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Score limitation at the top of a scale is commonly termed “ceiling effect.” Ceiling

effects can lead to serious artifactual parameter estimates in most data analysis.

This study examines the consequences of ceiling effects in longitudinal data

analysis and investigates several methods of dealing with ceiling effects through

Monte Carlo simulations and empirical data analyses. Data were simulated based

on a latent growth curve model with T D 5 occasions. The proportion of the ceiling

data [10%–40%] was manipulated by using different thresholds, and estimated

parameters were examined for R D 500 replications. The results showed that

ceiling effects led to incorrect model selection and biased parameter estimation

(shape of the curve and magnitude of the changes) when regular growth curve

models were applied. The Tobit growth curve model, instead, performed very well

in dealing with ceiling effects in longitudinal data analysis. The Tobit growth curve

model was then applied in an empirical cognitive aging study and the results were

discussed.

Many tests and scales have been developed in psychological and educational

research to measure participants’ abilities, well-being, and other constructs.

Correspondence concerning this article should be addressed to Lijuan Wang, Department of

Psychology, University of Notre Dame, Notre Dame, IN 46556. E-mail: lwang4@nd.edu
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ANALYZING LONGITUDINAL CEILING DATA 477

However, if a test is relatively easy, high-scoring participants may answer every

item correctly and reach the highest possible score, or ceiling, on the test. When

this happens, the true extent of the high-scoring participants cannot be correctly

measured, and this phenomenon is usually termed “ceiling effects.” Uttl (2005)

defined the ceiling effects as occurring when the tests or scales are relatively

easy such that substantial proportions of individuals obtain either maximum or

near-maximum scores and the true extent of their abilities cannot be determined.

Ceiling effects are related to, but different from, performance asymptotes.

Asymptotes occur when participants’ scores cannot exceed a specific value with

more information, additional practice, or retests (Miller, 1956). The asymptotic

values are the greatest true values that participants can actually demonstrate. In

this study, we assume ceiling effects happen before participants reach asymptotic

values. The concept of ceiling effects is also distinct from the concept of

semicontinuous variables (Olsen & Schafer, 2001). A semicontinuous variable

combines a continuous distribution with point masses at one or more locations.

For example, in alcohol usage research, the alcohol usage variable is a mixture

of 0s and continuously distributed positive values, which is one of the typical

semicontinuous variables. The difference between semicontinuous variables and

ceiling effects is that the 0s are valid data values, not proxies for negative or

missing response (Olsen & Schafer, 2001), whereas the ceiling threshold is not

a valid data value and is a proxy for some larger true values.

However, the idea of ceiling effects is similar to the concept of right censoring

in the framework of survival analysis. In survival analysis, right censoring is

considered to be where the event is observed only if it occurs prior to some

prespecified time (Klein & Moeschberger, 2005). Similarly for ceiling effects,

the true score can be observed only if it is less than or equal to the ceiling

threshold. The difference between these two concepts is that right censoring is

related to the time until an event whereas ceiling effects are more related to

measurement and testing properties.

Many researchers have observed ceiling effects in their research and recog-

nized that there could be some problems in the results such as artifactual non-

linearity or underestimated regression parameters (e.g., Genia, 2001; Ledbetter,

Smith, Vosler-Hunter, & Fischer, 1991; Murrell, Kenealy, Beaumont, & Lintern,

1999). Uttl (2005) provided a comprehensive discussion of severe ceiling effects

in widely used memory tests such as the verbal paired associates and word list

tests from the Wechsler Memory Scales (WMS; Wechsler, 1945, 1987, 1997),

the Rey Auditory Verbal Learning Test (RAVLT; Rey, 1964), and the California

Verbal Learning Test (CVLT; Delis, Kramer, Kaplan, & Ober, 1987). Among the

adverse effects of low ceilings mentioned by Uttl were underestimated means

and standard deviations and attenuated reliability and validity.

To deal with cross-sectional ceiling data, Muthen (1989, 1990) developed and

applied the Tobit approach to analyze censored data (ceiling or floor data) for

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
t
r
e
 
D
a
m
e
]
 
A
t
:
 
1
6
:
5
2
 
1
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



478 WANG, ZHANG, MCARDLE, SALTHOUSE

a factor analysis model in two steps. The Tobit correlation matrix is estimated

in the first step, and the factor loadings and variances are estimated based on

the Tobit correlation matrix in the second step. Van den Oord & Van der Ark

(1997) adjusted this Tobit approach to analyze sums of Likert items with ceiling

or floor effects for factor analysis and found that the results were more accurate.

With the use of repeated measures in longitudinal data, the problems of ceiling

effects could be more severe in that participants improve on the tests over time

and more participants reach the ceiling at later time points. However, there has

not yet been much discussion of their impact, or possible solutions, with this

type of data. The goal of this study was therefore to investigate the influences

of ceiling effects in longitudinal data analysis and explore possible methods of

dealing with ceiling effects. First, influences of ceiling effects in longitudinal

data are evaluated through simulation studies. Different ceiling proportions are

manipulated by setting different ceiling thresholds. The impact of longitudinal

ceiling effects is examined by comparing parameter estimates from models

that do not consider ceiling effects with the true parameter values. Accuracy

(comparison between the mean of the empirical distribution of the parameter

estimates and the true parameter value) and precision (standard deviation of the

empirical distribution of the estimates and the true standard error) are used to

evaluate the bias. Second, several analytical methods are discussed and their

performance compared. Finally, an empirical longitudinal data set with ceiling

problems is analyzed and the results discussed.

