
BIOMETRICS 57, 795-802 
September 2001 

Linear Mixed Models with Flexible Distributions of 
Random Effects for Longitudinal Data 

Daowen Zhang* and Marie Davidian 
Department of Statistics, North Carolina State University, 

Box 8203, Raleigh, North Carolina 27695-8203, U.S.A. 
* email: dzhang2@stat.ncsu.edu 

SUMMARY. Normality of random effects is a routine assumption for the linear mixed model, but it may 
be unrealistic, obscuring important features of among-individual variation. We relax this assumption by 
approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and 
Nychka (1987, Econometrics 55, 363-390), which includes normality as a special case and provides flexibil- 
ity in capturing a broad range of nonnormal behavior, controlled by a user-chosen tuning parameter. An 
advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out 
using standard optimization techniques. We demonstrate that standard information criteria may be used 
to choose the tuning parameter and detect departures from normality, and we illustrate the approach via 
simulation and using longitudinal data from the Framingham study. 
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1. Introduction 
Longitudinal data are collected in clinical trials, epidemiology, 
and agriculture, and interest may focus on population effects 
of within- and among-individual covariates on the response as 
well as on individual-specific behavior. A routine framework 
for analysis is the linear mixed effects model, where random 
effects are incorporated to accommodate among-subject vari- 
ation (Laird and Ware, 1982). Fundamental assumptions in 
the standard version of the model are that within-subject er- 
rors and random effects are normally distributed. Under these 
assumptions, inference on fixed model parameters and ran- 
dom effects can be carried out using widely available software 
(e.g., SASS proc mixed; Littell et al., 1996). 

Although within-subject conditional normality may be re- 
alistic, the normality assumption on the random effects may 
be too restrictive to provide an accurate representation of 
among-individual variation. Figure l a  shows cholesterol lev- 
els over time for 200 randomly selected individuals from the 
Framingham study. The data consist of participants’ choles- 
terol levels measured at the beginning of the study and then 
every 2 years for 10 years, age at baseline, and gender. A 
standard objective for such data is t o  characterize change in 
cholesterol over time, the effect of baseline covariates, and 
among-subject variation in cholesterol levels. Figure la sug- 
gests that cholesterol increases linearly over time for most 
subjects but with substantial intersubject variation. To ex- 
plore this informally, we fit individual profiles by simple linear 
regression over time. A pooled residual plot supports the as- 
sumption of within-individual normality; however, although 
estimated subject-specific slopes appear normal, Figure l b  

suggests that variation in intercepts may not be normally dis- 
tributed. This pattern may be only partially explained by the 
available covariates. 

Although inference on fixed effects may be robust to non- 
normality of random effects (Butler and Louis, 1992; Verbeke 
and Lesaffre, 1997), it is natural to be concerned about effi- 
ciency and validity of inference on individual effects. More- 
over, estimation of the random effects distribution under less 
restrictive assumptions may provide considerable insight; e.g., 
a multimodal or skewed estimate may suggest exclusion of 
important covariates and reveal critical features of inherent 
subject heterogeneity. Thus, considerable interest has focused 
on relaxing the normality assumption and jointly estimating 
the random effects distribution and model parameters. Un- 
der minimal assumptions on the distribution, one obtains the 
discrete nonparametric maximum likelihood estimate (e.g., 
Laird, 1978; Aitken, 1999). However, for continuous responses, 
it is reasonable to suppose that the random effects are contin- 
uous, so recent proposals have been made under the assump- 
tion of a smooth random effects density. Magder and Zeger 
(1996) propose a smooth nonparametric maximum likelihood 
approach, which entails some computational burden and uses 
somewhat ad hoc fitting and assessment of the fit. Tao et al. 
(1999) estimate the density of a scalar random effect via their 
predictive recursive algorithm. Verbeke and Lesaffre (1996) 
use a mixture of normals, which they implement via an EM 
algorithm (Verbeke and Molenberghs, 2000, Chapter 12). 

In this article, we propose an alternative method that is 
particularly attractive for linear mixed models. Assuming a 
smooth random effects density, we describe in Section 2 a 
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Figure 1. Framingham cholesterol data. a. Longitudinal 
cholesterol levels for 200 subjects, with trajectories highlighted 
for 5 random subjects. b. Histogram of subject-specific inter- 
cept estimates from individual least squares fits. 

semiparametric linear mixed model using the seminonpara- 
metric (SNP) representation of Gallant and Nychka (1987) 
for the density of random effects. Davidian and Gallant (1993) 
use this for nonlinear mixed models; however, in that setting, 
inference is complicated by the need for intractable integra- 
tion via intensive numerical techniques and for imposition 
of identifiability constraints on the SNP density. But as we 
show in Section 3, for the linear mixed model, the SNP allows 
expression of the marginal likelihood of the data in closed 
form, and we suggest a parameterization of the SNP repre- 
sentation that eases the complication of ensuring identifiabil- 
ity. This approach facilitates straightforward implementation 
with standard optimization routines. In Section 4, we illus- 
trate the method for the Framingham data in Figure 1, and 
we present simulation results in Section 5. 

