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1. Introduction

The notion of classical chaos is associated with motion on a compact phase-
-space with high sensitivity to initial conditions: trajectories diverge exponentially
fast and nevertheless remain confined to bounded regions [1–7].

In an opposite way, quantization on compacts yields discrete energy spectra,
which entail quasi-periodic time-evolution [8].

Nevertheless, nature is fundamentally quantal and, according to the corre-
spondence principle, classical behavior must emerge in the limit ~→ 0.

Also, classical and quantum mechanics are expected to overlap over times
expected to scale as ~−α for some α > 0 [7], the so-called semi-classical regime.
Actually, it turns out that this is true only for regular classical limits whereas,
for chaotic ones, classical and quantum mechanics agree over times which scale as
− log ~ [5–7], and footprints of the exponential separation of classical trajectories
are found even on finite dimensional quantization provided that the time does
not exceed such a logarithmic upper bound [6, 9]. Both timescales diverge when
~ → 0, but the shortness of the latter means that classical mechanics has to be
replaced by quantum mechanics much sooner for quantum systems with chaotic
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classical behavior. The logarithmic breaking time –log ~ has been considered by
some as a violation of the correspondence principle [10, 11] and by others, see [6]
and Chirikov in [5], as the evidence that time and classical limits do not commute.

The analytic studies of logarithmic timescales have been mainly performed by
means of semi-classical tools, essentially by focusing, via coherent state techniques,
on the phase space localization of specific time evolving quantum observables. In
the following, we shall show how they emerge in the context of quantum dynamical
entropies.

As a particular example, we shall concentrate on finite dimensional quan-
tizations of continuous hyperbolic automorphisms of the 2-torus T2 := R2/Z2

(the unit square with opposite sides identified), which are prototypes of chaotic
behavior; indeed, their trajectories separate exponentially fast with a Lyapunov
exponent log λ+ > 0 [12, 13]. If δ is an initial error along a trajectory, and
δn ' δλn

+ its classical spreading after n steps of the (time-stroboscopic) dynamics,
then boundness of the motion imposes δn ≤ 1, where 1 is the diameter of the
2-torus T2. This explains why the limit δ → 0 has necessarily to be performed
before the time-limit, and the Lyapunov exponent can be computed as

log λ+ = lim
n→∞

1
n

lim
δ→0

log
(

δn

δ

)
. (1)

Standard quantization, à la Berry, of hyperbolic automorphisms on T2 [14, 15]
yields Hilbert spaces of a finite dimension N , this latter variable playing the role
of the semi-classical parameter and setting to 1/N the minimal size of the phase-
-space grain cells. Imposing the latter bound, min{δ} ≥ 1/N , it is evident how the
conflict between the two limits, emerging once δn ≈ 1, can be transferred in the
time-step n as n ' log N/ log λ+. In this sense, rather than a violation of the cor-
respondence principle, the logarithmic breaking-time indicates the typical scaling
for a joint time-classical limit suited to classically chaotic quantum systems.

The Kolmogorov–Sinai dynamical entropy [3] (KS-entropy, for short) is de-
fined by assigning measures to bunches of trajectories and computing the Shannon-
-entropy per time-step of the ensemble of bunches in the limit of infinitely many
time-steps: The more chaotic the time-evolution, the more the possible bunches
and the larger their entropy. The production of different bunches of trajectories
issuing from the same bunch is typical of high sensitivity to initial conditions and
this is indeed the mechanism at the basis of the theorem of Ruelle and Pesin [16],
linking KS-entropy of a smooth, classical dynamical systems, to the sum of its
positive Lyapunov exponents.

In the quantum realm, there are different candidates for non-commutative
extensions of the KS-invariant [17–21]: in this paper we shall focus on one of them,
called ALF-entropy [18], and we shall study its semi-classical limit.

The ALF-entropy is based on the algebraic properties of dynamical systems,
that is on the fact that they are describable by suitable algebras of observables,
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their time evolution by linear maps on these algebras, and their states by expec-
tations over them.

We show that, while being bounded by log N , nevertheless over numbers of
time steps 1 ¿ n < log N , the entropy content per letter, or entropy production,
is log λ+. It thus follows that the joint limit n,N → +∞, with n ∝ log N , yields
the Kolmogorov–Sinai entropy. This confirms the numerical results in [22, 23],
where the dynamical entropy [18] is applied to the study of the quantum kicked
top, respectively to quantum cat maps.

In this approach, the presence of logarithmic timescales indicates the typical
scaling for a joint time/classical limit suited to preserve positive entropy produc-
tion in quantized classically chaotic quantum systems.

The paper is organized as follows: Sect. 2 contains a brief review of the alge-
braic approach to classical and dynamical systems, while Sect. 3 introduces some
basic semi-classical tools. Sections 4 and 5 deal with the quantization of hyperbolic
maps on finite dimensional Hilbert spaces and the relation between classical and
time limits. Section 6 gives an overview of various models of quantum dynamical
entropies present in the literature and particularly focus on the one proposed by
Alicki and Fannes [18, 24] (ALF-entropy, where L stands for Lindblad). Finally,
in Sect. 7, the semi-classical behavior of quantum dynamical entropies is studied
and the emergence of a typical logarithmic timescale is showed.

