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ABSTRACT 
This paper presents aerodynamic and aeromechanical 

analyses for an entire row of fan blades (i.e. tens of blades with 
a finite aspect ratio) subject to a uniform incoming flow. In this 
regard, a new unsteady three-dimensional vortex lattice model 
has been developed for multiple blades in discrete time domain.  
Using the new model, the characteristics of the unsteady 
aerodynamic forces on vibrating blades, including their 
temporal development, are examined. Also, the new 
aerodynamic model is applied to examine the aeromechanical 
behavior of fan blades by using a standard eigenvalue analysis.  
For this analysis, the fan blades have been modeled as three-
dimensional plates, and, increasing the number of blades (or 
solidity) is predicted to destabilize the fan blade row. 

INTRODUCTION 
Fluid-structure interaction phenomena occur in many 

scientific and engineering applications, including aircraft wings 
and turbomachinery blades. Understanding fluid structure 
interactions in turbomachinery is important because such 
interactions lead to fatigue and ultimately structural damage of 
blades. The fluid structure interaction analyses require 
modeling of unsteady aerodynamics which can be conducted in 
either time or frequency domain. In the time domain analyses, 
Euler and Navier-Stokes solvers are used to calculate unsteady 
aerodynamic forces on turbomachinery blades. At each time 
step, for a given geometry, the flow field is solved to determine 
the aerodynamic forces acting on the blades. Subsequently, the 
forces are used to analyze the blades’ motions and update their 
displacements. The entire process is then repeated. Such time 
domain analyses require extensive computation time and cost 
[1,2]. 

On the other hand, unsteady aerodynamic analysis can also 
be carried out in the frequency domain, and the frequency 
domain approaches have been applied to calculate unsteady 
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aerodynamic forces acting on two- and three- dimensional 
cascades [3 - 5]. Such frequency domain analysis can facilitate 
accurate prediction of flutter onset. However, it is difficult to 
calculate fatigue and time history under flutter because time 
does not appear explicitly in the frequency domain analyses. 

For multiple blades as in turbomachinery, there are 
differences in the blades’ vibration motions due to aerodynamic 
and structural couplings. The differences in the blades’ motions 
are manifested as time delays in the time domain or phase 
differences in the frequency domain.  The differences are 
referred to as the inter-blade phase angle. The number of inter-
blade phase angles is identical to the number of blades. In the 
frequency domain, many researchers have investigated flutter 
by prescribing the inter-blade phase angle for cascades with an 
infinite number of blades [4, 6-9] or for a few passages [1, 10, 
and 11]. 

More recently, more ambitious numerical approaches 
focusing on entire blade rows or even multiple stages have 
been reported in the literature.  He et al. [12] coupled 
frequency domain aerodynamics with a reduced order model of 
the bladed disc assembly to study mistuning effects in an 
industrial fan.  Gottfried and Fleeter [13] used a finite element 
method in time domain to examine aerodynamic damping in a 
modern transonic compressor blade row.  Sadeghi and Lui 
investigated turbine cascade flutter with an unsteady Euler 
solver [14], and Carstens et al. used a Navier-Stokes solver to 
examine a transonic rotor [15].  Sayma et al. and Vahdati et al. 
have even reported computing all seventeen stages of a 
compressor [16,17].  Alternatively, Johnston et al. [18] have 
attempted to couple commercially available computational fluid 
dynamic (CFD) and computational structural dynamic (CSD) 
programs to solve turbomachinery aeroelasticity problems. 
However, such approaches are computationally expensive and 
are not yet amenable for routine design use. 
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On the other hand, Hall [19] has proposed an eigen 
formulation for unsteady aerodynamic forces for airfoils, 
cascades, and wings in the discrete time domain. Kim et al. [20] 
extended the method to continuous time domain. Cho et al. [21] 
have developed a vortex lattice model in discrete time domain 
to analyze the aeroelastic stability of an isolated two-
dimensional airfoil under pulsating freestream conditions. 
These methods can also predict aeroelastic stability, and are 
computationally less costly than unsteady CFD approaches. So 
far, however, such analyses have been limited to an isolated 
airfoil or a two-dimensional cascade with an infinite number of 
blades. Therefore, approximate but fast analytical methods to 
predict aerodynamic and aeromechanical behaviors of an entire 
blade row (with tens of blades) are needed.   