CEILING EFFECTS IN LONGITUDINAL STUDIES

Many longitudinal studies have been conducted to simultaneously investigate

the intraindividual change pattern and the interindividual differences of the

intraindividual change (Baltes & Nesselroade, 1979). Because participants are

repeatedly measured in the longitudinal studies, it is almost an article of faith

that longitudinal data are correlated. Regular regression techniques cannot be

applied in analyzing longitudinal data due to the violation of independent obser-

vations assumption. Instead, growth curve models or mixed-effects models were

proposed and are widely used to analyze longitudinal data by considering the

joint probability density function for the repeated measures (Fitzmaurice, Laird,

& Ware, 2004; Laird & Ware, 1982; McArdle & Nesselroade, 2003; Meredith

& Tisak, 1990).

To demonstrate the problems with ceiling effects in longitudinal data, we

considered using the latent basis growth curve model, which is a relatively flex-

ible model in the growth curve modeling framework (Meredith & Tisak, 1990).

A form of the latent basis growth curve model is expressed in Equation (1). The

observed score yi t for i th individual at occasion t.t D 1; 2; : : : T / is regressed
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ANALYZING LONGITUDINAL CEILING DATA 479

on the latent random-effects parameters .b0i ; b1i/ by some basis coefficients or

shape parameters A.t/. Assigning A.t/ different values will lead to different

shapes of the change pattern. Let A.1/ D 0 and A.T / D 1, then b0i can be

explained as the individual initial level at Time 1 and b1i can be explained as

the individual change from Time 1 to Time T for person i (McArdle, 2004).

And A.t/.t D 2 : : : T � 1/ represents the free loading reflecting the proportion

of change between two timepoints relative to the total change occurring from

the first to the last timepoints. The fixed-effects parameter vector .ˇ0; ˇ1/ is

the initial level and change estimates for the “average person” in the sample.

The ˆ matrix represents the interindividual variation of the latent random-

effects parameter vector .b0i ; b1i/ and �2
t estimates the residual variance of

each occasion.

yi t D b0i C A.t/b1i C ei t

A.1/ D 0; A.T / D 1

b0i D ˇ0 C u0i

b1i D ˇ1 C u1i (1)

�

u0i

u1i

�

� N

��

0

0

�

; ˆ D
�

�00 �01

�10 �11

��

ei t � N.0; �2
t /

If there are no ceiling data in the longitudinal data, then yi t is the true observed

score. If ceiling effects exist in the longitudinal data, we can only observe the

ceiling threshold for the ceiling data, which may misrepresent the true scores of

those individuals.

In order to investigate the consequences of ceiling effects in longitudinal

data analysis, data were simulated based on a latent growth curve model. In

each simulated sample, data with N D 200 participants and T D 5 occasions

were simulated based on the following true parameter values. A.t/ was set to be

as (0,.25,.50,.75,1), which indicates a linear growth change pattern. The fixed-

effects parameter vector .ˇ0; ˇ1/ was set to be as (7.5, 5.0), ˆ matrix was set

to be as �00 D 22, �11 D 1:52, �01 D �10 D 0. �2
t was set to be as 12. The

correlation between initial level and change latent variables was set to be 0 to

have a clearer observation of the influences of ceiling data. These population

values were chosen partly based on the empirical data analysis results in a later

section and modified or simplified to make the results clearer. Five hundred

replications of data simulation and analysis were implemented.

The data without ceiling effects were first simulated based on the true model

described earlier. New data sets were then created by adding ceiling effects.
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480 WANG, ZHANG, MCARDLE, SALTHOUSE

TABLE 1

Ceiling Proportions at 5 Occasions With Different Ceiling Thresholds (CT)

Time

Range of the

True Scores CT D 15 CT D 14 CT D 13

Occasion 1 [�2.36, 16.38] 0.04% 0.18% 0.69%

Occasion 2 [�0.87, 18.76] 0.30% 1.04% 3.09%

Occasion 3 [�0.16, 19.98] 1.64% 4.42% 10.19%

Occasion 4 [0.71, 23.73] 6.64% 13.68% 24.30%

Occasion 5 [�0.14, 25.12] 17.61% 28.87% 42.63%

Because different proportions of ceiling data may have different magnitudes of

influences on parameter estimates, three ceiling thresholds (13, 14, and 15) were

used to manipulate different ceiling proportion conditions. For example, if the

ceiling threshold is 13, then individual scores larger than 13 in each occasion

were forced to be 13. The ceiling proportions with different ceiling thresholds

are displayed in Table 1. There are larger proportions of ceiling data in later

occasions than those in earlier occasions due to simulated increasing growth

trajectories. The ceiling proportions of the generated data in the fifth occasion

ranged from 18% to 43% based on different ceiling thresholds.