2. Dynamical systems: algebraic setting

Usually, continuous classical motion is described by means of a measure space
X , the phase-space, endowed with the Borel σ-algebra and a normalized measure
µ, µ(X ) = 1. The “volumes”

µ(E) =
∫

E

µ(dx)

of measurable subsets E ⊆ X represent the probabilities that phase-points x ∈
X belong to them. By specifying the statistical properties of the system, the
measure µ defines a “state” of it. In such a scheme, a reversible discrete time
dynamics amounts to an invertible measurable map T onto X such that µ◦T = µ,
and to its iterates {T k|k ∈ Z}: T -invariance of the measure µ ensures that the
state defined by µ can be taken as an equilibrium state with respect to the given
dynamics. Phase-trajectories passing through x ∈ X at time 0 are then sequences
{T kx|k ∈ Z} [3]. Classical dynamical systems are thus conveniently described by
triplets (X , T, µ). In the present work we shall focus upon the following:

• X — a compact metric space: the 2-dimensional torus T2 = R2/Z2 =
{(x1, x2) ∈ R2 (mod 1)};

• T — invertible measurable transformations from X to itself such that T−1

are also measurable;

• µ — the Lebesgue measure µ(dx) = dx1 dx2 on T2.
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In this paper, we consider a general scheme for quantizing and dequantizing,
i.e. for taking the classical limit (see [25]). Within this framework, we focus on the
semi-classical limit of quantum dynamical entropies of finite dimensional quanti-
zations of the celebrated Arnold cat map and of generic maps belonging to the
so-called unimodular group on the 2-torus: in the following we simply denote such
a family of maps cat maps family. The last denomination is perfectly legitimate,
in fact the acronym CAT stands for continuous automorphism of the torus.

In order to make the quantization procedure more explicit, it proves useful
to follow an algebraic approach and replace (X , T, µ) with (Mµ,Θ , ωµ) where:

• Mµ is the von Neumann algebra L∞µ (X ) of (equivalence classes of) essentially
bounded µ-measurable functions on X , equipped with the so-called essential
supremum norm ‖ · ‖∞ [26];

• {Θk|k ∈ Z} is the discrete group of automorphisms of Mµ which implements
the dynamics: Θ(f) := f ◦ T−1. The invariance of the reference measure
reads now ωµ ◦Θ = ωµ;

• ωµ is the state on Mµ defined by the reference measure µ:

ωµ : Mµ 3 f 7−→ ωµ(f) :=
∫

X
µ(dx)f(x) ∈ R+.

Quantum dynamical systems are described in a completely similar way by a triple
(M,Θ , ω), the critical difference being that the algebra of observables M is no
longer Abelian:

• M is a von Neumann algebra of operators, the observables, acting on a
Hilbert space H;

• Θ is an automorphism of M;

• ω is an invariant normal state on M: ω ◦Θ = ω.

Quantizing essentially corresponds to suitably mapping the commutative,
classical triple (Mµ,Θ , ωµ) to a non-commutative, quantum triple (M,Θ , ω).

3. Classical limit: coherent states

Performing the classical limit or a semi-classical analysis consists in studying
how a family of algebraic triples (M,Θ , ω), depending on a quantization ~-like
parameter, is mapped onto (Mµ,Θ , ωµ) when the parameter goes to zero. The
most successful semi-classical tools are based on the use of coherent states (CS for
short).

For our purposes, we shall use a large integer N as a quantization parameter,
i.e. we use 1/N as the ~-like parameter. In fact, we shall consider cases where M

is the algebra MN of N -dimensional square matrices acting on CN , the quantum
reference state is the normalized trace 1

N Tr on MN , denoted by τN , and the
dynamics is given in terms of a unitary operator UT on CN in the standard way:
ΘN (X) := U∗

T X UT .
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In full generality, coherent states will be identified as follows.
Definition 3.1. A family {|CN (x)〉|x ∈ X} ∈ H of vectors, indexed by points
x ∈ X , constitutes a set of coherent states if it satisfies the following requirements:

1. Measurability: x 7→ |CN (x)〉 is measurable on X ;

2. Normalization: ‖ CN (x) ‖2= 1, x ∈ X ;

3. Overcompleteness: N
∫
X µ(dx)|CN (x)〉〈CN (x)| = 1N ;

4. Localization: given ε > 0 and d0 > 0, there exists N0(ε, d0) such that for
N ≥ N0 and dX (x, y) ≥ d0 one has

N |〈CN (x), CN (y)〉|2 ≤ ε.

The symbol dX (x, y) used in the localization property stands for the length of the
shorter segment connecting the two points on X . Of course the latter quantity
does depend on the topological properties of X . In particular, for the 2-torus,

dT2x,y := min
n∈Z2

‖ x− y + n ‖R2 . (2)

The overcompleteness condition may be written in dual form as

N

∫

X
µ(dx) 〈CN (x), XCN (x)〉 = TrX, X ∈MN .

Indeed,

N

∫

X
µ(dx)〈CN (x), X CN (x)〉 = NTr

(∫

X
µ(dx)|CN (x)〉〈CN (x)|X

)
= TrX.