2. Semiparametric Linear Mixed Model 
Suppose Yij, i = 1 ,... ,m, j = 1,. ..,ni, the response for 
subject i at time t i j ,  satisfies 

where p ( p  x 1) is a vector of fixed effects associated with 
covariate vector ziJ ; bi are q-dimensional, mutually indepen- 
dent, subject-specific random effects associated with covariate 
vector sij; and ~ i j  N N(0, nz) are mutually independent errors 
independent of the bi. 

To facilitate our further development, represent the random 
effects as 

where p is a (q  x 1) vector of parameters, R is a (q x q)  
lower triangular matrix, and Zi is a (q  x 1) random vector. 
Rather than assume standard multivariate normality for Zi, 
we assume that Zi, and hence bi, has a density belonging to 
a class of smooth densities discussed in detail by Gallant and 
Nychka (1987). The mathematical details are complex, but, 
practically speaking, densities in this class are sufficiently dif- 
ferentiable that they do not exhibit unusual behavior such as 
kinks, jumps, or oscillation but may be skewed, multimodal, 
and fat- or thin-tailed relative to the normal; moreover, this 
class contains the normal. As discussed in Davidian and Gilti- 
nan (1995, Chapter 7), densities in this class may be approx- 

imated by a truncated series expansion, and the resulting es- 
timation methods and the density approximation are referred 
to as seminonparametric (SNP). Applying this to (2),  for in- 
ference, we propose to represent the density of Zi by the stan- 
dard SNP density, 

h d z )  = Pi(.)Cp(.) = { c aAzA}zp(z), (3) 
I A l l K  

where X = ( A 1 , .  . . , A,) is a q-dimensional vector of nonneg- 
ative integers, zx is the monomial zA = ztl . .. 2:' of order 
1x1 = Cz,l Ak, p(z) is q-dimensional standard normal density, 
K is the order of the polynomial PK(z ) ,  and the coefficients 
aA satisfy conditions discussed in the next paragraph. For ex- 
ample, when K = 2, q = 2, &(.) = aoo + alozl + a o ~ z z  + 
azozf + a11~1~2 + aozz,". When K = 0, PK(z) = 1 under 
the conditions discussed next (a00 = 1 in this case), so (3) 
includes the normal as a special case, and (1) reduces to the 
usual linear mixed model with bi N N q ( p ,  RRT). Note that, 
for the sake of identifiability, the formulation of the model 
using (2) thus requires that x i j  not contain sij, but this does 
not pose any practical restriction, as we illustrate in Section 
4. The order K acts as a tuning parameter controlling the 
degree of flexibility of shape of the resulting density h ~ ( z ) .  
As demonstrated in Sections 4 and 5, K need be no larger 
than one or two to approximate complicated shapes, includ- 
ing multimodality and skewness. 

For h ~ ( z )  to be a density, the coefficients aA of PK(z )  must 
be chosen so that 1 h ~ ( z ) d z  = 1. Previously, (e.g., Davidian 
and Giltinan, 1995, Chapter 7), h ~ ( r )  was defined alterna- 
tively as (3) divided by the appropriate normalizing constant, 
with the leading constant a00 of the polynomial set to one to 
achieve identifiability. We instead ensure 1 hK(z )dz  = 1 by 
imposing 

E{P$(U)} = 1, where U N N q ( O , I ) ;  (4) 
the consequences for improved numerical stability are dis- 
cussed in Section 3.2. 

This expectation is easy to calculate by representing it in 
an equivalent way. To demonstrate, consider q = 2; then there 
are d = ( K  + 1)(K + 2)/2 distinct terms in PK(u), and we 
may write 

K P  

where ai and the powers il, i 2  are easily determined numer- 
ically. For example, with K = 3, ai is the i th element of 
a = ( ~ o ~ , ~ ~ o , ~ o ~ , ~ z o , ~ i i , ~ o z , ~ ~ o , ~ z ~ , ~ ~ z , ~ o ~ ~ T  and i1,i2 
are just the subscripts corresponding to ai. Letting U a  be the 
random vector whose i th element is U;' U p ,  where U1 and Uz 
are independent standard normal, we have PK(U) = aTUa, 
so that 

