
Modeling Big Data Systems by
Extending the Palladio Component Model

Johannes Kroß,
Andreas Brunnert

fortiss GmbH
Guerickestr. 25

80805 Munich, Germany
{kross,brunnert}@fortiss.org

Helmut Krcmar
Chair for Information Systems

Technische Universität München
Boltzmannstr. 3

85748 Garching, Germany
krcmar@in.tum.de

ABSTRACT
The growing availability of big data has induced new storing
and processing techniques implemented in big data systems
such as Apache Hadoop or Apache Spark. With increased
implementations of these systems in organizations, simulta-
neously, the requirements regarding performance qualities
such as response time, throughput, and resource utilization
increase to create added value. Guaranteeing these perfor-
mance requirements as well as efficiently planning needed
capacities in advance is an enormous challenge. Performance
models such as the Palladio component model (PCM) allow
for addressing such problems. Therefore, we propose a meta-
model extension for PCM to be able to model typical char-
acteristics of big data systems. The extension consists of two
parts. First, the meta-model is extended to support parallel
computing by forking an operation multiple times on a com-
puter cluster as intended by the single instruction, multiple
data (SIMD) architecture. Second, modeling of computer
clusters is integrated into the meta-model so operations can
be properly scheduled on contained computing nodes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

Keywords
Palladio Component Model, Performance Model, Big Data

1. INTRODUCTION
Exponentially growing volumes of data of various formats—

referred to as big data—and the necessity of organizations
to gain benefits have led to the development of big data sys-
tems [6], [10]. These systems are specialized for storing and
processing this data. A common example includes Apache
Hadoop1 consisting of a distributed file system called HDFS,
a scheduler and cluster resource manager called YARN and
the MapReduce model for parallel data processing [8].

Although Apache Hadoop is originally built for commod-
ity hardware, other systems such as Apache Spark (Stream-
ing)2 and Apache Storm3 have emerged that enable low la-
tency results on big data by also using in-memory comput-
ing [13]. Therefore, big data systems are able to meet con-
tinuously increasing performance requirements and to serve

1http://hadoop.apache.org/
2http://spark.apache.org/
3http://storm.apache.org/

several additional use cases. Consequently, up-front per-
formance evaluations for these systems and capacity plan-
ning for building an appropriate cluster become not only
inevitable, but also difficult and costly [4, 5].

One way to approach these challenges are performance
models such as the Palladio component model (PCM) that
focuses on component-based software architectures [2]. It
allows to model factors influencing system performance and
predict performance metrics such as resource utilization, re-
sponse time, and throughput by analytical solving or simu-
lation [3]. As the PCM meta-model does not allow to model
some specific requirements of big data systems yet, we pro-
pose and contribute a meta-model extension in this paper.
This includes to specify an external call of an action to be ex-
ecuted multiple times in parallel while limiting the number
of concurrent actions. It also includes to model a resource
cluster consisting of several resource containers with differ-
ent resource roles such as found in distributed computing
architectures.

2. MODELING BIG DATA SYSTEMS
Comparing big data systems to ordinary component-based

software systems (e.g., for web applications), they make use
of specialized processing paradigms. Casado and Younas
[6] list two main techniques that are common for big data
systems, namely, batch and stream processing. They have
in common that they utilize parallel and distributed com-
puting on a distributed system in the form of a computer
cluster. For this purpose, software developers implement
components with operation signatures, for instance by us-
ing software libraries such as Apache Hadoop, and combine
these components to build a task job that will be deployed
on a computer cluster. In order to distribute this task job
across linked resources, the components can be assembled
in the form of a directed acyclic graph (DAG) [13]. For
instance, the MapReduce paradigm consists of two vertices
map and reduce that are linked by a directed edge. By this
means, such systems are able to make use of all distributed
computing resources and achieve horizontal scalability for
increased workloads in terms of data volume or velocity.

Despite their shared characteristics, batch and stream pro-
cessing adopt distinct approaches and are designed for dif-
ferent use cases. Batch processing is intended to be used on
data sets with high volume [6]. In doing so, a specified oper-
ation is applied on splits of a non changing distributed data
set multiple times in parallel. For instance, implemented
Hadoop MapReduce operations are applied on distributed