The sample mean and covariance matrix of the generated data with ceiling

thresholdsD 13 were compared with those true values (Table 2). Both the mean

vector and the covariance matrix were underestimated in most occasions. With

larger proportions of ceiling data, biases were larger. The maximum likelihood

TABLE 2

Sample Mean Vector and Covariance Matrix With Ceiling Threshold (CT) D 13

Compared With the True Values

True Values Without

Ceilings CT D 13

y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

Mean vector 7.5 8.8 10.0 11.3 12.5 7.5 8.7 9.9 10.9 11.7

Covariance matrix

y1 5.0 4.9

y2 4.0 5.2 3.9 4.9

y3 4.0 4.3 5.6 3.6 3.8 4.7

y4 4.0 4.4 4.8 6.3 3.0 3.3 3.5 4.0

y5 4.0 4.6 5.1 5.7 7.2 2.3 2.6 2.8 2.8 3.0

Note. The values in the sample mean vector and the covariance matrix are the average values

of the 500 replications.
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ANALYZING LONGITUDINAL CEILING DATA 481

estimation (MLE) is the most widely used method in estimating a growth

curve model (Fitzmaurice et al., 2004; Verbeke & Molenberghs, 2000). MLE,

especially in the structural equation modeling (SEM) framework, is based on

fitting the sample mean vector and sample covariance matrix to the model.

Thus, the parameter estimates could also be biased when regular MLE is applied

to analyze longitudinal ceiling data and the ceiling effects are not considered.

Table 3 displays the MLE results of fitting a latent basis growth curve model,

which freely estimates basis coefficient parameters A.2/, A.3/, and A.4/ to

allow us to quantify the amount of artifactual nonlinearity for the different

levels of ceiling data, to the generated data without considering ceiling effects.

Values in the second column are the parameter estimates for the simulated data

without ceilings and are consistent with the true values. Columns 3–5 display

the parameter estimates for data with different ceiling thresholds.

For the shape parameters A.t/, the true shape is linear (true A.t/ D 0, .25, .50,

.75, 1), but the estimated curve was biased to be nonlinear when ceiling effects

existed. For example, when ceiling threshold was set to be 13, the estimated A.t/

was equal to (0,.29, .57, .82, 1). For the fixed-effects parameters, the estimate of

the initial level parameter ˇ0 from the data with ceilings was consistent with the

true values because the ceiling proportion in the first occasion is relatively small

(less than 1%; see in Table 1). However, the estimate of the change parameter

ˇ1 was substantially underestimated. The true value of the covariance �01 of

the latent random-effects level and slope parameters is 0, which indicates that

the individual initial level is not correlated with the individual change over

TABLE 3

Regular Maximum Likelihood Estimation (MLE) Estimates of the Parameters From Fitting

a Latent Basis Growth Curve Model to the Simulated Data With or Without Ceilings

Parameters and

True Values

No

Ceilings CT D 15 CT D 14 CT D 13

A.2/ D 0:25 0.25 (0.02) 0.26 (0.02) 0.28 (0.02) 0.29 (0.02)

A.3/ D 0:50 0.50 (0.02) 0.53 (0.02) 0.55 (0.02) 0.57 (0.02)

A.4/ D 0:75 0.75 (0.02) 0.78 (0.02) 0.80 (0.02) 0.82 (0.02)

ˇ0 D 7:50 7.50 (0.16) 7.49 (0.16) 7.50 (0.16) 7.50 (0.16)

ˇ1 D 5:00 5.01 (0.14) 4.75 (0.13) 4.52 (0.12) 4.16 (0.12)

�00 D 4:00 4.00 (0.46) 4.27 (0.49) 4.40 (0.49) 4.51 (0.48)

�01 D 0:00 �0.01 (0.30) �0.67 (0.31) �1.13 (0.33) �1.71 (0.34)

�11 D 2:25 2.23 (0.39) 1.80 (0.33) 1.72 (0.31) 1.77 (0.31)

�2
D 1 0.99 (0.06) 0.96 (0.06) 0.92 (0.05) 0.86 (0.05)

Corr(b0i ; b1i ) D 0 0.00 (0.10) �0.24 (0.10) �0.41 (0.09) �0.60 (0.07)

Note. The values outside the parentheses are the means of the estimates from the 500

replications and the values inside the parentheses are the standard deviations of the estimates from

the 500 replications.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
t
r
e
 
D
a
m
e
]
 
A
t
:
 
1
6
:
5
2
 
1
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



482 WANG, ZHANG, MCARDLE, SALTHOUSE

TABLE 4

Results of the Model Selections for the Simulated Data With and Without Ceilings

�2 Difference

(Linear vs. Quadratic)

Conditions Mean Minimum Maximum

Correct Selection

Proportion

No ceiling 3.95 0.07 15.82 95.4%

CT D 15 12.73 1.05 39.20 34.2%

CT D 14 25.04 4.77 55.34 2.2%

CT D 13 45.88 14.39 82.92 0%

Note. Difference in degrees of freedom D 4. �2(0.95, 4) D 9.49; �2(0.99, 4) D 13.28.

time. However, the estimated value was significantly less than 0 in three ceiling

threshold conditions, which incorrectly implies that the initial level is negatively

correlated with the change over time. In other words, when an individual has a

higher initial level, the individual tends to have a smaller slope. Certainly, this

bias could make the interpretation of the results very misleading.