(5) 
E{P$(U)} = aTE(UaUz)a = a T Aa, 

where A is the matrix with ( i , j )  element E(U~1+31)E(U~2+jz) 
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and the superscripts correspond to  ai and aj. These expecta- 
tions are straightforward by standard recursive formulas (e.g., 
Johnson and Kotz, 1994), and it follows that A is a sparse, 
positive definite matrix. When K = 2, an alternative deriva- 
tion of ( 5 )  is straightforward, as suggested by a reviewer. Writ- 
ing P2(u) = aoo+uTa(1)+uTA(2)u, where u = (u1,. . . , ' L L * ) ~  
and, e.g., with q = 2, a(') = (alo, a 0 1 ) ~  and 

A(2) = u20 ( a1112 a02 ' 

Now = trace(uuTA(2)) = vec(uuT)Tvec(A(2)), so 
that P2(u) = a00 + uTa(l) + vec(uu ) vec(A(2)) = {aOO,  

vec(A(2))T}{1, uT, vec(uuT)T}T. Thus, that P,"(u) is 
of a quadratic form follows, and it may be shown that the 
expectation is given by ( 5 ) .  

The above arguments may be generalized to any q and K 
and automated for computational purposes. We may thus rep- 
resent (4) as 

T T  

(6) 
T u A a = l .  

Letting T = vech(R) denote the nonzero elements of R, the 
parameters of interest are 8 = (PT,pT,aT,TT,a)T, with a 
subject to the constraint (6), as well as the tuning parameter 
K ,  the order of the polynomial PK(z) .  

3. Estimation Procedure 
3.1 Likelihood Function 
Substituting (2) in (1); defining vij = (~$,s;)~, 6 = 

(P , p ) , K = (XI , .  . . , YZni)T, and ~i similarly; and letting 
Vi (ni x p + q and Si (ni x q) be the matrices with rows 
uz and sij, respectively, we may express the model as 

T T T  

i 1 ) .  

Yi = Vi6 + SiRZi + ~ i .  (7) 
Given K ,  the log likelihood of B is 

m 

qe;  Y )  = c log{f(yZ; Q)), 
i= 1 

where f(K;8) is the marginal density of yZ for subject i. 
Keeping in mind dependence of PK(z )  on 8, we have 

f (K;  8 )  = f ( K  1 2; @)&z)dzldz, J 
where f ( y Z  I z ; 8 )  is the normal density with mean K6 + 
SiRz and covariance a21. Clearly, f(& I Zi;e)p(&) can 
be identified as the joint density of yi and Zi when Zi in 
(7) is assumed to be standard q-variate normal. Under these 
conditions, let g(Y i ;  8) denote the marginal density of K and 
g(Zi 1 K;0) be the conditional density of Zi given % if Zi 
were normal. Then f(yZ I Zi; O)p(Zi) = g(yZ; 8)g(Zi I yZ;  0) 
and hence 

f (K;  8) = s(K; 8) P$(Z)g(Z I YZ; 8)dz s 
= g(Yi;WzilYi;e {pi(zi)} , 

where Ez, lyi;@(.) represents expectation with respect to the 
conditional distribution of Zi given Yi with Zi normal under 
8. It is straightforward to  show that g(Yi;8) is the normal 
density with mean V,b and covariance a 2 ( I  + SilTTST), 

where r = R/a ,  and that g(z I Y , ; B )  is the normal density 
with mean and covariance p i  = a-lCJ?TS'(& - q 6 )  and 
Ci = ( I  + rTS?Sir)-', respectively. Thus, the log likelihood 
may be expressed alternatively as 

m m 

i=l i=l 

(8) 
The first term in (8) is just the usual log-likelihood function 
for the linear mixed model (7) when Zi is assumed normal, 
which is available in closed form from above. The second 
term involves calculation of moments of a normal random 
vector with mean pi and variance matrix Ci ,  i = 1,. . . ,m, so 
also has a closed-form expression. Thus, the log likelihood 
for 8 under the semiparametric linear mixed model has a 
convenient, closed-form representation. A simple example is 
given in the Appendix. 

Calculation of the required moments in the second term 
may be accomplished using the series representation of the 
moment generating function of a normal random variable (see 
the Appendix). The calculation can be intensive for q large, 
but in this situation, it may not be prudent to entertain 
the semiparametric model for any smooth representation of 
random effects. For moderate q, the calculations are not 
prohibitive and are straightforward to implement. 

3.2 Maximizing the Likelihood Function 
For given K ,  obtaining the maximum likelihood estimator 
(MLE) for 8 involves maximizing l (8;Y)  subject to the 
quadratic constraint (6). One possibility is to take a Lagrange 
multiplier approach and maximize l (0 ;Y)  - A(aTAa - 1) 
with respect to (8, A) via standard optimization techniques. 
However, this introduces yet another parameter, which may 
contribute to numerical instability. 