3.1. Anti-Wick quantization

In order to study the classical limit and, more generally, the semi-classical
behavior of (MN ,ΘN , τN ) when N →∞, we introduce two linear maps. The first,
γN∞ (anti-Wick quantization) associates N ×N matrices of MN to functions in
Mµ = L∞µ (X ); the second one, γ∞N , maps N×N matrices to functions in L∞µ (X ).
Definition 3.2. Given a family { |CN (x)〉|x ∈ X} of CS in CN , the anti-Wick
quantization scheme will be described by a (completely) positive unital map γN∞ :
Mµ →MN

Mµ 3 f 7→ N

∫

X
µ(dx)f(x)|CN (x)〉〈CN (x)| =: γN∞(f) ∈MN .

The corresponding dequantizing map γ∞N : MN → Mµ will correspond to the
(completely) positive unital map

MN 3 X 7→ 〈CN (x), X CN (x)〉 =: γ∞N (X)(x) ∈ Mµ.

Both maps are identity preserving because of the conditions imposed on
the CS-family and are also completely positive, since the domain of γN∞ is a
commutative algebra as well as the range of γ∞N . The following two equivalent
properties are less trivial:
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Proposition 3.1. For all f ∈ Mµ

lim
N→∞

γ∞N ◦ γN∞(f) = f, µ− a.e.

Proposition 3.2. For all f, g ∈ Mµ

lim
N→∞

τN (γN∞(f)∗γN∞(g)) = ωµ(fg) =
∫

X
µ(dx)f(x)g(x).

The previous two propositions, proved in [27, 28], can be taken as requests on any
well-defined quantization/dequantization scheme for observables. In the sequel,
we shall need the notion of quantum dynamical systems (MN ,ΘN , τN ) tending to
the classical limit (Mµ,Θ , ωµ). We then not only need convergence of observables
but also of the dynamics. This aspect will be considered in Sect. 5.

4. Classical and quantum cat maps

In this section, we collect the basic material needed to describe both classical
and quantum cat maps and we introduce a specific set of CS that will enable us
to perform the semi-classical analysis over such dynamical systems.

4.1. Finite dimensional quantizations

We first introduce cat maps in the spirit of the algebraic formulation intro-
duced in the previous sections.
Definition 4.1. Hyperbolic continuous automorphisms of the torus are generically
represented by triples (Mµ,Θ , ωµ), where

• Mµ is the algebra of essentially bounded functions on the two-dimensional
torus T2 := R2/Z2 = {(x1, x2) ∈ R2 (mod 1)}, equipped with the Lebesgue
measure µ(dx) := dx;

• {Θk|k ∈ Z} is the family of automorphisms (discrete time evolution) given

by Mµ 3 f 7→ (Θkf)(x) := f(A−kx(mod 1)), where A =
(

a b

c d

)
has

integer entries such that ad− bc = 1, |a + d| > 2 and maps T2 onto itself;

• ωµ is the expectation obtained by integration with respect to the Lebesgue
measure: Mµ 3 f 7→ ωµ(f) :=

∫
T2 dxf(x), that is left invariant by Θ .

Denoting with t := Tr(A)/2 the semi-trace of A, |t| > 1, the two irrational
eigenvalues of A can be written as 1 < λ+ := t +

√
t2 − 1 and 1 > λ− :=

t − √
t2 − 1 = λ−1

+ . Distances are stretched along the direction of the eigen-
vector |e+〉, A|e+〉 = λ+|e+〉, contracted along that of |e−〉, A|e−〉 = λ−|e−〉 and
all periodic points are hyperbolic [29]. Once the folding condition is added, the
hyperbolic automorphisms of the torus become prototypes of classical chaos, with
positive Lyapunov exponent log λ+.

One can quantize the associated algebraic triple (Mµ,Θ , ωµ) on either infi-
nite [30] or finite dimensional Hilbert spaces [14, 15, 31]. In the following, we shall
focus on the latter.
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Given an integer N , we consider an orthonormal basis |j〉 of CN , where
the index j runs through the residual class modulo N , here and in the following
denoted by (Z/NZ), namely |j + N〉 ≡ |j〉, j ∈ Z. Using this basis we define two
unitary matrices UN and VN , representing position and momentum shift operators,
as follows:

UN |j〉 := exp
(

2πi
N

u

)
|j + 1〉, and VN |j〉 := exp

(
2πi
N

(v − j)
)
|j〉. (3)

In the last equation, we explicitly indicated the dependence on two arbitrary phases
(u, v) ∈ [0, 1) labeling the representation and fulfilling

UN
N = e2iπu1N , V N

N = e2iπv1N . (4)
It turns out that

UNVN = exp
(

2iπ
N

)
VNUN . (5)

Introducing Weyl operators labeled by n = (n1, n2) ∈ Z2

WN (n) := exp
(

iπ
N

n1n2

)
V n2

N Un1
N = WN (−n)∗, (6)

it follows that

WN (Nn) = eiπ(Nn1n2+2n1u+2n2v) (7a)

WN (n)WN (m) = exp
(

iπ
N

σ(n, m)
)

WN (n + m), (7b)

where σ(n, m) := n1m2 − n2m1 is the so-called symplectic form.
Definition 4.2. Quantized cat maps will be identified with triples (MN ,ΘN , τN )
where

