
Labeled Images Verification Using Gaussian Mixture
Models

Micheal Baechler
University of Fribourg

Department of Informatics
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ABSTRACT
We are proposing in this paper an automated system to
verify that images are correctly associated to labels. The
novelty of the system is in the use of Gaussian Mixture
Models (GMMs) as statistical modeling scheme as well as
in several improvements introduced specifically for the ver-
ification task. Our approach is evaluated using the Cal-
tech 101 database. Starting from an initial baseline system
providing an equal error rate of 27.4%, we show that the
rate of errors can be reduced down to 13% by introducing
several optimizations of the system. The advantage of the
approach lies in the fact that basically any object can be
generically and blindly modeled with limited supervision. A
potential target application could be a post-filtering of im-
ages returned by search engines to prune out or reorder less
relevant images.

Categories and Subject Descriptors
I.5.2 [PATTERN RECOGNITION]: Design Methodol-
ogy—Feature evaluation and selection, Pattern analysis.

General Terms
Algorithms, Design, Experimentation.

Keywords
Image Processing, Gaussian Mixture Model, Likelihood Ra-
tio Detector.

1. INTRODUCTION
Automatic recognition of objects in images is a task that

has been widely studied in the past decades. Applications
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are numerous in different fields such as medical image analy-
sis, supply/processing chain supervision or traffic control [9,
4, 10]. Generally speaking, a recognition task can be in
identification or verification mode. In identification mode,
the system answers the following question: which object
amongst a set of N objects is present in a given image (1:N
classification). In verification mode, the system verify the
presence of a claimed object, then answering a yes/no ques-
tion (1:2 classification).

In our work, we are interested in improving the perfor-
mances of web image search engines using image modeling
methodologies. Usually the images that are returned by im-
ages search services correspond loosely to the entered key-
word. We performed experiments on a dozen keywords using
publicly available indexation services and we roughly mea-
sured that the quantity of unrelevant images can be as high
as 50%. The reason for such bad performances is proba-
bly linked to the fact that these services use only the text
surrounding the image to build the indexation tables.

To improve this situation, we are proposing to use a post-
filtering method applied to the set of images returned by
the search engine. The filtering is based on the real content
of the image by computing a matching score between the
image and a model associated to the keyword. The system
is therefore performing a verification for each image returned
by the search engine, answering a yes/no question about the
matching of the image with the keyword used for the search.
In our approach, this keyword is supposed to indicate an
object or a pattern that is present in the image. We also
make the assumption that a set of T images is available
for training our models. The learning phase is therefore
supervised, but we keep as target to use technologies that
could potentially be used in an unsupervised manner.

The novelty of our approach is in the use and improve-
ment of a generic system based on Gaussian Mixture Mod-
els (GMM) that are used to compute the likelihood value of
a set of observations given a model (associated to the key-
word). Such models are versatile and have been proposed in
several pattern recognition tasks such as speech, handwrit-
ing, biometrics and even image recognition [14, 7, 1]. The
GMMs are fed by a feature extraction module computing
Discrete Cosine Transform features using a sliding window
on top of the image. More specifically, we are proposing
in this paper several improvements that are specific to the
post-filtering task explained above.

This paper is organized as follows. In Section 2, an overview



of several approaches of detection and recognition of objects
in image is given. Section 3 describes the fundamental prin-
ciples of our feature extraction and modeling scheme. We
present in section 4 the database and the protocol which
are used to evaluate our system. Section 5 presents several
improvements that are specific to the task of automatic in-
dexation of images. Finally, conclusions and future work are
presented.

2. RELATED WORK
Automatic recognition of objects in images is a task that

has been widely studied in the past and the applications
are numerous. We are interested here in modelling schemes
that are generic, i.e., that are not specific to a given shape,
illumination and size of object in an image. In this direc-
tion, several machine learning methods have already been
proposed and studied.

Some approaches are based on the automatic detection of
spatial configuration of local features [13]. The configura-
tions that are occurring frequently on the object are retained
to build the model. This approach can be actually seen as
an intermediate processing layer able to filter out the large
amount of features and hence to facilitate the recognition
task.

The recognition in itself can be performed using well known
pattern matching algorithms such as Artificial Neural Net-
works (ANN), K-nearest neighbors (KNN), Support Vector
Machines (SVM) [11, 3, 2]. Hybrid approaches have also
been proposed to take advantages of the strengths of differ-
ent approaches. For example, in [18], a hybrid approach is
proposed where a KNN system is used as a first step be-
fore feeding a more precise SVM system. The benefit of
this approach is to reduce the time needed for a classifica-
tion. Some other approaches are specifically crafted to learn
models from few training images using, as prior information,
models previously learnt [6].