Alternatively, we have found that the following reparame- 
terization leads to quite stable implementation in practice. 
Because A in (6) is positive definite, there exists B positive 
definite such that A = B2. With c = Ba (d x l), (6) becomes 
cTc = 1. Note that -c (and hence -u) yields an identical 
density for z;  thus, c must lie on a half-unit sphere in $2'. 
Hence, c = (c1, . . . , cd)T can be represented using the polar 
coordinate transformation 

c1 = sin(&), 
c2 = cos(9l)sin(42), 

cd-1 = cos(41) cos(42). . . cos(4d-2) sin(&-l), 

Cd = COS(41) c0~(42)~~~c0s(4 ' -1) ,  

where -7r/2 < q5t 5 7r/2 for t = 1,2, .  . . , d - 1 to guarantee 
that c can take all values on a half-unit sphere in $2'. 
Letting 4 = (41,. . . , the parameter of interest for 
fixed K is 8 = (/3T,pT,4T,~T,cr)T, where 8 now denotes 
this vector with dimension one less than before. With this 
parameterization and given K ,  there is no constraint, and 
standard optimization techniques may be used. We discuss 
determination of K in the next section. 

In practice, it is crucial to have a good initial value for 8 
and especially 4 for any optimization approach. Such a value 
may be obtained by maximizing a penalized log likelihood for 
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0 in the original parameterization such as C p ( O ;  Y )  = l (0 ;  Y ) -  
Q(aTAa - l)', where Q is a positive constant such as 
Q = N = CE1 n2, the total number of observations. 
Once the corresponding value for 0 is obtained, a may be 
transformed to q5 and the other parameters, yielding a starting 
value under the new parameterization. Alternatively, when 
q and K are small, a grid search for 4 may be carried out 
over (-7r/2,7r/2] and the log likelihood maximized in the 
remaining parameters. As we will demonstrate, K required 
to provide suitable flexibility is small. 

Once the MLE 8 for the particular given K is obtained, the 
inverse of the observed information may be used to construct 
estimates of uncertainty for functions of model parameters in 
the usual way. Population inference proceeds by identifying 
fixed effects of interest within the parameterization of the 
model, as we illustrate for the cholesterol data in Section 4. 
As is standard, inference on individuals may be based on a so- 
called empirical Bayes approach, where individual posterior 
modes for b, are estimated by finding the maximizer 2, of 
the posterior density f(2, I Yz;O) 0: f(K I Z,;6)P&(Zz)p(Zz) 
with 0 = 6 and calculating kz = ,& + RZ,. Alternatively, 2, 
may be estimated by E(Z, I y Z )  evaluated at 8, which has a 
straightforward closed-form expression (see the Appendix). 

3.3 Chooszng the Tzlnzng Parameter K 
The previous procedure is based on a given value for the 
tuning parameter K controlling the flexibility of representa- 
tion of the random effects density. Although fixing a choice 
of K yields a representation flexible enough to  approximate a 
wide variety of densities, including the normal, an objective 
selection method is preferable. Following other authors (e.g., 
Davidian and Gallant, 1993), we propose to select K by 
inspection of information criteria evaluated at 8 over a series 
of fits for different given K ,  including K = 0 (normality). 

These criteria all take the form of a penalized log likelihood 
- t (O;Y)/N + C ( N ) ( p , e t / N ) ,  where pnet is the number of 
(free) parameters in the model excluding K: the Akaike 
Information Criterion (AIC) with C ( N )  = 1, the Schwarz 
Information Criterion (BIC) with C ( N )  = 0.5 log N ,  and the 
Hannan-Quinn criterion (HQ) with C ( N )  = log log N .  For 
a given criterion, K minimizing the penalized log likelihood 
is preferred; AIC tends to prefer larger models, while BIC 
prefers smaller ones, with HQ intermediate. Davidian and 
Gallant (1993) advocate inspection of the estimated density 
for K selected for each criterion, from which a visual selection 
may be made, and propose HQ in the event an automatic rule 
is desired. We evaluate the objective performance of these 
criteria via simulation in Section 5. 

4. Application 
We illustrate the proposed methods by applying them to the 
Framingham cholesterol data introduced in Section 1. Figure 
la and preliminary analysis indicate that, although baseline 
cholesterol may depend on individual subject characteristics, 
the linear trend over time is somewhat similar across parti- 
cipants regardless of age or gender. Moreover, the residuals 
from the individual fits in Section 1 exhibit no particular 
pattern over time. Based on these observations, we consider 
the semiparametric linear mixed model 

Y& = boi + Plagei + P2sexi + blitij + qj. (9) 

Here, y Z j  is cholesterol level divided by 100 at the j t h  time for 
subject i and ti j  is (time-5)/10, with time measured in years 
from baseline, where transformations of level and time were 
adopted for reasons of numerical stability; ~ i j  are independent 
N(0, g2); agei is age at baseline; sexi is a gender indicator (0 = 