To further evaluate the artifactual nonlinearity consequences from the model

selection perspective, two comparative models were fitted on the generated data

to examine whether the true model can be correctly selected or not. The true

model is a linear growth curve model and the alternative model is a quadratic

growth curve model. Likelihood ratio tests were used to select a better fitted

model from these two nested models. Table 4 displays the model selection results

from the 500 replications with mean chi-square difference (chi-square value of

the linear model minus chi-square value of the quadratic model), minimum and

maximum chi-square difference, and the correct model selection proportion. For

the data without ceilings, the likelihood ratio test can successfully select the

true model with a proportion of 95.4%. However, when there are ceiling data

in the longitudinal data, the correct selection proportion rapidly decreased to

almost 0%. For example, for the data with ceiling threshold D 13, among the

500 replications, the minimum chi-square difference was 14.39. With the degree

of freedom difference of 4, we always concluded that the quadratic model fitted

the data relatively better than the linear model for all 500 replications.

COMPARISON OF METHODS IN DEALING WITH

LONGITUDINAL CEILING DATA

In this section, we investigate three possible methods to deal with longitudinal

data including deleting ceiling cases, considering ceiling cases as missing data,

and Tobit growth curve modeling.
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ANALYZING LONGITUDINAL CEILING DATA 483

Listwise Deleting

Listwise deleting is a simple and easily implemented method. If a case has

ceiling data, then the whole case is deleted. Intuitively, it can avoid the ceiling

effects because the new data set no longer has any observations at ceiling. How-

ever, an obvious disadvantage of this method is the loss of data and shrinkage of

sample size. Furthermore, in longitudinal studies, ceiling effects always happen

more frequently for high-scoring participants than for low-scoring participants.

By deleting ceiling cases, one will lose more high-scoring participants than

low-scoring participants. To numerically evaluate the influences of the listwise

deleting method, the generated ceiling data in the previous section were analyzed

again by deleting the cases with ceiling data. The results are provided online

at http://www.cdhrm.org/upload/Ceiling_Tables.pdf. Overall, the estimates were

still biased. Compared with the results in Table 3, the estimates of shape pa-

rameters A.t/ and the covariance parameters �01 were less biased. However, the

estimates of the fixed initial level parameter ˇ0 were more biased due to deleting

some high-scoring participants.

Considering Ceiling Data as Missing Data

Another possible way to deal with ceiling data is to consider ceiling data as

missing data. A datum can be considered missing when it reaches the ceiling

threshold. It is widely known that there are three kinds of missing data patterns:

missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR; Fitzmaurice et al., 2004; Little & Rubin, 1987; Rubin,

1976). When we treat ceiling data as missing data, the missing data pattern

is neither MCAR nor MAR and belongs to the MNAR pattern because the

incompleteness at the current occasion is related to the ceiling data at the

current occasion (only the observed data at the ceiling threshold are considered

missing data). If we apply regular methods dealing with missing data such

as the expectation-maximization (EM) algorithm or multiple imputations to

analyze ceiling data as missing data, the parameter estimation may still have

problems. To illustrate, we analyzed the generated ceiling data using the EM

algorithm implemented in the Mplus program. The results are provided online

at http://www.cdhrm.org/upload/Ceiling_Tables.pdf. Clearly, the parameter es-

timates were still biased. The results were similar to the results in Table 3,

although the estimates of the covariance parameter �01 improved a little bit.

Tobit Growth Curve Model/Hierarchical Tobit Model

Here we propose to use Tobit growth curve model to analyze longitudinal ceiling

data. Tobit regression (also called censored regression) was first proposed by
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484 WANG, ZHANG, MCARDLE, SALTHOUSE

Tobin (1958) to analyze limited dependent variables in econometrics. Tobit

regression model can be modified to analyze cross-sectional ceiling data. Tobit

regression for the dependent variable with ceilings at one timepoint is given in

Equation (2):

y�

i D ˇ0Xi C ei

yi D y�

i ; for y�

i < c

yi D c; for y�

i >D c

ei � N.0; �2/

(2)

In this model, the observed dependent variable yi .i D 1; : : : ; n/ satisfies

yi D min.y�

i ; c/, where the true dependent variable y�

i is a latent variable

generated by y�

i D ˇ0Xi C ei . The observed yi does not satisfy the model when

y�

i >D c because the observed yi is constrained to be equal to the ceiling

threshold. The residuals ei is assumed to be independent and have a normal

distribution of N.0; �2/ conditional on the covariates Xi . The log-likelihood

function for this Tobit model is

l.ˇ; �/ D
n

X

iD1

lnŒg.yi jXi ; ˇ; �/�

D
n

X

iD1

lnŒI.yi < c/f ..yi � ˇ0Xi /=�/=�

C I.yi D c/.1 � F..c � ˇ0Xi /=�//�

D
n

X

iD1

ŒI.yi < c/.�1=2.yi � ˇ0Xi /
2=�2 � ln.�/ � ln.