This paper presents a new time domain aerodynamic 
model for analyzing unsteady aerodynamic forces on a three 
dimensional turbomachinery blade row under a uniform 
incoming flow.  A new unsteady aerodynamic model, based 
on the vortex lattice method, is first presented and the model’s 
predictions are discussed.  Subsequently, the new 
aerodynamic model is applied to a structural model of a fan 
assembly (i.e. flexible blades connected to a rigid disc) to 
predict the fan assembly’s aeromechanical behavior. 

NOMENCLATURE 
 

A = extension stiffness matrix; plate area 
AR = aspect ratio 
B = extension/bending coupling stiffness matrix;  
  total number of blades 
BML = total number of vortex ring elements on all 
blades 
BNL = total number of bound and wake vortex elements 
  on all blades 
c = blade chord 
D = bending stiffness matrix 

⊥e  = direction out of blade plane 
J = kernel function 
K =  stiffness matrix 
k = index number of blade 
L = total number of spanwise direction elements; 
  generalized aerodynamic force 
l = blade span 
M = mass matrix; in-plane moment 
M1 = total number of vortex ring elements in blade 
N = in-plane force 
N1 = total number of vortex elements in blade 
n = time level; total number of mode shapes 
q = state vector; velocity induced by vortex segment 
RH =  hub radius 
s = blade pitch 
T = kinetic energy 
U = freestream velocity; strain energy 
u = chordwise displacement 
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v = spanwise displacement 
W = work 
w = downwash velocity;  
  out-of-plane displacement 
z = state vector 
α = weighting factor 
Γ = vortex strength 
γ = mode shape 
Δt = size of time steps 
Δx = size of chordwise direction elements 
Δr = size of spanwise direction elements 
ε = midplane strain 
θ = angle between each plane of blade 
κ = midplane curvature 
ρ = structure density 
ρ∞ = fluid density 
σ = inter-blade phase angle 
φ = chordwise mode shape 
χ = spanwise mode shape 
 
Subscript 
a = aerodynamic 
s = structure 
1 = on blade; chordwise bending 
2 = in wake; spanwise bending 
3 = torsional 

MODEL DESCRIPTION 
A. Unsteady Aerodynamic Model 

A three-dimensional unsteady vortex lattice method for 
multiple blades has been developed to calculate unsteady 
aerodynamic forces on turbomachinery blades (Fig. 1). The 
new three-dimensional unsteady aerodynamic model assumes 
an inviscid, incompressible, and irrotational flow coming into a 
turbomachinery blade row. In the current study, multiple blades 
and their aerodynamic interactions are considered, but effects 
such as engine casing and deviation are not accounted for. The 
number of blades is B. The first blade is in the chordwise (x) – 
spanwise (r) direction plane, and the plane of the next blade is 
rotated at angle θ =2π/B in the circumferential direction. On 
each blade, the bound and free vortices representing the blade 
and traveling wake, respectively, are composed of a finite 
number of vortex ring elements. There are M elements in the 
chordwise direction, and L elements in the spanwise direction 
on each blade. There are (N-M) elements in the chordwise 
direction in the wake of each blade. Thus, the total number of 
vortex ring elements is BML(=B x M x L) for all blades and 
BNL(=B x N x L) for all blades and wakes. The elements are all 
of equal size Δx by Δr on each blade. The element at the i, j-th 
location in the x and r coordinates at the k-th blade is assigned 
a vortex strength Γijk. 