Table 1 
Fits of model (9), (10) to  the cholesterol data for  K = 0,1,2; 
d l l t  d21, and d22 are the distinct elements of the matrix D 

K = O  K = l  K = 2  

Parameter Estimate SE Estimate SE Estimate SE 

P1 (age) 0.0184 

70 (intercept) 1.5969 
YI (time) 0.2817 
U 0.2084 
dl  1 0.1412 
dzi 0.0314 
d22 0.0380 
PO 1.5969 
P1 0.2817 
'11 0.3758 
r21 0.0836 
7-22 0.1762 

P2 (sex) -0.0630 

$1 
42 
43 
4 4  
45 

- 

__ 
__ 
___ 
- 

0.0035 
0.0554 
0.1503 
0.0241 
0.0057 
0.0153 
0.0100 
0.0116 
0.1503 
0.0241 
0.0203 
0.0253 
0.0313 
- 

0.0156 

1.7131 
0.2817 
0.2081 
0.1401 
0.0294 
0.0392 
1.9110 
0.2529 
0.3178 
0.1103 
0.1618 
0.5240 

-0.0626 

-0.8021 
- 

__ 
- 

0.0032 
0.0455 
0.1389 
0.0242 
0.0055 
0.0165 
0.0098 
0.0109 
0.1384 
0.0316 
0.0198 
0.0232 
0.0250 
0.0727 
0.1069 
- 

0.0161 

1.7026 
0.2821 
0.2079 
0.1402 
0.0297 
0.0395 
1.5987 
0.0870 
0.3583 
0.1378 
0.1616 
0.5844 

0.9290 

0.5187 

-0.0765 

-0.2381 

-0.3755 

0.0030 
0.0442 
0.1314 
0.0242 
0.0055 
0.0179 
0.0105 
0.0112 
0.1462 
0.0720 
0.0264 
0.0280 
0.0253 
0.2076 
0.1266 
0.1513 
0.1357 
0.2792 
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Table 2 
Model selection criteria for K = 0,1,2 for the 
cholesterol data; smaller values are preferred 

~~ ~ ~ ____ ~ _ _ _ _  

Criterion K=O K = l  K = 2  

-Log likelihood 160.9864 148.5971 146.8909 
AIC 0.1619 0.1519 0.1532 
BIC 0.1808 0.1756 0.1840 
HQ 0.1691 0.1609 0.1648 

has density (3) for the choices of K discussed below. Thus, 
xij = (agei, sexi)T, and sij = (1, tij)T. Model (9) is a simple 
linear random coefficient model with baseline effects of age 
and sex; from the construction of (l) ,  we may rewrite the 
model in the familiar form 

y.. 23 - - 70 + Plagei + P2sexi + Yitij + uoi + ulit i j  + ~ i j ,  (10) 

where 70 = E(boi) = PO + rliE(Zoi), yi  = E(b1i) = PI + 
rzlE(Z0i) + r22E(Zli), and ui = (uoi, uli has mean zero 
and covariance D = var(bi) = Rvar(Zi)R . Of course, when 
K = 0, E(Zi) = 0 and var(2i) = I .  

Table 1 presents the results of fits for K = 0 ,1 ,2 .  The es- 
timates and standard errors are similar for all three models. 
All information criteria given in Table 2 prefer the model with 
K = 1, supporting the contention of a departure from normal- 
ity. Figure 2a depicts the estimated bivariate density of the 
random effects bi for this preferred fit, which shows the pres- 
ence of a second mode or bump. Figure 2b provides another 
perspective on this feature; following the shape of the density 
in Figure la, the subject-specific empirical Bayes estimates 
of the bi clump into two distinct groups. Figure 2c and 2d 
show the estimated marginal densities of boi and b l i  and offer 
support for the informal observations given in Section 1: the 
distribution of slopes appears normal while the shape of the 
density for intercepts shows evidence of skewness, as in Figure 
lb.  As (9) includes baseline age and gender effects, the esti- 
mated density suggests that the apparent nonnormal pattern 
for intercepts reflects something other than heterogeneity due 
to these characteristics. 

Taken as a whole, these results suggest the possibility of a 
subpopulation of individuals with higher baseline cholesterol, 
even after adjusting for the effects of age and gender. A po- 
tential explanation is that an important, unavailable covariate 
has failed to be taken into account. In any event, the ability 
to estimate the random effects density gives the data analyst 
considerable insight and raises issues for further investigation. 
Moreover, the form of the estimate suggests that inference on 
individual effects under the usual normality assumption could 
be misleading. Note that inspection of marginal densities of 
random effects only would not reveal the extent and form of 
the apparent departure from normality; with q = 2, it is pos- 
sible to depict the joint density as in Figure 2a, allowing full 
view of the bimodality of the estimate. 