• MN is the full N×N matrix algebra over C generated by the (discrete) group
of Weyl operators {WN (n)|n ∈ Z2}. In the following, such a group will be
denoted by Weyl group;

• ΘN : MN 7→ MN is the automorphism such that

WN (p) 7→ ΘN (WN (p)) := WN (Ap), p ∈ (Z/NZ)2. (8)

In the definition of above, we have omitted reference to the parameters u, v in (3):
they must be chosen such that(

a c

b d

)(
u

v

)
=

(
u

v

)
+

N

2

(
ac

bd

)
(mod 1). (9)

Then, the folding condition (4) is compatible with the time evolution [15]. The
reason for (9) is the following: denoting with ê1 and ê2 the standard unit vectors
of R2, the representation generated by the two generators UN = WN (ê1) and
VN = WN (ê2) and the one generated by ΘN (UN ) = WN (Aê1) and ΘN (VN ) =
WN (Aê2) must be unitarily equivalent; in other words the two representations
must be labeled by the same u and v. According to (4), this can be expressed by

[WN (ê1)]N = [WN (Aê1)]N and [WN (ê2)]N = [WN (Aê2)]N ; (10)
the latter equation restricts the possible couples (u, v) available and leads to (9).
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An important set of matrices A, originally called “set of quantizable maps”
and characterized by (u, v) = (0, 0), is also important for historical reasons, indeed
it was the set used by Berry and Hannay [32] to develop the first quantization of
cat maps. Recent developments of Berry’s approach to quantization can be found
in [33–35].

Further, relation (7b) is also preserved since the condition detA = 1 guar-
antees that the symplectic form remains invariant, i.e. σ(An, Am) = σ(n, m).
Invariance of σ(·, ·), together with (7), also allows Eq. (8) to hold true for all
p ∈ Z2 and not only for those in (Z/NZ)2.

Many other useful relations can be obtained by using the explicit expression

WN (n)|j〉 = exp
(

iπ
N

(−n1n2 + 2n1u + 2n2v)
)

exp
(
−2iπ

N
jn2

)
|j + n1〉. (11)

In particular, from (11) one readily derives the decomposition

MN 3 X =
∑

m∈(ZNZ)2

τN (XWN (−m))WN (m), (12)

while from Eq. (7b) one gets

[WN (n),WN (m)] = 2i sin
( π

N
σ(n, m)

)
WN (n + m),

which suggests that the ~-like parameter is 1/N and that the classical limit cor-
responds to N →∞. In the following section, we set up a CS technique suited to
study classical cat maps as limits of quantized cats.

4.2. Coherent states for cat maps

We shall construct a CS-family {|CN (x)〉|x ∈ T2} on the 2-torus by means
of the discrete Weyl group. We define

|CN (x)〉 := WN (bNxc)|CN 〉, (13a)
where bNxc = (bNx1c, bNx2c), 0 ≤ bNxic ≤ N − 1 is the largest integer smaller
than Nxi and the reference vector |CN 〉 is chosen to be

|CN 〉 =
N−1∑

j=0

CN (j)|j〉, CN (j) :=
1

2(N−1)/2

√(
N − 1

j

)
. (13b)

Measurability and normalization are immediate, overcompleteness comes as follows.
Let Y be the operator in the left hand side of Definition 3.1. If τN (Y WN (n)) =
τN (WN (n)) for all n = (n1, n2) with 0 ≤ ni ≤ N − 1, then according to (12)
applied to Y it follows that Y = 1. This is indeed the case as, using Eqs. (7b),
(13) and N -periodicity,

τN (Y WN (n)) =
∫

T2
dx〈CN (x),WN (n)CN (x)〉

=
∫

T2
dx exp

(
2πi
N

σ(n, bNxc)
)
〈CN ,WN (n)CN 〉
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=
1

N2

∑

p∈(Z/NZ)2

exp
(

2πi
N

σ(n, p)
)
〈CN ,WN (n)CN 〉

= τN (WN (n)). (14)
In the last line we used that when x runs over T2, bNxic, i = 1, 2 runs over the
set of integers 0, 1, . . . , N − 1.

The proof of the localization property in Definition 3.1 is more technical and
requires several steps: the willing reader can find it in [27, 28].

5. Quantum and classical time evolutions

One of the main issues in the semi-classical analysis is to compare if and how
the quantum and classical time evolutions mimic each other when a quantization
parameter goes to zero.

In the case of classically chaotic quantum systems, the situation is strikingly
different from the case of classically integrable quantum systems. In the former
case, classical and quantum mechanics agree on the level of coherent states only
over times which scale as –log ~.

As before, let T denote the evolution on the classical phase space X and
UT the unitary single step evolution on CN , the so-called Floquet operator, which
represent its “quantization”. We formally state the semi-classical correspondence
of classical and quantum evolution using coherent states:
Condition 5.1. Dynamical localization: There exists an α > 0 such that for all
choices of ε > 0 and d0 > 0 there exists an N0 ∈ N with the following prop-
erty: if N > N0 and k ≤ α log N , then N |〈CN (x), Uk

T CN (y)〉|2 ≤ ε whenever
d(T kx, y) ≥ d0.