AbstractAction

ExternalCallAction

- retryCount : Integer

DistributedCallAction

- totalForkCount : Integer

- simultaneousForkCount: Integer

CallReturnAction CallAction

VariableUsage

SetVariableAction

AbstractInternal

ControlFlowAction

InterCallAction

0..1

0..1 0..1

*

**

OperationSignature

1

OperationRequired

Role
1

(a) Service effect specification (SEFF) actions

<<Enumeration>>

SchedulingPolicy

- DELAY

- FCFS

- PROCESSOR_SHARING

- ROUND_ROBIN

<<Enumeration>>

ResourceRole

- CLUSTER

- WORKER

- MASTER

ClusterResourceSpecification

- resourceRole : ResourceRole

- actionSchedulingPolicy : SchedulingPolicy

ResourceContainer

ProcessingResource

Specification

Resource

Environment

LinkingResource

CommunicationLink

ResourceSpecification

1 1 1

1*

0..1

1 1

* *
*

*

(b) Resource environment

Figure 1: Meta-model extension for the Palladio component model (PCM, Version 3.4.1)

files on the HDFS. Implemented operations using Apache
Spark are applied on so called resilient distributed datasets
(RDD). The amount of parallelism for one specified oper-
ation is usually limited by the split rate of a dataset. The
amount of simultaneously running parallel operations is usu-
ally limited by the amount of available resources or by spec-
ified user configurations.

Stream processing, on the other hand, is designated for
handling high velocity data streams with low latency and is
also referred to as real-time processing [6]. It distinguishes
itself from batch processing by not operating on a data set,
but rather operating on each data (e.g., Apache Storm) or
a mini-batch (e.g., Apache Spark Streaming) that are kept
in-memory. Therefore, data are continuously received from
an unbounded data stream (e.g., in a message queue man-
ner) and immediately processed by an operation. Similar
to batch processing, the number of simultaneously running
operations is limited by the amount of available resources or
by specified configurations.

In previous work [9] we already modeled one MapReduce
job on a single computer and predicted its response time.
As we had to simplify several features and take limitations
into account, we identified the need to extend PCM. Based
on these findings and the above mentioned characteristics
of batch and stream processing, we derive the following re-
quirements of big data systems that we propose to extend
PCM in order to allow for modeling typical big data systems:

1. Distribution and parallelization of operations
Component developers specify reusable software com-
ponents consisting of operations using software frame-
works like Apache Spark. In doing so, they may spec-
ify, but also may not know the definite number of si-
multaneous and/or total executions of an operation.

2. Clustering of resource containers
System deployers specify resource containers with re-
source roles (e.g., master or worker nodes), link them
to a mutual network and logically group them to a
computer cluster.

On this basis, we propose the following extensions for the
PCM meta-model, which are shown in gray in Figure 1 (note
that we only depict the relevant parts of the meta-model re-
garding our approach). The PCM meta-model consists of

several partial models according to different developer roles
[2]. Figure 1a shows the actions of the service effect specifi-
cation (SEFF) model. A SEFF describes the behavior of an
implemented operation. The element we propose to extend
is the ExternalCallAction that is used to call a required ser-
vice [2]. Therefore, we introduce a DistributedCallAction. It
contains the two additional input parameters simultaenous-
ForkCount and totalForkCount that can be used to specify
the simultaneous and/or total number of executions of an
external call as mentioned in the first requirement. Since
these parameters depend on the workload and resource en-
vironment, component developers can describe the two input
parameters as well as the resource demand of an operation
as dependencies in parameterized form. In this way, domain
experts are able to specify the usage of the component af-
terwards as proposed by Becker et al. [2].

Figure 1b shows the meta-model extension for the resource
environment. Here, a ResourceContainer may or may not
have several ProcessingResourceSpecifications to specify e.g.,
processors and hard disks. A ResourceContainer can also
have a set of nested ResourceContainers. We propose to
complement the ResourceContainer by a ClusterResource-
Specification which contains references to one ResourceRole
as well as one SchedulingPolicy. These are both part of
a ResourceRepository, that is intended to contain types of
resources such as for middleware and operating system re-
sources [2]. A ResourceRole is used to describe whether a Re-
sourceContainer represents a cluster, a master or a worker.
A SchedulingPolicy is used to describe how actions are dis-
tributed on a cluster.

An example for a modeled computer cluster is shown in
Figure 2. An outer ResourceContainer is used to connect

<<ResourceContainer>> Cluster

<<ClusterResourceSpecification>>

Resource Role: Cluster

Action Scheduling Policy: Round Robin

<<ResourceContainer>> Node1

<<ProcessingResourceSpecification>>

...

<<ClusterResourceSpecification>>

Resource Role: Master

<<ResourceContainer>> Node2

<<ProcessingResourceSpecification>>

...

<<ClusterResourceSpecification>>

Resource Role: Worker

<<ResourceContainer>> Node3

<<ProcessingResourceSpecification>>

...

<<ClusterResourceSpecification>>

Resource Role: Worker

<<LinkingResource>> LAN

Figure 2: Example for a resource environment diagram

computing nodes to a cluster and includes a round robin
strategy to schedule actions on its nested ResourceContainer.
This enables system deployers to simply allocate compo-
nents to a cluster. Furthermore, each nested ResourceCon-
tainer includes a ResourceRole. If only workers are specified,
the cluster will represent a shared-nothing architecture. If
one master is specified, it will be responsible for distributing
actions. Therefore, its ResourceContainer operates usually
special middleware with additional resource demands that
can be modeled with InfrastructureCalls in PCM.