The use of GMMs has been extensively studied in some
pattern recognition tasks, such as in speaker recognition [14]
and signature modelling [7]. Quite closely related to our ap-
plication, GMMs have also been proposed for face verifica-
tion systems [1].

3. SYSTEM DESCRIPTION
The general functioning of our system is illustrated in

Fig. 1. It is composed of two distinct phases: the train-
ing (A) and testing (B) phases. The training phase aims at
computing the different models that are going to be associ-
ated to the respective keywords. The training is supervised
and, for a given keyword, the subset of corresponding images
is selected from the database to train the model. The testing
phase allows us to evaluate the effectiveness of the approach
by performing the verification on a set of unseen images.
The system is tested on a set of true images where the la-
bel corresponds effectively to the content of the image. We
also test the ability of the system to reject incorrect images
where the claimed label does not correspond to the content
of the image. Training and testing phases share the same
frontend composed of a preprocessing step used to normal-
ize the images and a feature extraction block that transform
the image into a set of features adequate for classification.
The last block implements the GMMs training and testing.

Figure 1: Training (A) and testing (B) phases.

3.1 Preprocessing
As our system is supposed to work on any images indexed

on the web, the objective of the preprocessing step is to ho-
mogenize some basic characteristics. First, the size of the
image is normalized to a constant value of 200 × 200 pix-
els. The value of 200 pixels has been chosen to keep the
CPU load in acceptable ranges while conserving most of the
visual information about the objects that are modeled. Sec-
ond, the image is converted into gray scale coded on 8 bits.
While the loss of colors is a loss of information, this conver-
sion makes the system compatible with all input images and
reduce the feature variabilities (hence reducing the needs of
larger training set). Working in gray-scale is also a way to
reduce the CPU load. Finally, a histogram normalization is
performed to reduce the impact of intensity and illumination
variation.

3.2 Feature Extraction

Figure 2: Decomposition in sub images.

The first step of our feature extraction block is to decom-
pose the image in a set of smaller overlapping sub images
by sliding a window in the X and Y directions. We used
a sliding window of P × P pixels shifted of P/2 pixels and,
in most of our experiments, we set P = 16. This decompo-
sition is illustrated in Fig. 2. The next step is to compute
Discrete Cosine Transform (DCT) coefficients on each sub
image. Given a sub image f(x, y), a transformation in terms
of orthogonal basis function is applied:

C(u, v) = α(v) ∗ α(u)

P−1X
y=0

P−1X
x=0

f(y, x) ∗ β(y, x, v, u)

for u, v = 0, . . . , P − 1 and where
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The DCT is actually used to express a sequence of data

as a sum of cosine functions oscillating at different frequen-
cies. Fig. 3 (left) illustrates the basis functions β(y, x, v, u).
The DCT matrix is then flattened in a vector by ordering
the coefficients according to a zig-zag scheme illustrated in
Fig. 3 (right). The M first coefficients are kept to obtain
the vector xn = (cn0 , c

n
1 , . . . , c

n
M−1) where n represents the

index of the sub image in the set of N sub images. The DCT
is well suited as feature extraction for image recognition as
it allows measuring and distinguishing periodical patterns
in images. The DCT is also widely used in signal process-
ing to compress sequences of information as, for example, in
JPEG [17]. A drawback of the DCT lies in its sensitivity
to variations of illuminations, at least in the first DCT co-
efficients. To reduce this sensitivity, we use the DCTmod2
which is a modified version of DCT where the first coeffi-
cients are replaced by differential values computed on the
adjacent X and Y windows as explained in [16, 15].