Remark 5.1. The condition of dynamical localization is what is expected of
a good choice of coherent states, namely, on a timescale logarithmic in the inverse
of the semi-classical parameter, evolving CS should stay localized around the clas-
sical trajectories. Informally, when N →∞, the quantities

Kk(x, y) := 〈CN (x), Uk
T CN (y)〉 (15)

should behave as if N |Kk(x, y)|2 ' δ(T kx − y) (let us note that this hypothesis
makes our quantization consistent with the notion of regular quantization described
in Sect. V of [21]). The constraint k ≤ α log N is typical of hyperbolic classical
behavior and comes heuristically as follows. The maximal localization of coher-
ent states cannot exceed the minimal coarse-graining dictated by 1/N ; if, while
evolving, CS stayed localized forever around the classical trajectories, they would
get more and more localized along the contracting direction. Since for hyper-
bolic systems the increase in localization is exponential with Lyapunov exponent
log λ+ > 0, this sets the upper bound, better known as logarithmic breaking-time,
and indicates that α ' 1/ log λ+.
Proposition 5.1. Let (MN ,ΘN , τN ) be a general quantum dynamical system
as defined in Sect. 3 and suppose that it satisfies Condition 5.1. Let ||X||2 :=
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√
τN (X∗X), X ∈ MN denote the normalized Hilbert–Schmidt norm. In the en-

suing topology

lim
k,N→∞,k<α log N

‖ Θk
N ◦ γN∞(f)− γN∞ ◦Θk(f) ‖2= 0. (16)

Remark 5.2. The above proposition, whose proof can be found in [27, 28],
can be seen as a modification of the so-called Egorov’s property (see [36]), and
gives the strength of the non-commutativity of classical and time limits when
the classical system has a positive Lyapunov exponent. The same (logarithmic)
scaling for the breaking-time has been found numerically in [37] also for discrete
classical cat maps, converging in a suitable classical limit to continuous cat maps.
Analogously, similar analysis [38] has been performed on sequences of discrete
approximants of discontinuous automorphisms on the 2-torus, known as Sawtooth
maps, and the logarithmic breaking-time has been recovered there, too.

We shall not prove the dynamical localization condition 5.1 for the quantum
cat maps, but a direct derivation of formula (16), based on the simple expression (8)
of the dynamics when acting on Weyl operators, is available in [27, 28] and reads
as follows:
Proposition 5.2. Let (MN ,ΘN , τN ) be a sequence of quantum cat maps tending
with N →∞ to a classical cat map with Lyapunov exponent log λ+; then

lim
k,N→∞,k<log N/(2 log λ+)

‖ Θk
N ◦ γN∞(f)− γN∞ ◦Θk(f) ‖2= 0,

where ‖ · ‖2 is the Hilbert–Schmidt norm of Proposition 5.1.

6. Dynamical entropies
Intuitively, one expects the instability proper to the presence of a positive

Lyapunov exponent to correspond to some degree of unpredictability of the dy-
namics: classically, the metric entropy of Kolmogorov provides the link [8].

6.1. Kolmogorov metric entropy
For continuous classical systems (X , T, µ) such as those introduced in Sect. 2,

the construction of the dynamical entropy of Kolmogorov is based on subdividing
X into measurable disjoint subsets {E`|` = 1, 2, · · · , D} such that

⋃
` E` = X

which form finite partitions (coarse graining) E .
Under the dynamical maps T : X → X , any given E evolves into T j(E) with

atoms T−j(E`) = {x ∈ X |T jx ∈ E`}; one can then form finer partitions

E[0,n−1] :=
n−1∨

j=0

T j(E) = E
∨

T (E)
∨
· · ·

∨
Tn−1(E),

whose atoms

Ei0i1···in−1 :=
n−1⋂

j=0

T−jEij = Ei0

⋂
T−1(Ei1)

⋂
· · ·

⋂
T−n+1(Ein−1)

have volumes

µi0i1···in−1 := µ
(
Ei0i1···in−1

)
. (17)
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Definition 6.1. We shall set i = {i0i1 · · · in−1} and denote by Ωn
D the set of Dn

n tuples with ij taking values in {1, 2, · · · , D}.
The atoms of the partitions E[0,n−1] describe segments of trajectories up to time
n encoded by the atoms of E that are traversed at successive times; the volumes
µi = µ(Ei) corresponds to probabilities for the system to belong to the atoms
Ei0 , Ei1 , · · · , Ein−1 at successive times 0 ≤ j ≤ n−1. The n tuples i by themselves
provide a description of the system in a symbolic dynamic.

The richness in diverse trajectories, that is the degree of irregularity of the
motion (as seen with the accuracy of the given coarse-graining) correspond intu-
itively to our idea of “complexity” and can be better measured by the Shannon
entropy [39]:

Sµ(E[0,n−1]) := −
∑

i∈Ωn
D

µi log µi. (18)

In the long run, E attributes to the dynamics an entropy per unit time-step

hµ(T, E) := lim
n→∞

1
n

Sµ(E[0,n−1]). (19)

This limit is well defined [3] and the “average entropy production” hµ(T, E) mea-
sure how predictable the dynamics is on the coarse grained scale provided by the
finite partition E . To remove the dependence on E , the Kolmogorov–Sinai entropy
hKS

µ (T ) of (X , T, µ) (or KS-entropy) is defined as the supremum over all finite
measurable partitions [3, 39:

hKS
µ (T ) := supEhµ(T, E). (20)

For the automorphisms of the 2-torus, we have the well-known result [3]:
Proposition 6.1. Let (Mµ,Θ , ωµ) be as in Definition 4.1, then hKS

µ (T ) = log λ+.