p
2�//

C I.yi D c/ ln.1 � F..c � ˇ0Xi /=�//�

where I(.) is an indicator function with I(true) D 1 and I(false) D 0, f(.) is the

standard normal density function, and F(.) is the cumulative normal distribution

function. When the observed data yi are less than the ceiling threshold, the

likelihood function of this data point comes from the normal density function

f ..yi � ˇ0Xi /=�/=� based on the regression equation. When the observed data

yi is equal to the ceiling threshold, the likelihood function comes from the

survival function of yi (1-cumulative normal distribution function) because the

information we have about this observed data point is that the true score is larger
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ANALYZING LONGITUDINAL CEILING DATA 485

than or equal to ceiling threshold. If there are no ceilings in the data, then the

log-likelihood function is reduced to

l.ˇ; �/ D
n

X

iD1

lnŒg.yi jXi ; ˇ; �/� D
n

X

iD1

lnŒf ..yi � ˇ0Xi /=�/=��;

which is the log-likelihood function for the regular regression analysis. The log-

likelihood values can be iteratively maximized and the parameter estimates can

be obtained easily. This model can be used to deal with ceiling effects at one

timepoint and this model has been extended to analyze censored data in factor

analysis (Muthen, 1989).

The Tobit model can be extended to the hierarchical Tobit model to analyze

longitudinal data or nested data (Cowles, Carlin, & Connett, 1996; Hajivassiliou,

1994; Kyriazidou, 1997). Expressed in terms of growth curve modeling and

dealing with longitudinal ceiling data, the hierarchical Tobit model can be

expressed by replacing the growth function in the Equation (1) with

y�

i t D b0i C A.t/b1i C ei t

yi t D y�

i t ; for y�

i t < c;

yi t D c; for y�

i t >D c

(3)

where y�

i t is the true score of i th participants at t th occasion, yi t is the observed

score, and c is the ceiling threshold. The path diagram of this model is portrayed

in Figure 1. In Figure 1, the latent initial level and change parameters, the

repeated true scores, and the measurement errors are represented by circles. The

repeated observed scores are represented by squares. The constants including

the ceiling threshold are represented by triangles (McArdle, 2005). The r1i t and

r2i t are two time-varying random-effects parameters expressed by two indicator

functions: r1i t D I.y�

i t < C/, r2i t D I.y�

i t >D C/, where r1i t C r2i t D 1 for a

given i and t . Here we name this model the Tobit growth curve model.

For the Tobit growth curve model, the conditional likelihood of the model can

be specified as follows: If y�

i t < c or yi t < c, then yi t � N.b0i C A.t/b1i ; �2
t /;

if y�

i t � c or yi t D c, then yi t � N.y�

i t ; �2
t / & y�

i t � c. That is,

L1 D L.A.t/; �t jb0i ; b1i/ D
Y

i;t

g.yi t jA.t/; �t ; b0i ; b1i/

D
Y

yit <c

.f ..yi t � b0i � A.t/b1i /=�t /=�t /
Y

yit Dc

.1 � F..c � b0i �A.t/b1i /=�t //:
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486 WANG, ZHANG, MCARDLE, SALTHOUSE

FIGURE 1 Path diagram of a Tobit growth curve model.

The random-effects parameters .b0i ; b1i/ are usually assumed to have a multi-

variate distribution MVN
��

ˇ0

ˇ1

�

; ˆ
�

. Then the likelihood for the random-effects

parameters can be written as L2 D
Qn

iD1 MVN.ˇ; ˆ/. Therefore, the full

likelihood function is L D L1 � L2.

In estimating the Tobit growth curve model, both MLE and Bayesian method

(Austin, 2002; Chib, 1992; Cowles et al., 1996) can be used in estimating

the parameters. In terms of programs and software, some structural equation

modeling software such as Mplus and LISREL can be used with censored

outcome specifications and SAS NLMIXED can also be used to estimate the

parameters with specified likelihood function. Because the focus of this study is

not estimation methods but analytical models, we used only Bayesian estimation

to estimate the parameters in this article. Interested readers can find Mplus codes

and simulation results from MLE method at http://www.cdhrm.org/upload/ML_

tobit_results.pdf
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To use Bayesian method, we need to specify prior distributions for the

parameters. The prior distributions were specified as follows:

A.t/ N.0; 1:0C 6E/

ˇ0  N.0; 1:0C 6E/

ˇ1  N.0; 1:0C 6E/

�2  IGamma.0:001; 0:001/

ˆ IW ishart

��

1 0

0 1

�

; 2

�

:

All of the prior distributions are noninformative priors (Congdon, 2001,

2003). The Bayesian estimation procedure was conducted in a free program

of WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2003) and the WinBUGS

code is contained in Appendix A (interested readers can also find the WinBUGS

code for a regular growth curve model in Appendix B).