3. RELATED WORK
Most of the existing performance modeling approaches

for big data systems concentrate only on one technology,
namely Apache Hadoop. Barbierato et al. [1] introduce
a performance modeling language to evaluate the perfor-
mance of queries using Apache Hive which is a data ware-
house software on top of Apache Hadoop with a SQL-like
language. Vianna et al. [12] propose an analytical model,
which combines a precedence graph model and a queuing
network model, to model MapReduce workloads concentrat-
ing on the pipeline parallelism between map and reduce op-
erations. Verma et al. [11] propose a framework consisting
of micro benchmarks and a regression-based model to pre-
dict and evaluate response times of MapReduce processes
for different cluster resource choices.

A more general approach regarding big data technologies
is, for instance, introduced by Castiglione et al. [7] which
use Markovian agents and mean field analysis to model big
data batch applications and to provide information about
performance of cloud-based data processing architectures.
However, there is no approach available to the best of our
knowledge that tries to enable modeling of general batch
and stream processes, and to predict the response time and
cluster resource utilization for their concurrent execution.

4. CONCLUSION AND FUTURE WORK
In this paper we introduced a generic performance mod-

eling formalism to model essential characteristics of data
processing as found in big data systems. For this purpose,
we presented two meta-model extensions for PCM that en-
able performance engineers to model a computer cluster and
to apply distributed and parallel operations on this cluster.
This allows to model general stream processing as well as
batch processing techniques independent of their technology
and to realize up-front performance evaluations for response
times, throughputs, and resource utilizations of CPU and
memory of big data systems.

We already implemented the meta-model extensions, graph-
ical modeling editors, model-2-code transformations and ba-
sic functionalities of the associated simulation framework
SimuCom [2] to support our extensions. Although we do
not consider network traffic between resource containers yet,
first experimental results already look promising. In future,
we plan to complete the SimuCom extension as well as in-
tegrate network traffic. Afterwards, we intend to compre-
hensively evaluate our meta-model extension in controlled
experiments. This includes up- and downscaling scenar-
ios regarding workload as well as resource capacities. Our
long-term goal is to automatically derive performance mod-
els for batch and stream processes based on measurement
data from middleware like Apache YARN.

5. REFERENCES
[1] E. Barbierato, M. Gribaudo, and M. Iacono.

Performance evaluation of NoSQL big-data
applications using multi-formalism models. Future
Generation Computer Systems, 37(0):345 – 353, 2014.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. The Journal of Systems and Software,
82(1):3–22, 2009.

[3] F. Brosig, P. Meier, S. Becker, A. Koziolek,
H. Koziolek, and S. Kounev. Quantitative evaluation
of model-driven performance analysis and simulation
of component-based architectures. IEEE Transactions
on Software Engineering, 41(2):157–175, 2015.

[4] A. Brunnert and H. Krcmar. Continuous performance
evaluation and capacity planning using resource
profiles for enterprise applications. Journal of Systems
and Software, 2015. doi: 10.1016/j.jss.2015.08.030.

[5] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff,
M. Mayer, and H. Krcmar. Performance management
work. Business & Information Systems Engineering,
6(3):177–179, 2014.

[6] R. Casado and M. Younas. Emerging trends and
technologies in big data processing. Concurrency and
Computation: Practice and Experience,
27(8):2078–2091, 2015.

[7] A. Castiglione, M. Gribaudo, M. Iacono, and
F. Palmieri. Modeling performances of concurrent big
data applications. Software: Practice and Experience,
2014.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[9] J. Kroß, A. Brunnert, C. Prehofer, T. Runkler, and
H. Krcmar. Stream processing on demand for lambda
architectures. In M. Beltrán, W. Knottenbelt, and
J. Bradley, editors, Computer Performance
Engineering, volume 9272 of Lecture Notes in
Computer Science, pages 243–257. Springer
International Publishing, 2015.

[10] M. Schermann, H. Hemsen, C. Buchmüller, T. Bitter,
H. Krcmar, V. Markl, and T. Hoeren. Big data - an
interdisciplinary opportunity for information systems
research. Business & Information Systems
Engineering, 6(5):261–266, 2014.

[11] A. Verma, L. Cherkasova, and R. H. Campbell.
Profiling and evaluating hardware choices for
MapReduce environments: An application-aware
approach. Performance Evaluation, 79:328 – 344, 2014.

[12] E. Vianna, G. Comarela, T. Pontes, J. Almeida,
V. Almeida, K. Wilkinson, H. Kuno, and U. Dayal.
Analytical performance models for MapReduce
workloads. International Journal of Parallel
Programming, 41(4):495–525, 2013.

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