Figure 3: DCT basis functions and zig-zag pattern

3.3 Modeling by GMM
As result of the feature extraction, an input image is

then represented by a sequence of DCTmod2 vectors X =
{x1, . . . , xN}. For a given image category c, our objective is
to build a statistical model λc able to estimate the probabil-
ity density function or likelihood of each sub image p(xi|λc).
This can be achieved using GMMs where the likelihood is
estimated as a weighted sum of multivariate Gaussian den-
sities (see e.g. [14, 16]):

p(xn|λc) =

IX
i=1

wiN (xn, µi,Σi)

in which I is the number of mixtures, wi is the weight for
mixture i and the Gaussian densities N are parameterized
by a M × 1 mean vector µi, and a M ×M covariance ma-
trix Σi. The mixture weights wi also satisfy the constraintPI

i=1 wi = 1.
To reduce the CPU load (and also the number of param-

eters), we make the hypothesis that the DCT coefficients
are uncorrelated which allows us to use diagonal covariance
matrices. By making the hypothesis of sub image indepen-
dence, the global likelihood score for X = {x1, . . . , xN} is
simply computed with a product of the likelihoods:

Sc = p(X|λc) =

NY
n=1

p(xn|λc)

We also compute the likelihood score Sw of the hypothe-
sis that X is not from the given category using a so-called
world model λw trained by pooling a large number of images
of unrelated categories. The likelihood Sw is computed in
a similar way, by using a weighted sum of Gaussian mix-
tures. The optimal decision whether to reject or to accept
the claimed belonging to a category is performed comparing
the ratio of both scores Sc and Sw against a global threshold
value θ. The ratio is often computed in the log-domain to
handle the computation with very small numbers:

Rc = log(Sc)− log(Sw)

The training of the world models λw is performed with the
Expectation-Maximization (EM) algorithm [12] that itera-
tively refines the component weights, means and variances
to monotonically increase the likelihood of the training fea-
ture vectors. We also apply a simple binary splitting pro-
cedure to increase the number of Gaussian components to
a predefined value. The training of the category model λc

is performed by adapting the world model parameters λw

using the Maximum A Posteriori algorithm [14].
The verification decision is then taken according to :(

X contains object category c, if Rc ≥ θ
X does not contain object category c, if Rc < θ

4. EVALUATION PROTOCOL AND IMAGE
COLLECTION

All experiments have been performed on the database
Caltech 101 [6, 5]. It is a data set containing 9,144 im-
ages spread into 101 different object categories, plus a back-
ground category. Every category contains from 40 to 800
images and most objects are centered in the foreground area
and are in a stereotypical pose. These images were collected
via the internet service Google image search. As illustrated
in Fig. 4, Caltech 101 also defines for each image the re-
gion of interest which is a more precise location of the ob-
ject within the images. We actually compared the impact
of modeling only the region of interest versus modeling the
whole images in our evaluations. As the definitions of region
of interests are only available for 98 categories, we limited
ourselves to the use of these 98 categories.

Figure 4: Sample image from Caltech 101.

All our experiments are performed using the same evalu-
ation protocol on Caltech 101. An evaluation batch is ac-
tually composed of 10 independent evaluations using differ-
ent partitions of the data set. For each partition, we choose



randomly two sets of images from each object category. The
first one is used as training set and the second one as set of
relevant test images. A set of non-relevant images is built by
randomly choosing images from the other categories. Fig. 5
illustrates schematically the constitution of training and test
sets for the evaluation of category 1. An equal number of
images is used for training the models of each category and,
as explained below, we varied this number from 5 to 30 to
see the impact of having more training data. During test-
ing, the system can make two types of error. We measure a
percentage of false rejection (FR) by counting the number
of relevant images falsely rejected. A percentage of false ac-
ceptation (FA) is also measured by counting the amount of
non-relevant images incorrectly accepted. These rates are
actually varying as a function of the rejection threshold θ.
A specific value of θ is leading to equal values of FR and
FA, which is the definition of the so-called Equal Error Rate
(EER) for detection tasks. For all our experiments, we used
the EER as operating point. As we use 10 partitions of the
data set, the EER for a given category is computed as the
average of the 10 EER obtained with the partitions.

Figure 5: evaluation protocol on caltech 101

5. EXPERIMENTS
As a general strategy, we compared different approaches

by varying a single parameter and explored systematically
the impact of this parameter. Many different experiments
were performed and we present here a summary of the most
significant optimization and improvements. We started from
a baseline system with 128 Gaussians trained using 10 im-
ages for each category and using only the region of interest
defined in the annotation files. The world model for this
system was trained using 400 images taken from the ’back-
ground’ category of Caltech 101. This system gave us an
overall EER of 27.4%.

Number of training images. We investigated the im-
pact of using more or less training data to build the models.
We trained with 5, 10, 15, 20, 25 and 30 images and, as
expected, the more the data to train the GMMs, the best
are the EER. The observed EER values were, respectively,
29.6%, 27.4%, 26.2%, 25.0%, 24.3% and 23.2%.