The results from fitting the Bayesian Tobit growth curve model on the gen-

erated ceiling data are displayed in Table 5. The results show that all of the

parameters in the growth curve models can be recovered well by the Tobit

growth curve modeling approach regardless of different ceiling proportions in

the data. With larger ceiling proportions, the standard errors of the estimates

became a little bit larger than the true standard errors.

TABLE 5

Results of Fitting the Tobit Growth Curve Model to the Simulated Data With Ceilings

Parameters and

True Values

No

Ceiling CT D 15 CT D 14 CT D 13

A.2/ D 0:25 0.25 (0.02) 0.25 (0.02) 0.25 (0.02) 0.25 (0.02)

A.3/ D 0:50 0.50 (0.02) 0.50 (0.02) 0.50 (0.02) 0.50 (0.02)

A.4/ D 0:75 0.75 (0.02) 0.75 (0.02) 0.75 (0.02) 0.75 (0.02)

ˇ0 D 7:50 7.50 (0.16) 7.50 (0.16) 7.50 (0.16) 7.50 (0.16)

ˇ1 D 5:00 5.01 (0.14) 5.00 (0.14) 5.00 (0.15) 5.00 (0.16)

�00 D 4:00 4.00 (0.46) 4.01 (0.47) 4.01 (0.47) 4.01 (0.47)

�01 D 0:00 -0.01 (0.30) 0.04 (0.33) 0.04 (0.34) 0.07 (0.36)

�11 D 2:25 2.23 (0.39) 2.17 (0.43) 2.17 (0.45) 2.16 (0.47)

�2
D 1 0.99 (0.06) 1.01 (0.06) 1.01 (0.06) 1.01 (0.06)

Corr(b0i ; b1i ) D 0 0.00 (0.10) 0.02 (0.11) 0.02 (0.12) 0.03 (0.13)

Note. The values outside the parentheses are the means of the estimates from the 500

replications and the values inside the parentheses are the standard deviations of the estimates from

the 500 replications.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
t
r
e
 
D
a
m
e
]
 
A
t
:
 
1
6
:
5
2
 
1
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



488 WANG, ZHANG, MCARDLE, SALTHOUSE

AN EMPIRICAL STUDY

In this section, an empirical data set was used to demonstrate the influences of

ceiling effects and the application of the Bayesian Tobit growth curve model in

real longitudinal data analysis. The empirical data examined here were collected

by Salthouse and his colleagues (Salthouse, 2004). Participants .N D 608/ aged

19 to 97 were measured on the Wechsler Memory Scale III Word Lists subtest

across three separate sessions. On each session a list of 12 unrelated words was

presented to the participants followed immediately by an attempt to recall as

many of the words as possible. This procedure was repeated four times with the

same words in the same order. In this study, only the Session 1 data were used.

Figure 2 displays the individuals’ growth curves over the four trials across three

groups in the first session. Because of the wide age range, we divided the total

sample into three age groups (younger adult group: 19–39, N D 135; middle-

age adult group: 40–59, N D 236; and older adult group: 60–97, N D 237) as

in Zhang, Davis, Salthouse, and Tucker-Drob (2007) and compared the results

among these three groups.

Table 6 displays the descriptive statistics (means and standard deviations) and

different ceiling proportions across four trials and three age groups. Forty-four

percent of the younger adults reached ceiling in the fourth trial, and only 16%

of the older adults reached ceiling in the fourth trial. Therefore, different age

groups have substantially different ceiling proportions. For group means, the

younger adult group obtained higher scores than the middle-age adult group

and the older adult group across all trials. For the group variation (standard

deviation), the older adult group had more variation than the middle-age adult

group and the younger adult group.

Both the regular growth curve model (Equation 1) and the Bayesian Tobit

growth curve model (Equation 3) were fitted to the data for each age group. The

main results of the analysis are given in Table 7. From the regular growth curve

analysis (ignoring the ceiling effects), the younger age group showed the least

average change .ˇ1/ among three groups. The correlations between the latent

initial levels and the latent change were significantly negative for the younger

adult group and the middle-age adult group but statistically uncorrelated for

the older adult group. When Tobit growth curve model was used, some of the

results became very different. The younger age group showed the most average

change among these three groups. The correlations between the latent initial

levels and the latent change were not significantly different from 0 for all three

groups, which means that the latent initial level and change variables were two

statistically uncorrelated constructs. Intuitively, the results from the Tobit growth

model are more reasonable, based on the similar comparison in the previous

section.
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FIGURE 2 Individual growth curves of Wechsler Memory Scale III Word Lists subtest

scores.
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TABLE 6

Descriptive Statistics of the Memory Scores Across 4 Trials and 3 Age Groups

Ceiling Proportion M(SD)

Age

Group A1 A2 A3 A4 A1 A2 A3 A4

19–39 1% 14% 36% 44% 7.31 9.59 10.64 10.89

(1.81) (1.79) (1.47) (1.36)

40–59 0% 7% 23% 31% 6.58 8.96 10.11 10.44

(1.79) (1.85) (1.65) (1.47)

60–97 0% 3% 7% 16% 5.64 7.81 8.82 9.46

(1.80) (2.02) (2.02) (1.96)

Note. The values inside the parentheses are the standard deviations of each cell. A1: first trial;

A2: second trial; A3: third trial; A4: fourth trial.