For convenience, a (L x 1) vector Γk
i  is defined as 
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With this definition, the downwash vector can be 

expressed in the discrete time domain as 

[ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

Γ
Γ

== n

n
nnTn

B
nnn JJwwww

2

1
2121 L   (2)  

where its i-th component n
iw  is a (ML x 1) vector 

containing the downwashes at three-quarter points of the vortex 
elements of the i-th blade at the n-th time step. A bound vortex 
vector Γ1 (BML x 1) is defined as 
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Similarly, a wake vortex vector Γ2 ((BNL-BML) x 1) is 
defined as 
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Γ1 and Γ2 represent arrays of vortex strengths for the 

blades and wakes, respectively. For a vortex ring element in a 
three-dimensional incompressible flow, the kernel function Jij 
of a unit vortex strength at the j-th vortex point influences the 
velocity at the i-th collocation point. The collocation points are 
located at the three-quarter chord point in the streamwise 
direction and the central point in the spanwise direction of 
bound vortex elements. The vortex points are located at the 
quarter chord point in the streamwise direction and the central 
point in the spanwise direction of bound and free vortex 
elements [22]. Given a vortex strength Γ, the velocity induced 
by a vortex segment lm is 
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(l, m = 1, 2, 3, 4) 
 

The total velocity induced by a vortex ring element is the 
sum of qlm for all four segments as follows. 
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The kernel function Jij is the vertical component of each 

blade’s plane with respect to qtot per unit vortex strength and is 
located at the c/4 of the vortex ring element as follows. 
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where ⊥ê  is a unit vector out of each blade’s plane. 
The conservation of vorticity in the k-th blade is 
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1    (k = 1, 2, … , B)  (10) 

 
The convection of free wakes in the k-th blade is described 

in the discrete time domain as follows. 
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With the weighting factor α in Eq. (12), one can cut off the 

infinitely long wake vortex at a finite length. For a uniform 
inflow, Hall [12] suggests 0.95<α<1. 

Combining the equation for downwash [Eq. (2)], 
conservation of vorticity [Eq. (10)], and free wake convection 
[Eqs. (11) and (12)] leads to 

 

 
nnn BA 21

1
2 Γ+Γ=Γ +

   (13) 

To reduce the size of the equation, the bound vortex 
n

1Γ  
is eliminated by using static condensation as follows (Kim et al. 

[13]). Solving for 
n

1Γ  from the kernel function, Eq. (2) gives 
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Equation (14) is then substituted into Eq. (13) to give 
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B. Structural Model 

The blades are modeled as three-dimensional plates. 
Blades’ thickness and camber effects are not accounted for in 
the structural model. The disc to which blades are attached is 
assumed to be rigid. Forces and moments acting on a three-
dimensional plate are derived for the classical three-
dimensional plate. The equation of motion of the k-th blade is 

 

 ( ) ( ) LqKqM kkkkk =+&&    (16) 
 
Using the displacement expressions, the strain energy and 

kinetic energy are written in matrix form as  
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where K and M are the generalized stiffness and mass 
matrices, respectively. They are defined as 
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where kD11, kD22, kD33, kD12, kD13, and kD23 represent 

chordwise bending, spanwise bending, torsional, chordwise 
bending-spanwise bending coupling, chordwise bending-
torsion coupling, and spanwise bending-torsion coupling of the 
k-th blade, respectively. 

The structural model of the k-th blade is given in time as 
follows. 
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Discretizing Eq. (23) in time, a discrete time domain form 

for the k-th blade is obtained as follows. 
 

 ( ) ( )nk
s

knk
s

knk LBzAz +=+1
   (24) 

where kz is a state vector, [kq qk & ]T .  
For convenience, a ((B x 2n)x 1) vector z is defined as 
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Equation (24) is then extended to B blades to yield 
 

 
n

s
n

s
n LBzAz +=+1

   (26) 
 
The generalized aerodynamic force component for the i-th 

mode shape of the k-th blade can be approximated as 
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where the subscripts m and l stand for the location of the 
(m, l)-th vortex of strength Γml. Using the unsteady Bernoulli 
equation, the pressure differential on the k-th blade can be 
expressed as [15]. 
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where the freestream velocity kU(t) is time-varying. Using 

a forward difference formula, mlkΓ&  can be written in discrete-
time domain as follows. 
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Equations (28) and (29) are then substituted into Eq. (27) 

to give 
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For blades undergoing out-of-plane motion w(x, y, t), the 

downwash vector in the k-th blade is related to the generalized 
coordinates as 
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where the elements of the E1, E2 matrices are given as  
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Here, the subscript pi stands for the location of the i-th 
collocation point. 