Parameters of the training. As suggested in some pa-
pers (for ex. [14], some pattern recognition tasks seem to
benefit from adapting only the average of the Gaussians.
This configuration did not bring improvement for our task.
We also varied the number of EM and MAP iterations and
observed that a slight improvement can be obtained increas-
ing the number of iterations from 20 to 25. Our best previ-
ous score 23.2% moved down to 23.0%.

Modeling whole images. We wanted to evaluate the
importance of limiting the modeling to the region of inter-

est versus using all the image. Surprisingly, by modeling the
whole image, the EER dropped from 23.0% to 21.7%. An
interpretation to this is potentially in the fact that back-
ground of images are adding contextual information to a
given object. For example, having a road in background
adds to the confidence that the claimed object is a car.

Modeling center of images. Objects are usually cen-
tered in images. In this experiment, we tried to give more
importance to the central part of the image, without us-
ing the definition of regions of interests available in Caltech
101. We therefore applied the feature extraction to the cen-
tral part of the image, limiting blindly ourself to an area of
100 × 100 pixels. The focus on the central part increased
the EER from 21.7% to 22.0% but interestingly, probably
for the same reason as in the previous experiments.

Number of Gaussians. The main advantage of GMMs
is in their ability to model complex forms of probability
density functions by increasing the number of mixtures I.
However, increasing I also means that more parameters have
to be estimated, which requires larger training sets. It also
means more computations. Starting from the 128 Gaussians
system trained on whole images, we increased exponentially
the number of Gaussians up to 1024. As illustrated on the
curve A of Fig. 6, we observed a decrease of the EER down
to 20.6% with 1024 Gaussians. Curve B on this Figure was
obtained when modeling the central part of the image. In-
terestingly, going up to 1024 Gaussians seems less feasible
in this case as fewer training data is available. As shown
looking at the minimum of curve B, 512 Gaussians give the
best results for this configuration.

Fusion of models. As illustrated with curve C in Fig. 6,
a simple summation based fusion of the scores of the two
systems modelling the whole image and the central part of
the images lead to a significant improvement of the perfor-
mances. The EER is decreased down to 17% with a system
using 256 Gaussians. The explanation is to be found in the
fact that both systems are modelling different kind of infor-
mation. The first one model the whole image including 4
times more sub windows with many features associated to
the background than the second one.

Further improvements. We could reduce down further
the EER to 13% by introducing 3 modifications to our sys-
tem. First, we removed sub-windows that are almost fully
black or white as they do not bring much discriminant infor-
mation. Second, we introduced multi-scales of the analysis
window used for the feature extraction by adding 32 × 32
sizes to the 16 × 16 sizes. Third we performed a score nor-
malization by dividing the score Rc obtained for a given
image and category by the average of the scores obtained
for the same image fed into all categories.

The different improvements that we have introduced al-
lowed us to reduce by a factor of 2 the EER, going from
27.4% measured for the baseline system down to 13% for
the final system. These improvements are summarized in
Table 1.

6. CONCLUSIONS
We have presented a system for verifying that images

are correctly associated to labels. The system is based on
generic approaches that can potentially be applied to any
images and labels with limited supervision. A potential ap-
plication is the post-filtering of images returned by search
engines to prune out or to reorder images that are less rele-



Figure 6: EER values as a function of the number of
Gaussians, (A) modeling whole image, (B) modeling
the central part of the image and (C) fusing A and
B at the score level.

Table 1: Summary of EER performances.
Caltech 101 EER (%)
Baseline system 27.4
30 training images instead of 10 23.2
Tuning parameters of the training 23.0
Modeling whole images 21.7
Number of Gaussians up to 1024 20.6
Fusion of models 17.0
Further improvements 13.0

vant. The system is composed of a feature extraction mod-
ule based on the computation of DCT coefficients and of
a robust and flexible probability density function estima-
tor based on GMMs. A tuning of the parameters of the
system as well as several modifications at the feature ex-
traction and modeling levels are introduced and justified.
Evaluations of the system have been carried out on the Cal-
tech 101 database, showing a reduction of the EER down
to 13%. Considering that publicly available indexation en-
gines are currently returning a large proportion of images
that are not relevant to the search keyword (sometimes up
to 50%), our approach could potentially be used to enhance
their performance. Future work will be dedicated to evaluat-
ing our system on more realistic databases of images and on
comparing our approach to competing systems. In this di-
rection, we have identified the ImageCLEF evaluations and
more specifically the ”concept detection task” [8].
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