TABLE 7

Results of the Tobit Growth Curve Model Fitted

to the Empirical Grouped Data

Parameter

Younger

19 to 39

Estimate (SE)

Middle-Age

40 to 59

Estimate (SE)

Older

60 to 97

Estimate (SE)

Regular growth curve analysis

A(2) 0.64 (0.03) 0.61 (0.02) 0.57 (0.02)

A(3) 0.94 (0.02) 0.91 (0.02) 0.84 (0.02)

ˇ0 7.31 (0.16) 6.59 (0.12) 5.64 (0.12)

ˇ1 3.57 (0.14) 3.87 (0.11) 3.81 (0.11)

�00 2.90 (0.56) 3.08 (0.46) 2.63 (0.38)

�01 �1.53 (0.52) �1.68 (0.44) �0.46 (0.35)

�11 1.73 (0.55) 1.87 (0.48) 1.55 (0.42)

Tobit growth curve model

A(2) 0.57 (0.03) 0.57 (0.02) 0.55 (0.02)

A(3) 0.90 (0.04) 0.88 (0.03) 0.82 (0.02)

ˇ0 7.32 (0.16) 6.60 (0.12) 5.64 (0.11)

ˇ1 4.30 (0.20) 4.25 (0.13) 3.96 (0.13)

�00 2.61 (0.54) 2.87 (0.48) 2.42 (0.39)

�01 �0.10 (0.55) �0.89 (�0.50) 0.06 (0.40)

�11 1.49 (0.69) 1.70 (0.59) 1.41 (0.54)
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DISCUSSION

In this study, influences of ceiling effects in longitudinal data analysis were

investigated through both Monte Carlo simulation studies and an empirical

longitudinal study. From the simulation studies, we found that ceiling effects

in longitudinal data resulted in incorrect model selection and biased parameter

estimation and thus wrong interpretation of parameters and models. The mag-

nitude of the biases was positively related to the proportion of the ceiling data

in the data set. From the empirical data analysis, it was further found that when

the ceiling effects were ignored, this could lead to some very misleading results,

especially when comparing multiple groups that had different proportions of

ceiling data. For example, when ceiling effects were ignored, the younger adult

group showed the least change scores compared with the other two groups.

This result could lead to the misleading conclusion that the younger adults have

lower learning ability than older adults. Furthermore, when ceiling effects were

ignored, negative correlations were found between latent initial levels and change

parameters for younger adult group and middle-age adult group, which was also

misleading for understanding the two statistically uncorrelated latent constructs

(Jones et al., 2005).

From our simulations, even 18% of the participants reaching ceiling at one

occasion (ceiling threshold D 15) could lead to some problems in longitudinal

data analysis. Therefore, it is important to detect potential ceiling data before

doing longitudinal data analysis. To detect ceiling data, a longitudinal plot of

the data could help us to visually check if there is a substantial proportion of

participants who obtained maximum scores. Frequency table of the maximum

scores across occasions is quantitatively helpful. For growth curve modeling,

researchers could also try to use both the regular growth curve method and the

Tobit growth curve model to analyze the data. If the percentage of the participants

reaching ceiling at one occasion is larger than 20% or there are some important

discrepancies between the parameter estimates from two methods, researchers

should be cautious about the influences of ceiling effects in the data.

Three possible methods were investigated to deal with longitudinal ceiling

data in the growth curve modeling framework. The simulation results showed

that Tobit growth curve models can be used to fit longitudinal ceiling data

and recover the true parameters very well. This was because Tobit growth curve

models made best use of ceiling data information, which refers to the information

that true scores are larger than or equal to the ceiling threshold for the ceiling

data. First, when ceiling effects were ignored, there were biases in the parameter

estimates because the ceiling data were incorrectly treated as true ability scores

in data analysis. Second, when ceiling data cases were deleted from the data

analysis or considered missing data, the ceiling data information was not used at

all. Finally, Tobit growth curve models effectively used all available information
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in analyzing the data. Although ceiling data may not reflect the true extent

of ability, there is some important though limited information we can use to

estimate the parameters.

Although the Tobit growth curve model performed well in both the simulation

study and empirical study, we want to emphasize the important assumptions of

this model. First, the distribution of the true scores at each occasion is assumed

to have a specified distribution form such as a normal distribution in the model.

If the distribution specified in the model is different from the distribution of the

true scores from the empirical variable, the model could fail. For example, if the

distribution in the model is normal and the distribution of the true scores from the

empirical variable such as response time variable is log-normal or Weibull, then

the estimates could be biased because the limited information from the ceiling

data will be incorrectly used in the parameter estimation. In this case, we need to

modify the normal Tobit growth curve model to a nonnormal Tobit growth curve

model to analyze nonnormal response variables. For example, we can assume

the response time variable has a Weibull distribution. Then in Equation (3), we

only need to change the normal density function and the normal cumulative

function to Weibull density function and Weibull cumulative function. Second,

the ceiling threshold is assumed to be known in the model. This assumption is

often easy to obtain when the ceiling effects happen in the measurement testing

situations because researchers know the maximum scores of the tests and can

set the maximum scores as ceiling thresholds.