5. Simulation Results 
We conducted simulation studies to investigate the perfor- 
mance of the proposed methods. We report here on results 
for the model 

JT 

y.. - t .  .p a3 - zj 1 + wiP2 + bi + ~ i j ,  
i = 1, .  . . , m  = 100, j = 1,. .. ,5,  (11) 

N ,.. 

3 

x 

x 

f 
d 

0.5 1.5 2.5 3.5 

intercept 

0.5 1.5 2.5 3.5 

Intercept 

3 
ul - 

F g z  

2 

x 
-0.2 0.2 0.6 

slope 

Figure 2. Fit of model (1) to  the cholesterol data with 
K = 1. a. Estimated density of bi. b. Contour plot of den- 
sity in a with subject-specific estimated posterior modes for 
bi superimposed (contours are 10, 50, and 90%; some extreme 
subjects lie outside the figure). c and d. Corresponding esti- 
mated marginal densities for components of bi (solid) with 
normal with same moments superimposed (dashed). 

where t i j  = j - 3, wi = 1 if i 5 50 and is zero otherwise, 
Pi = 2, P2 = 1, cil N N(O,0.5'), and the true distribution of 
bi is the mixture of normals (2~)-'/~[0.7exp(-(x +3)2/2} + 
0.3exp(-(z - 2)'/2}]. Under this specification, the true in- 
tercept is E(bi) = -1.5, and var(bi) = 6.25. Note that t i j  
represents a covariate with values changing within individu- 
als and the same for all individuals, while wi is an individual- 
level covariate. The choice m = 100 corresponds to a situa- 
tion where the amount of information available to estimate 
both fixed model parameters and the density may not seem 
great. For each of 100 Monte Carlo data sets, (11) was fit 
three times under the semiparametric assumptions of Section 
2, with the density of bi represented by the SNP approxima- 
tion with K = 0,1, and 2, and the three information criteria 
in Section 3.3 were calculated for each fit. Preliminary study 
revealed that richer models ( K  > 2) were never selected by 
the information criteria. To evaluate the objective use of the 
criteria, the fit preferred by each of AIC, BIC, and HQ was 
recorded. 

None of AIC, BIC, or HQ selected the normal specification 
(K = 0) for any of the 100 data sets, demonstrating the abil- 
ity of these selection methods to detect an obvious departure 
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Table 3 
Simutataon results, 100 data sets: M C  ave. and M C  SD are average and standard deviation of the 
estimates, respectively; Ave. SE is average of estimated standard errors; RE is Monte Carlo mean 

square error for the indicated fit divided by that for K = 0; true values of parameters are in parentheses 

K=O Preferred by BIC Preferred by HQ 

MC ave. MC SD Ave. SE MC ave. MC SD Ave. SE RE MC ave. MC SD Ave. SE RE 

Pl (2) 2.000 
P2 (1) 1.158 

var(b) (6.25) 6.045 
u (0.5) 0.498 

E(b) (-1.5) -1.614 

2.000 
0.994 

E(b) (-1.5) -1.491 
var(b) (6.25) 5.955 
u (0.5) 0.498 

P1 (2) 
P2 (1) 

0.017 
0.472 
0.369 
0.638 
0.018 

0.017 
0.512 
0.363 
0.789 
0.018 

0.016 
0.493 
0.349 - 
0.862 
0.018 

0.016 
0.489 
0.346 - 
0.849 
0.018 

2.000 
1.034 
.1.552 
6.098 
0.498 

2.000 
0.987 
-1.487 
5.957 
0.498 

(a) Mixture Scenario 
0.017 0.016 1.00 
0.234 0.209 0.21 
0.275 0.269 0.52 
0.654 0.690 1.01 
0.018 0.018 1.00 

(b) Normal  Scenario 
0.017 0.016 1.00 
0.533 0.487 1.17 
0.373 0.345 1.09 
0.790 0.861 1.00 
0.018 0.018 1.00 