6.2. Quantum dynamical entropies

The idea behind the notion of dynamical entropy is that information can be
obtained by repeatedly observing a system in the course of its time evolution. Due
to the uncertainty principle, or, in other words, to non-commutativity, if observa-
tions are intended to gather information about the intrinsic dynamical properties
of quantum systems, then non-commutative extensions of the KS-entropy ought
first to decide whether quantum disturbances produced by observations have to
be taken into account or not.

Concretely, let us consider a quantum system described by a density matrix
ρ acting on a Hilbert space H. Via the wave packet reduction postulate, generic
measurement processes may be described by finite sets Y = {y1, y2, . . . , yD} of
bounded operators yj ∈ B(H) such that

∑
j y∗j yj = 1. These sets are called parti-

tions of unity (p.u., for the sake of shortness) and describe the change in the state
of the system caused by the corresponding measurement process

ρ 7→ Γ ∗Y(ρ) :=
∑

j

yjρy∗j . (21)

It looks rather natural to rely on partitions of unity to describe the process of
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collecting information through repeated observations of an evolving quantum sys-
tem [18]. Yet, most of these measurements interfere with the quantum evolution,
possibly acting as a source of unwanted extrinsic randomness. Nevertheless, the
effect is typically quantal and rarely avoidable. Quite interestingly, as we shall see
later, pursuing these ideas leads to quantum stochastic processes with a quantum
dynamical entropy of their own, the ALF-entropy, that is also useful in a classical
context.

An alternative approach [17] leads to the dynamical entropy of Connes
et al. [17] (CNT-entropy). This approach lacks the operational appeal of the
ALF-construction, but is intimately connected with the intrinsic relaxation prop-
erties of quantum systems [17, 40] and possibly useful in the rapidly growing field
of quantum communication. The CNT-entropy is based on decomposing quantum
states rather than on reducing them as in (21). Explicitly, if the state ρ is not a
one-dimensional projection, any partition of unity Y yields a decomposition

ρ =
∑

j

Tr(ρy∗j yj)
√

ρy∗j yj
√

ρ

Tr(ρy∗j yj)
. (22)

When Γ ∗Y(ρ) = ρ, reductions also provide decompositions, but not in general.
A different kind of wave packet reduction is the starting point for construct-

ing the coherent states entropy [21, 41] (in the following CS-entropy, for short), in
fact based on coherent states |CNx〉 as the ones introduced by Definition 3.1.

The map

I(E)(ρ) := N

∫

E

|CN (x)〉〈CN (x)|ρ|CN (x)〉〈CN (x)|µ(dx), (23)

for a measurable subset E ⊂ X and an operator ρ, is called an instrument: it
describes the change in the state ρ of the system caused by an E-dependent mea-
surement process (compare with (21)), actually a double approximate measure-
ment in the phase space. Repeated measurement, taken stroboscopically during
the dynamical evolution and performed with different instrument I(Eij ) labeled
by different elements Eij of a partition E , map the input state ρ into many possible
outputs {ρi|i ∈ Ωn

D}, which in turn can be mapped into many positive numbers
{R+ 3 ωi := ωρi|i ∈ Ωn

D} summing up to one. Now we have once more the
correspondence between strings i ∈ Ωn

D and probability ωi, in other words we end
up with a probability space and a similar reasoning leading us in Sect. 6.1 to the
KS invariant, can now be used for constructing the CS-entropy.

6.3. ALF-entropy
The idea underlying the ALF-entropy is that the evolution of a quantum

dynamical system can be modeled by repeated measurements at successive equally
spaced times, the measurements corresponding to p.u. as in Eq. (21).

Such a construction associates a quantum dynamical system with a symbolic
dynamics corresponding to the right-shift along a quantum spin half-chain [42].

Generic p.u. Y = {y1, y2, . . . , yD} need not preserve the state, but distur-
bances are kept under control by suitably selecting the subalgebra of observables
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M0 3 yj . The construction of the ALF-entropy for a quantum dynamical system
(M,Θ , ω) can be resumed as follows:

• One selects a Θ-invariant subalgebra M0 ⊆ M and a p.u. Y = {y1, . . . , yD}
of finite size D with yj ∈ M0. After j time steps Y will have evolved into
another p.u. from M0: Θj(Y) := {Θj(y1),Θj(y2), . . . ,Θj(yD)} ⊂ M0.

• Every p.u. Y of size D gives rise to a D-dimensional density matrix

ρ[Y]i,j := ω(y∗j yi), (24)
with von Neumann entropy Hω[Y] := S(ρ[Y]) = −Tr(ρ[Y] log ρ[Y]).