Ceiling effects were the main focus of this study. However, floor effects

can be dealt with in very similar ways. Floor effects occur when the tests are

too difficult, such that some low-scoring participants cannot answer any item

correctly and the scores stay on the floor, which is similar to the concept of left

censoring. For example, floor effects were also observed in the Paced Visual

Serial Addition Task after several repeated sessions (Feinstein, Brown, & Ron,

1994).The Tobit model and the Tobit growth curve model can also deal with

floor effects in a similar way only with a little modification.

In summary, ignoring ceiling effects leads to biased parameter estimates,

wrong interpretation of the relations among the random-effects parameters,

and incorrect model selection. It is therefore important for researchers to pay

attention to the ceiling effects in longitudinal data analysis and find ways to

deal with them. When developing a new test or measurement scale, one should

try to discover the true extent of participants’ potentials to avoid ceiling effects.

However, when analyzing existing data with ceiling effects, one needs to detect

them and employ alternative methods to deal with ceiling effects. Our results

suggest an alternative method to a regular growth curve model for analyzing

longitudinal ceiling data. One of the strengths of the approach is the accuracy

and flexibility. This permits accurate modeling of intraindividual difference and

interindividual differences for longitudinal ceiling data.
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APPENDIX A

WinBUGS Scripts for a Tobit Growth Curve Model

model;
{

for( i in 1 : nsubj ) {
for( j in 1 : ntime ) {

lower.lim[i, j] <- cutoff * temp[i,j]

+ lowerLIM * (1-temp[i,j])
y[i , j] ~ dnorm(mu[i, j], tauy)I(lower.lim[i,j], )

}

}

for (i in 1:nsubj)
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{

mu[i , 1] <- b[i,1]

mu[i , 2] <- b[i,1]+A2*b[i,2]
mu[i , 3] <- b[i,1]+A3*b[i,2]

mu[i , 4] <- b[i,1]+A4*b[i,2]

mu[i , 5] <- b[i,1]+b[i,2]
b[i,1:2] ~ dmnorm(mub[1:2], taub[1:2,1:2])

}

A2~dnorm(0,1.0E-6)

A3~dnorm(0,1.0E-6)

A4~dnorm(0,1.0E-6)

tauy ~ dgamma(0.001,0.001)

mub[1]~dnorm(0,1.0E-6)

mub[2]~dnorm(0,1.0E-6)

taub[1:2, 1:2] ~ dwish(R[1:2, 1:2], 2)

sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
sigma2y <- 1 / tauy

pho<-sigma2b[1,2]/sqrt(sigma2b[1,1]*sigma2b[2,2])

}

list( nsubj=200, ntime=5, cutoff=13,lowerLIM=-100, R=structure

(.Data=c(1,0,0,1),.Dim=c(2,2)),
y = structure(.Data = c( 6.79, 7.71, 11.3, 9.54, 8.24, 6.74,

7.67, 10.53, 9.6, 12.33, 6.85, 7.38, 10.25, NA, 9.38, 8.77,

12.29, 12.49, NA, 11.45, 7.25, 10.84, 8.17, 8.33, 9.82, 10.25,
9.51, 8.73, NA, 9.45, 9.17, 9.16, 10.9,.....)),

temp=structure(.Data = c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
....)))

APPENDIX B

WinBUGS Scripts for a Regular Growth Curve Model

model;
{

for( i in 1 : nsubj ) {

for( j in 1 : ntime ) {
y[i , j] ~ dnorm(mu[i, j], tauy)

}

}
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for (i in 1:nsubj)

{

mu[i , 1] <- b[i,1]
mu[i , 2] <- b[i,1]+A2*b[i,2]

mu[i , 3] <- b[i,1]+A3*b[i,2]

mu[i , 4] <- b[i,1]+A4*b[i,2]
mu[i , 5] <- b[i,1]+b[i,2]

b[i,1:2] ~ dmnorm(mub[1:2], taub[1:2,1:2])

}

A2~dnorm(0,1.0E-6)

A3~dnorm(0,1.0E-6)
A4~dnorm(0,1.0E-6)

tauy ~ dgamma(0.001,0.001)

mub[1]~dnorm(0,1.0E-6)

mub[2]~dnorm(0,1.0E-6)

taub[1:2, 1:2] ~ dwish(R[1:2, 1:2], 2)

sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])

sigma2y <- 1 / tauy

pho<-sigma2b[1,2]/sqrt(sigma2b[1,1]*sigma2b[2,2])
}

list( nsubj=200, ntime=5, R=structure(.Data=c(1,0,0,1),
.Dim=c(2,2)),

y = structure(.Data = c( 6.79, 7.71, 11.3, 9.54, 8.24,

6.74, 7.67, 10.53, 9.6, 12.33, 6.85, 7.38, 10.25, 13,
9.38, 8.77, 12.29, 12.49, 13, 11.45, 7.25, 10.84, 8.17,

8.33, 9.82, 10.25, 9.51, 8.73, 13, 9.45, 9.17, 9.16, 10.9,

.....)))
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