2.000 
1.028 

-1.549 
6.099 
0.498 

2.000 
0.990 

-1.489 
5.958 
0.498 

0.017 
0.230 
0.273 
0.655 
0.018 

0.017 
0.550 
0.380 
0.790 
0.018 

0.016 
0.208 
0.269 
0.695 
0.018 

0.016 
0.479 
0.343 
0.863 
0.018 

1.00 
0.23 
0.52 
1.00 
1.00 

1.00 
1.08 
1.05 
1 .oo 
1.00 

from normality. Otherwise, 35% of the time, the AIC selected 
K = 1, and 65% of the time, it selected K = 2; these per- 
centages were 76 and 24% for BIC and 56 and 44% for HQ, 
respectively, demonstrating the tendency of AIC (BIC) to pre- 
fer larger (smaller) models, with HQ intermediate. The first 
part of Table 3, part a, shows results for all 100 data sets 
using K = 0 (assuming normality), and the remaining two 
sections give summaries using for each of the 100 data sets 
the choice of K preferred by BIC and HQ, respectively, thus 
representing performance if these criteria were used as au- 
tomatic selection rules. Results for AIC are similar and are 
excluded for brevity. Parameter estimates are, for the most 
part, unbiased in all cases. The efficiency of estimation un- 
der the incorrect normality assumption for the intercept and 
treatment effect P2 is quite poor relative to  that when the 
density is estimated. Because a main focus of such an analysis 
may well be evaluation of treatment effect, this suggests that 
adopting the normality assumption routinely may lead to in- 
efficient inferences on fixed effects of primary interest. In con- 
trast, inferences on P1 corresponding to the within-individual 
time effect and on the variance components are unaffected. 
Because P2 is associated with a subject-level covariate and 
random effects also represent subject-level heterogeneity, it 
is perhaps not surprising that failure to characterize the lat- 
ter correctly would impact the former, while P1 is associated 
with a within-individual effect that is in some sense orthogo- 
nal to intersubject differences. Similar behavior was observed 
by Tao et al. (1999). The variance u2 also represents an in- 
trasubject effect. Because all approaches attempt to estimate 
var(bi) from the apparent intersubject variation, the point es- 
timate is similarly unaffected; however, estimation of E(bi) 
is compromised when normality is incorrectly assumed, likely 
due to association with estimation of P2.  Note that, for the 
cholesterol data (see Table l), the estimate of the time effect 
is virtually unchanged across fits while those for the subject- 
level age and sex effects and the intercept change noticeably, 
potentially reflecting the phenomenon observed here. 

The advantage of estimating the random effects density 
may he appreciated from Figure 3. Figure 3a shows the Monte 
Carlo average of estimated densities over the 100 data sets 
along with the true density for K = 0 (the normal fits) and 
those preferred under BIC and HQ, as in Table 3; that for the 
AIC fits is virtually identical. The figure demonstrates that 
the additional flexibility afforded by the SNP representation 
is sufficient to capture quite accurately the true underlying 
features of the random effects, even with only 100 subjects. 
This observation is further supported by Figure 3b, which 
shows the 100 estimates from the fits preferred by HQ. Given 
the sample size, it is not unreasonable that allowing the ad- 
ditional flexibility to represent more complex densities would 
result in occasional overmodeling; however, note that only 
3 of the 100 fits preferred by HQ includes a third, spurious 
mode. In practice, one would likely combine visual inspection 
of the estimate with the information criteria to select a feasi- 
ble model, focusing on the dominant features, and take care 
not t o  overinterpret such behavior. 

To gauge performance under the opposite situation, we con- 
ducted a simulation under the same scenario as in (11) but 
with the true random effects distribution as bi - N(-1.5, 
6.25). Eighty-four, 89, and 97% of the time the AIC, HQ, 
and BIC criteria, respectively, correctly selected K = 0. AIC 
selected K = 1 and K = 2 for 7 and 9% of the data sets; 
these figures were 5 and 6% for HQ and 3 and 0% for BIC. 
In those data sets where K > 0 was chosen, examination of 
the estimated densities under the preferred choice of K re- 
veals that only three are bimodal. An important feature of 
the SNP density is that larger K does not necessarily imply a 
greater number of modes but may just be a less parsimonious 
representation. Moreover, K functions strictly as a tuning pa- 
rameter and should not be interpreted as reflecting underlying 
features such as number of subpopulations. 

Summaries of the Monte Carlo results are given in Table 
3, part b. The inefficiency of the fits preferred by BIC and 
HQ is obviously due to  the few data sets where K > 0 was 
preferred. For the automatic use of HQ as a selection rule, 
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4 3 - 4 - 2 0  2 4 

X X 

Figure 3. Simulation results based on 100 datasets. a. True 
density (solid line) and Monte Carlo average estimated densi- 
ties for 100 data sets using K = 0 (short dashed line; normal) 
and using the fits preferred by BIC (dotted line) and HQ (long 
dashed line). b. Estimated densities for the fits preferred by 
HQ for the 100 data sets. 

note that this results in only minimal loss of efficiency relative 
to the correct K = 0 model. The apparent conclusion is that 
the price to pay for estimating the random effects density 
when the normality assumption holds is mild; similar results 
are reported in Hu, Tsiatis, and Davidian (1998). 