 
C. Aeroelastic Model 

Combining the unsteady aerodynamic equation [Eq. (15)], 
the structural equation [Eq. (26)], the generalized aerodynamic 
force equation [Eq. (30)], and the downwash vector equation 
[Eq. (31)] leads to the aeroelastic system of equations. The 
resulting system of (B x (NL-ML+2n)) equations with no gust 
velocity is as follows. 
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MODEL PREDICTIONS 
A. Unsteady Aerodynamic Results 

A row of fan blades with an aspect ratio of 3.3 has been 
chosen for the current analysis. The input parameters of the fan 
blades are based on Kaza and Kielb [8]. Table 1 lists the 
relevant geometries of the fan blades. The blades have a pitch 
to chord ratio s/c of 0.46 at the hub and 1.21 at the tip. Twenty 
eight blades are considered in the current study, and, hence, 
there are 28 inter-blade phase angle modes under a uniform 
inflow. The new model’s predictions for a single blade have 
been examined in a separate paper by Cho et al. [23]. For an 
isolated blade, as the aspect ratio increases, the model’s 
predicted nondimensional lift approaches the analytical two-
dimensional solution (Fig. 2 [23]). 

Figure 3 shows the computed indicial response of the 28 
blades for inter-blade phase angles of 0° and 180°. To 
calculate the indicial response, a step change in the downwash 
of blades is required. The step change in the downwash of 
blades can be imposed in the same or opposite directions 
between adjacent blades. The downwashes with the same and 
opposite directions between adjacent blades correspond to the 
motion with the inter-blade phase angles (σ) of 0° and 180°, 
respectively. For σ = 180°, the indicial lifts of adjacent blades 
have the same magnitude but opposite signs because the 
opposite vortices induced by the downwash vectors between 
the adjacent blades lead to opposite unsteady lifts between the 
adjacent blades (via the unsteady Bernoulli equation [Eq. 
(28)]). On the other hand, for σ = 0°, the indicial lift on all 
blades have the same value because the downwash vectors and 
vortices on all blades are identical. 

The downwash on the reference blade is induced by the 
vortices on the adjacent blades (called the adjacent blade 
vortices) as well as the vortices on the reference blade (called 
the reference blade vortices) via the kernel function [Eq. (2)]. 
However, the unsteady lift on the reference blade is induced 
only by the reference blade vortices. In Fig. 3, the indicial 
response for σ = 180° is larger than that in a single blade and σ 
= 0°. For σ = 180°, the adjacent blade vortices and the 
reference blade vortices have opposite signs. Therefore, to 
induce a step change in the downwash, stronger reference blade 
vortices are required for multiple blades with σ = 180° than for 
a single blade. As only the reference blade vortices induce 
unsteady lift, the unsteady lift is increased. On the other hand, 
to induce a step change in the downwash, weaker reference 
blade vortices are required for multiple blades with σ = 0° than 
for a single blade.  Therefore, the unsteady lift is reduced for σ 
= 0°. Thus, the unsteady aerodynamic forces depend on the 
inter-blade phase angle. 

Figure 4 shows the computed indicial lift under a uniform 
inflow due to a step change for various blade numbers when 
the inter-blade phase angle is 180°.  In the figure, increasing 
the blade number (or decreasing the pitch to chord ratio s/c  in 
Fig. 1) increases the unsteady lift.  This result is due to the 
strengthening of the adjacent blade vortices because the 
 

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms o
influence of vortices is proportional to the inverse of the 
distance between adjacent blades (Eq. 7). With increasing 
number of blades, to induce a downwash of a magnitude equal 
to that with fewer blades, the reference blade vortices are 
strengthened in response to the strengthening of adjacent blade 
vortices with opposite signs. Thus, the unsteady lift increases. 
Figure 5 shows the corresponding indicial lift when the inter-
blade phase angle is 0°. Contrary to σ = 180°, increasing the 
blade number decreases the unsteady lift because the adjacent 
blade vortices and the reference blade vortices have the same 
sign. With many blades, the reference blade vortices may have 
a smaller absolute value because of the adjacent blade vortices 
with same sign, and thus the unsteady lift decreases. 