• Given two partitions of unit Y = {y1, y2, . . . , yD}, Z = {z1, z2, . . . , zB}, of
size D, respectively B, one gets a finer partition of unit of size BD as the
set

Y ◦ Z := {y1z1, . . . , y1zB ; y2z1, . . . , y2zB ; . . . ; yDz1, . . . , yDzB}. (25)

• Given a size D p.u. Y and the ordered time refinements

Y [0,n−1] := Θn−1(Y) ◦Θn−2(Y) ◦ · · · ◦ Y, (26)
the Dn × Dn density matrices ρ

[0,n−1]
Y := ρ

[Y [0,n−1]
]

define states on the
n-fold tensor product M⊗n

D of D-dimensional matrix algebras MD.

• Given a p.u. Y of size D, let ΦY : MD ⊗M 7→ M and eM : M 7→ M, with
M ∈MD, be linear maps defined by

ΦY(M ⊗ x) :=
∑

i,j

y∗i xyjMij and eM (x) :=
∑

i,j

y∗i Θ(x)yjMij . (27)

ΦY is a completely positive unital map, while e1(1) = 1. One readily com-
putes

ω
(
eM0 ◦ eM1 · · · ◦ eMn−1(1)

)
= Tr

(
ρ
[0,n−1]
Y M0 ⊗M1 · · · ⊗Mn−1

)
.

The states ρ
[0,n−1]
Y are compatible

ρ
[0,n−1]
Y ¹ M[0,n−2]

D = ρ
[0,n−2]
Y , where M[0,n−2]

D :=
n−2⊗

`=0

(MD)`,

and define a global state ρY on the quantum spin chain M∞
D := ⊗∞`=0(MD)`.

Thus it is possible to associate with the quantum dynamical system
(M,Θ , ω) a symbolic dynamics which amounts to the right-shift σ : (MD)` 7→
(MD)`+1 along the quantum spin half-chain.

Non-commutativity becomes evident when we check whether ρY is shift-
-invariant. This requires ω (

∑
` y∗` xy`) = ω(x) for all x ∈M. Let us note that this

is the case in which ρ 7→ Γ ∗Y(ρ) = ρ (see Eq. (21)).
Definition 6.2. The ALF-entropy of a quantum dynamical system (M,Θ , ω) is

hALF
ω,M′(Θ) := sup

Y⊂M0

hALF
ω (Θ ,Y), (28a)

where
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hALF
ω (Θ ,Y) := lim

n
sup

1
n

Hω

[
Y [0,n−1]

]
. (28b)

Like the metric entropy of a partition E , also the ALF-entropy of a partition of
unit Y can be physically interpreted as an asymptotic entropy production relative
to a specific coarse-graining.

6.4. Comparison of dynamical entropies

In this section we outline some of the main common features of many dif-
ferent dynamical entropies, taking the ALF as a reference example, because of
its conceptual simplicity. Here, we just sketch such features, emphasizing those
parts that are important to the study of the classical limit of quantum dynamical
entropies (QDE).

The first thing to notice is that any QDE must coincide with the
KS-entropy when M = Mµ is the Abelian von Neumann algebra L∞µ (X ) and
(M,Θ , ω) represents a classical dynamical system.

The next observation is that when, as for the quantized hyperbolic automor-
phisms of the torus considered in this paper, M is a finite-dimensional algebra,
both the CNT- and the ALF-entropy are zero, see [17, 18]. Consequently, if we de-
cide to take the strict positivity of ALF- or CNT-entropy as a signature of quantum
chaos, quantized hyperbolic automorphisms of the torus cannot be called chaotic.

However, the latter observation is not as general as the former. There exist
many alternative definitions (different from ALF and CNT), and some of them
need not to be equal to zero for all quantum systems defined on a finite-dimensional
Hilbert space: an interesting example is represented by the CS-entropy introduced
in [21].

From the previous considerations, it is clear that the main field of application
of the CNT- and ALF-entropies are infinite quantum systems, where the differences
between the two come to the fore [42].

The complete proofs of the above facts can be found in [17] for the CNT-,
in [18, 43] for the ALF-, and in [21] for the CS-entropy. Here we just state more
rigorously the above observations, in the case of the ALF-entropy, in the two
subsequent Proposition 6.2 and Proposition 6.3.
Proposition 6.2. Let (Mµ,Θ , ωµ) represent a classical dynamical system. Then,
with the notations of the previous sections

hALF
(ωµ,Mµ)(Θ) = hKS

µ (T ).
In the particular case of the hyperbolic automorphisms of the torus, we may

restrict our attention to p.u. whose elements belong to the ∗-algebra Dµ of com-
plex functions f on T2 such that the support of f̂ is bounded

hKS
µ (T ) = hALF

(ωµ,Mµ)(Θ) = hALF
(ωµ,Dµ)(Θ).

Remarkably, the computation of the classical KS-entropy via the quantum me-
chanical ALF-entropy yields a proof of Proposition 6.1 that is much simpler than
the standard ones [12, 13].
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Proposition 6.3. Let (M,Θ , ω) be a quantum dynamical system with M, a finite
dimensional C∗-algebra, then

hALF
(ω,M)(Θ) = 0.