6. Discussion 
We have proposed an approach to a semiparametric linear 
mixed model where the random effects are assumed to  have a 
smooth density in which the form of the random effects den- 
sity is represented by the SNP truncated series expansion. As 
we have demonstrated, the expression for the SNP density 
allows the marginal likelihood of the data to be written in a 
closed form. Moreover, we have also proposed a new parame- 
terization of this density representation that imposes identi- 
fiability constraints in a straightforward manner, depending 
on quantities (moments of normal distributions) that may be 
computed efficiently and is attractive for stable computation. 
Standard optimization techniques may be used to estimate 
jointly the fixed model parameters and the density. The de- 
gree of flexibility of the representation is controlled by a scalar 
tuning parameter, and the representation admits the usual 
normal model as a special case. Use of standard information 
criteria to select the tuning parameter, along with visual in- 
spection of the estimated density, has worked well in practice 
to provide reliable estimates of the density. 

An alternative to the SNP approach is to represent the 
random effects density by a mixture of normals (Verbeke and 
Lesaffre, 1996). Although these authors use an EM algorithm 
for implementation, it is worth noting that the marginal like- 
lihood may also be expressed in closed form and the number 
of normal mixtures plays the role of a tuning parameter. This 
approach requires that the obvious constraints be imposed on 
the mixing probabilities in order that standard optimization 
techniques be used. 

As observed in other contexts and approaches (e.g., Hu et 
al., 1998; Tao et al., 1999), there is potential to gain efficiency 
in estimating certain parameters when the normality assump- 
tion does not hold, with only a small price to pay for the extra 
complication of estimating the density when it is normal. An 

additional major advantage of all approaches that relax the 
assumption on the random effects density is the insight the 
estimate provides. 

When ni is large, one may wish to relax the assumption on 
c i j  in (1) to  include a subject-specific, mean-zero Gaussian 
process Wi(t) to model underlying biological behavior, as in 
Zhang et al. (1998), so that the model becomes 

where e,j N N(0,02) is measurement error. This modifica- 
tion is accommodated straightforwardly by the proposed ap- 
proach; in this case, the likelihood function will still have a 
closed form similar to (8). 

We have implemented the approach using SAS p roc  iml 
using the nlpqn optimizer (SAS Institute, 1989); code is avail- 
able from the authors on request. 
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R ~ S U M B  
La normalit6 des effets algatoires est une hypothese de rou- 
tine dans les modeles mixtes linkaires; mais elle peut s’av6rer 
irrealiste, masquant alors des caracteristiques importantes de 
la variabilit6 inter-individuelle. Nous assouplissons cette hy- 
pothese en approchant la distribution des effets alkatoires par 
la representation semi-nonparam6trique de Gallant et Ny- 
chka (1987) dependant d’un parametre d’ajustement choisi 
par l’utilisateur, qui inclut la distribution normale comme un 
cas particulier et permet une plus grande flexibilitk en incor- 
porant un large 6ventail de distributions non-normales. Un 
avantage est que la vraisemblance marginale peut s’exprimer 
de maniere explicite, si bien que l’infkrence peut Stre conduite 
par des techniques classiques d’optimisation. Nous d6mon- 
trons que des mesures standards de I’information peuvent 
servir B choisir le parametre d’ajustement et d6tecter des 
&arts B la normalit6. Nous illustrons cette approche par des 
simulations et B partir des donnkes longitudinales de 1’6tude 
F’ramingham. 
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APPENDIX 

To exhibit the required calculations discussed in Section 3.1, 
we consider q = 2. To compute the second term in (8), we 
need to calculate expectations of the form E(Z:'Z;'), where 
expectation is with respect to the conditional distribution of 
( 2 1 , Z ~ ) ~  given y Z ,  N(pL2, &); a1 and a2 are nonnegative in- 
tegers; and p ,  and C, are given in Section 3.1. This is feasi- 
ble through use of the moment generating function m(t) = 
exp(pFt + tTC, t /2) ,  where t = ( t l ,  t z ) T .  The function m(t) 
may be written as m(t) = Crz0 antl Cn=O bnt2 CnZO cnt;tg. 
Thus, E(ZY'Z;2) = Q ~ ! c u ~ !  C,=, mln(al 'az)  aal-,baz-,cz, where 
{an} ,  {bn},  and {c,} are determined by p ,  and C,. 

In simple cases, the form of the zth expectation in the sec- 
ond term in ( 8 )  is easy to express. For example, when q = 2 
and K = 1, this is given by aio  + ~ ; 1 0 p 1 ,  + 2a00(301p~, + 
& ( p l z  + wz) + 2a10a01a12, + a 0 1 ( p ~ ,  + crzz,), where p i 2 ,  
p2,, q l 2 ,  ~ 7 1 2 % ~  and 0 2 2 ~  are the obvious elements of p, and 

n m  n m  

2 

These same calculations may be used to evaluate E(Zz I 
(2,) )/Ez, 1 Y, ;e { l'$ (Zi) }, discussed in y Z )  = Ez, IY, ;e { zi 

Section 3.2. 




