure in
order to convert both to and from it. All of these converters
are contained within the Conversion Unit component itself, and
are therefore accessible by the SPL Core.

Figure 4 presents an example of the process executed by
the Conversion Unit. The Control Unit makes a request to
the Conversion Unit. This request sends both the structure
to be converted and the desired return type. The Conversion
Unit identifies the type of the input structure and forwards
the request to the appropriate Converter Factory, in this case
the UML Factory. The Converter Factory infers the required
converter based on the return type, and forwards the request
to it. Finally, the converter casts the resulting structure into a
general purpose structure described in the Control Structures
component and returns it to the Control Unit.

The key factor that enables us to do this is the extensibility
of a single library by partitioning it. The only library upon
which the other core components are dependent on is the
one containing the factories responsible for the first phase
of the conversion, that is, the reading of input type. The
concrete converters are each implemented in their own packages,
compiled into their own libraries and kept outside of the SPL
Core. They are implemented as extensions to the Conversion
Unit namespace and included as needed by the compiler,
resulting in a single logical unit that is distributed among
various libraries with varying dependencies. The result is a
final product where the converters, being plugged into the
SPL Core as needed, are accessible from all concrete feature
implementations while the SPL Core, being guarded from these
concrete converters, can function in their absence.

5) Variable Components: We have found that the reuse of
features for the creation of new product configurations becomes
simpler and requires less refactoring effort if the variable
components that implement these features are developed
autonomously, that is, to be capable of execution as an atomic
software unit if given an appropriate input. To make this
possible without requiring the SPL core to depend on the
libraries of all known variable components, an intermediate
entry point is represented in the SPLA in the form of Factory
components.

These factories make use of both compile-time and runtime
logical operations to return an instance of the correct main
feature realization. The compile-time operations are used to
define what variable components are available to a given product
configuration. The runtime logical operations are used when
more than one option is available as a realization of a main
feature, evaluating input from the user and the current state
of the software to return the correct option. More about the
Factory Method design pattern can be found in [6].

Ideally, each new feature added to our SPL as an alternative
to represent a variability point in the SPLA will be developed as



Fig. 4. PLeTs UML to FSM Sequence Diagram

its own component. This results in several diverse components
(variants) to resolve each variability point. Alternatively, we
have identified the option of representing a variant as an
extensible component, in a manner similar to the Conversion
Unit (See Subsection IV-4). Based on our experience, this can
be useful during particularly hectic periods of development,
during which hotfixes are required constantly and there is not
enough time to build an entirely new component.

Our experience with the Sequence Generation feature of
PLeTs (“Sequence Generator Factory” in Figure 2) serves as
a practical example of the application of this option. This
particular feature has proven to require adjustments each time
a new product configuration was to be derived. Given the
speed at which new versions were required and the sometimes
mutually-exclusive nature of these adjustments (what would
work with one configuration could not work with another, and
vice-versa), we found the creation of an entire new component
too costly. Instead, we developed small extensions to the
existing component that would either include new operations
or override existing ones. The original component, along with
the extension component, would then be packaged as a single
logical unit within a certain configuration, essentially becoming
one possible implementation of a certain feature. We used this
method purely for reasons of compatibility, and they were used
only until such a time as we were able to develop a more
robust and versatile component to represent that feature (less
demand, more resources available).

In the case of developing new components for each feature,
we have the advantage of finer granularity. Since we began
using this approach, we have found that the maintenance of
our SPL has become simpler than the alternative identified,
as the independence of components is strictly enforced by
their isolation. This means that the failure or replacement of a
concrete feature has little impact to the rest of the system. On
the other hand, the stricter isolation requires that the Factory
component (responsible for managing the variability point) be
kept up to date with modifications to the SPLA, requiring
recompilation of the SPL Core. We are aware that this means
either that a new Factory component must be written every
time a new feature is added to this variability point or that
the original Factory’s source code must be available to anyone
working on the SPL. In our experience, due to the entire SPL
being worked on within a single environment and therefore all

code being available during development, this has not been an
issue.