B. Aeroelastic Stability Results 
A plate model with the first four modes – the first bending 

mode q1, the first torsion mode q2, the second bending mode q3, 
and the second torsion mode q4 – has been adopted as the 
structural model for each blade. For 28 vibrating blades, the 
total number of structural modes is 28 x 4 = 112. Listed in 
Table 2 are the values of material properties of the fan blades 
used in the current study. The values of material properties are 
based on Dunn and Dugundji [24]. 

The stability of an aeroelastic system changes with the 
blade number. Figure 6 shows the flutter speed under a uniform 
inflow plotted versus the blade number. The flutter speed 
decreases linearly with the total blade number because 
increasing the blade number decreases the blade pitch to chord 
ratio (s/c). Decreasing the blade pitch to chord ratio pushes the 
blades closer to each other, and strengthens the kernel function 
via the Biot-Savart rule. Thus, increasing the blade number 
destabilizes aeroelastic systems. 

The inter-blade phase angle (IBPA) can also be predicted 
by the new time-domain model. For this proof-of-concept 
calculation, the blade number has been assumed to be 12 
instead of 28 to reduce computation time (Calculation of 28 
blades is more time consuming but possible). Figures 7 (a) to 
(g) show the eigenmodes of blades near the flutter speed. In the 
figure, the real value of the first torsional eigenmodes is plotted 
versus the blade index. In Fig. 7 (a), Mode 0 means an inter-
blade phase angle of 0° because the real values of the first 
torsional eigenmodes of all blades are identical and there is no 
peak. Mode 1 in Fig. 7 (b) has one peak per one period, 
indicating an inter-blade phase angle of 30°. Similarly, Modes 
2 to 6 mean σ = 60°, … , 180°, respectively. Modes for σ = 
210°, … , 330° are similar to those for σ = 150°, … , 30°, 
respectively. Thus, there are two single modes (Modes 0 and 6) 
and five pairs of modes (Modes 1 to 5), and the total number of 
modes or inter-blade phase angles is 12, which is identical to 
the blade number.   

Dugundji and Bundas [6] report flutter velocity occurring 
at σ = 40° for their nine-bladed rotor. In the current 12-bladed 
fan case, however, the mode for σ = 180° flutters first. The 
difference between the current study and Dugundji & Bundas 
5 Copyright © 2008 by ASME 
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can be attributed as follows. First, Dugundji and Bundas [6] 
use Whitehead’s [7 and 9] frequency domain analysis for a 
two-dimensional cascade with an infinite number of blades. In 
Whitehead’s approach, only one inter-blade phase angle is 
imposed as an input parameter, and then the flutter speed for 
that particular inter-blade phase angle is calculated. Also, by 
assuming a single inter-blade phase angle at a time, they are 
implicitly coupling the blades structurally.  However, in the 
current study, such inter-blade phase angles are not assumed a 
priori.  Thus, in this study, the blades are coupled to each 
other only aerodynamically. Under such circumstances, the 
modes near σ = 180° first become unstable because the largest 
amount of aerodynamic work is imparted onto the blades at 
inter-blade phase angle near 180°. 

CONCLUSIONS 
The new conclusions of this paper can be summarized as 

follows: 
1. A new three-dimensional unsteady vortex lattice model 

has been developed to analyze unsteady aerodynamics and 
aeroelastic stability of an entire turbomachinery blade row. 

2. Unsteady aerodynamic forces depend on the inter-blade 
phase angles, and the indicial lift for an inter-blade phase angle 
of 180° is larger than that for 0°. 