7. Classical limit of quantum dynamical entropies

Proposition 6.3 confirms the intuition that finite-dimensional, discrete time,
quantum dynamical systems, however complicated the distribution of their quasi-
energies might be, cannot produce enough information over large times to generate
a non-vanishing entropy per unit time. This is due to the fact that, despite the
presence of almost random features over finite intervals, the time evolution cannot
bear random signatures if watched long enough, because almost periodicity would
always prevail asymptotically.

However, this does not mean that the dynamics may not be able to show
a significant entropy rate over finite interval of times, these being typical of the
underlying dynamics. Here we show that underlying classical chaos plus Hilbert
space finiteness make a characteristic logarithmic timescale emerge over which
these systems can be called chaotic. This is precisely the content of the next
Theorem 7.1, whose proof can be found in [27, 28].
Theorem 7.1. Let (X , T, µ) be a classical dynamical system which is the
classical limit of a sequence of finite-dimensional quantum dynamical systems
(MN ,ΘN , τN ). We also assume that the dynamical localization condition 5.1
holds. If

1. E = {E1, E2, . . . , ED−1} is a finite measurable partition of X ,

2. YN = {y1, y2, . . . , yD} is a bistochastic partition of unity, which is the quanti-
zation of the previous partition, namely yi = γN∞(χEi) for i = 1, 2, . . . , D−1

and yD :=
√
1−∑D−1

i=0 y∗i yi,

then there exists an α such that

lim
k,N→∞,k≤α log N

1
k

∣∣∣H[Y(k)
N ]− Sµ(E(k))

∣∣∣ = 0.

A similar phenomenon has been proved both for the CNT-entropy [27, 28] and for
the CS-entropy [44], although in this case a different kind of dynamical system
has been studied. Nevertheless, the proof of convergence of CS-entropy to the KS
invariant only make use of dynamical localization condition 5.1 so that, after an
appropriate substitution of similar terms, Theorem 7.1 can be extended to both
CNT- and CS-entropies.

The dynamical localization condition 5.1 has been extensively used in all the
proofs mentioned in this section, and the results here presented strongly do depend
on it. Once the framework in which sequences of quantum approximants approach
their classical limit has been settled, by an appropriate Egorov convergence, like
the one in Propositions 5.1 and 5.2, we still let room for bizarre behaviors in
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the entropy production. Condition 5.1 removes such a freedom and extend the
convergence from observables to dynamical entropies.

8. Conclusions and outlook

We have reviewed how quantum dynamical entropies reproduce the
Kolmogorov–Sinai invariant in quantum systems too, provided that we observe
a strongly chaotic system on a very short logarithmic timescale. However, due
to the discreteness of the spectrum of the quantizations, we know that saturation
phenomena will appear. It would be interesting to study the scaling behavior of the
quantum dynamical entropies in the intermediate region between the logarithmic
breaking time and the Heisenberg time. This will, however, require quite different
techniques than the coherent states approach, indeed the Ehrenfest time, whose
scaling is the same as the breaking time here described, set the upper bound of
semi-classical technology.
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sions. The author acknowledges financial support provided by the EU Marie Curie
Host Fellowships for Transfer of Knowledge Project COCOS (contract number
MTKD-CT-2004-517186) and the SFB/Transregio-12 project financed by DFG.

References

[1] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley,

Reading, MA 1989.

[2] S. Wiggins, Dynamical Systems and Chaos, Springer-Verlag, New York 1990.

[3] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Sys-

tems, Encyclopedia of Mathematics and its Applications, Cambridge University

Press, Cambridge 1999.

[4] H.G. Schuster, Deterministic Chaos, 3rd ed., VCH, Weinheim 1995.

[5] Chaos and Quantum Physics, Eds. M.-J. Giannoni, A. Voros, J. Zinn-Justin,

Vol. 1989, Les Houches Session LII of Les Houches Summer School of Theoretical

Physics, North-Holland, Amsterdam 1991.

[6] G. Casati, B. Chirikov, Quantum Chaos. Between Order and Disorder, Cambridge

University Press, Cambridge 1995.

[7] G.M. Zaslavsky, Chaos in Dynamic Systems, Harwood Academic Publ., Chur

1985.

[8] J. Ford, M. Ilg, Phys. Rev. A 45, 6165 (1992).

[9] G.M. Zaslawsky, in: Quantum Chaos, Eds. H.A. Cerdeira, R. Ramaswamy,

M.C. Gutzwiller, G. Casati, World Scientific, Singapore 1991, p. 32.

[10] J. Ford, G. Mantica, G.H. Ristow, Physica D 50, 493 (1991).

[11] J. Ford, G. Mantica, Am. J. Phys. 60, 1086 (1992).

[12] V.I. Arnold, A. Avez, Ergodic Problems of Classical Mechanics, Benjamin, New

York 1968.



A Survey on the Classical Limit . . . 605

[13] P. Walters, An Introduction to Ergodic Theory, Vol. 79 of Graduate Text in Math-

ematics, Springer-Verlag, Berlin 1982.

[14] M.V. Berry, N.L. Balazs, M. Tabor, A. Voros, Ann. Phys. 122, 26 (1979).

[15] M. Degli Esposti, Ann. Inst. Henri Poincaré 58, 323 (1993).
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