In the case of extensible components we have the advantage
of faster development time and greater inter-feature accessibility.
Dependencies can be formed between different alternatives to
a single variability point, allowing for an incremental extension
of libraries without access or change to their source code.
This approach also allows a developer to make alterations to a
component without necessarily having access to the original
factory (indeed, the factory related to this variability point
should ideally remain unchanged). This means that independent
developers are able to alter and extend the SPL without being
given full access to its source code. This approach does not,
however, offer any assurances in regards to system granularity.
A component built with several codependent sub-components
using this approach incurs on the liability to complete system
failure if a single unit of the variable component should fail.

V. RELATED WORK

Although Software Product Lines is an active research field,
few works present new approaches for the implementation of
an SPL, as well as discuss difficulties and limitations faced by
SPL design and development teams.

For example, in [15], the authors speak extensively on
techniques for Variability Management and present the case
study of the Mercure PL, in which the Abstract Factory design
pattern is used as a decision model, with each of its concrete
factories being related to one product. Our approach has
similarities with the one presented in this particular work,
but diverges from it in that our use of the Factory Method
design pattern is extended to deal with each of the variability
points of the SPL.

In [8], this topic is also discussed. A two-dimensional model
is proposed for the representation of the issues in variation
management, with “files”, “components” and “products” in one
axis and “sequential time”, “parallel time” and “domain space”
in the other. The author argues that the nine smaller issues
defined by this model can be tackled using a divide-and-conquer
strategy.



VI. LESSONS LEARNED

This section presents the lessons learned from the develop-
ment and evolution of PLeTs and the subsequent evolution of
its SPLA.

• One of the limitations of PLeTs’ previous SPLA was
the presence of strong dependencies between components.
This often meant that changes in one component resulted
in a chain maintenance through all components dependent
upon it. To mitigate this problem we have proposed a
change to the SPLA to add an SPL core that contains
all the basic operations supported by the SPL. Rather
than simply making a separation between the concepts of
commonality and variability, we found it advantageous to
add components into the core for managing the execution
and communication of the variable components, i.e. the
Control and Conversion units. In doing this, we were able
to give autonomy to the variable components, avoiding
the dependencies that may have arisen between them.

• In some situations, we had difficulty adding new compo-
nents to the SPL due to the absence of a well-established
entry point. In using the Factory Method to automate the
process of instantiating components during execution, we
were able to isolate the code referent to the majority of
variability decisions into small sections that are easy to
maintain. This has facilitated the expansion of the SPL
by creating an entry point for the adding of new variable
components.

• Both SPLAs used benefited from the component-based
approach to the realization of variation points in the
SPLA. Connecting a new component to the SPL through
one of the pre-existing factory interfaces is a simple
process, requiring only the packaging of input and output
in accordance to the Control Structures component of the
core. The new SPLA did not negatively impact in this.

• Should changes in requirements result in new variability
points in the SPLA, the SPL core will require modifica-
tions. A new factory interface and variation point factory
will be necessary, and this will incur in modifications to
the Control Unit. We are aware of the implications of such
modifications, but have not had the opportunity to test
whether or not modifications in the Control Unit would in
turn incur in changes to the variable components. Given
the well-defined nature of the MBT technique, such radical
changes to the SPLA are unlikely in our environment.

VII. CONCLUSION

In this paper we report our experience on the design,
development and evolution of a Software Product Line of
Model-based Testing tools - PLeTs. We have focused on
techniques to simplify the process of managing the evolution of
components by use of a software design pattern. We have also
presented a description of the core components of PLeTs, which
were designed to simplify the communication among variable
components, as well as increase the degree of autonomy they
have between one another.

Despite the completion of the development of our SPL
in accordance to the current SPLA, we are certain that there
are further issues to be resolved related to the growth of the
SPL. This work details the maintenance and evolution given

to address specific issues identified during the evolution of the
SPLA, but over the course of this maintenance the SPL did
not have any important features added to it. It is important to
evaluate how well the SPLA design proposed here withstands
the problems imposed by the addition of new variability points.
It would also be valuable to investigate how well a new team
member would adapt to this new approach, considering that
we work in a volatile environment and new developers might
not have prior knowledge of the design pattern used to develop
PLeTs.
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[15] T. Ziadi, J.-M. Jézéquel, F. Fondement, et al. Product line derivation with
uml. In Software Variability Management Workshop, Univ. of Groningen
Departement of Mathematics and Computing Science, 2003.