3. Increasing the blade number increases the unsteady lift 
for an inter-blade phase angle of 180°, but the relationship is 
reversed for an inter-blade phase angle of 0°. 

4. For fan blades which are modeled to be aerodynamically 
coupled but structurally independent, the first torsional mode 
nearest σ = 180° first becomes unstable. 

5. For a blade row, increasing the number of blades 
decreases the flutter speed and destabilizes the aeroelastic 
system. 

APPENDIX 
The in-plane forces and moments of each three-

dimensional blade are obtained by integrating stresses over 
thickness and are expressed as follows [25-27]. 

 

 ∫ +== ⊥ κεσ BAdeN
   (A.1) 

 ∫ +== ⊥ κεσ BAzdeM
   (A.2) 

 
where ε and κ are the midplane strain and curvature, 

respectively. Furthermore, A, D, and B are the extension, 
bending, and extension/bending coupling stiffness matrices, 
respectively. 

Using the Rayleigh-Ritz formulation, strain energy, kinetic 
energy, and work of each blade can be expressed as 
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( ) ( )∫∫ ⊥Δ=

A disp dxdrtrxetrxpW ,,,,
  (A.5) 

where A represents blade area. u, rdisp, and dispe⊥  are the 

displacements in the x, r, and ⊥e  directions, respectively. 

To represent the out-of-plane displacement dispe⊥ (x, y, t) of 
each blade, a set of mode shapes has been used. 
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The i-th mode shape γi(x, r) is assumed to be a product of 

separate mode shapes in x and r directions as 
 

 ( ) ( ) ( )rxrx iii ψφγ =,    (A.9) 
 
Free-free beam vibration modes in the x direction are [21] 
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where harmonic modes are ignored. On the other hand, 

cantilever beam vibration modes for the rotor blades are used in 
the spanwise (r) direction as follows. 
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where RH is hub radius. ψi (r) has to be chosen properly to 
satisfy the boundary conditions. The mode shapes become 
bending and torsional when i becomes odd and even, 
respectively. For a blade clamped at the root, w and ∂w/∂y are 
zero at the root. 

The Lagrange’s equation is 
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Substituting the strain energy [Eq. (A.3)], kinetic energy 

[Eq. (A.4)], and work [Eq. (A.5)] of each blade to the 
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Lagrange’s equation [Eq. (A.12)] leads to the equation of 
motion of the k-th blade as follows. 

 

 ( ) ( ) LqKqM kkkkk =+&&    (A.13) 
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Table 1. Reference quantities of a fan blade [8] 
 

Parameters Values 

Aspect ratio 3.3 

Number of blades 28 

Chord length 0.1892 
m 

Hub radius 0.3876 
m 

Span length 0.6334 
m 

Air density 1.0 
kg/m2 

Table 2. Structural parameters of the multiple blade 
model [17] 
 

Parameters Values 

Chord length 0.1892 m

Span length 0.6334 m

Aspect ratio 3.3 

Material density 
for plate 

3.046 
kg/m2 

Thickness of plate 0.002 m 

Spanwise bending 
stiffness 

433.3 
kgm2/s2 

Torsional stiffness 37.56 
kgm2/s2 
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Figure 1. Domain for unsteady lifting-surface 

solution of multiple blades. 

Figure 2. Indicial lift of a single blade for various 
aspect ratios [16]. 
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Figure 3. Indicial lift under a uniform flow due to a 

step input for two different inter-blade 
phase angle of 28 blades. 

 
Figure 4. Indicial lift under a uniform flow due to a 

step input with σ = 180° for various blade 
numbers. 
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Figure 5. Indicial lift under a uniform flow due to a 

step input with σ = 0° for various blade 
numbers. 

 
Figure 6. Flutter speed as a function of blade 

number. 
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(a) Mode 0 

 
 
 
 
 
 
 
 
 
 
 

(b) Mode 1                          (c) Mode 2 

(d) Mode 3                          (e) Mode 4 

(f) Mode 5                          (g) Mode 6 
Figure 7. Real value of eigenmodes for each blade. 
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