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Abstract. In this paper, we are concerned with the existence of positive solutions to the system
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu = 2p
p+q up−1vq + 2λα

α+β
uα−1vβ

|x|s , in Ω,

−Δv = 2q
p+q upvq−1 + 2λβ

α+β
uα vβ−1

|x|s , in Ω,

u > 0,v > 0, in Ω,

u = v = 0, on ∂Ω,

(0.1)

where Ω is a C2 domain in R
N with 0 ∈ ∂Ω , 0 < s < 2 , λ > 0 , p+q = 2∗ = 2N

N−2 , α +β =

2∗(s) = 2(N−s)
N−2 , N � 3 . We show that if Ω = R

N
+ , problem (0.1) possesses a least energy solution

and if Ω is bounded, 0 ∈ ∂Ω , there exists λ ∗ > 0 such that problem (0.1) has at least a positive
solution provided 0 < λ < λ ∗ .

1. Introduction

In this paper, we are concerned with the existence of positive solutions to the
system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δu = 2p
p+qup−1vq + 2λ α

α+β
uα−1vβ

|x|s , in Ω,

−Δv = 2q
p+qupvq−1 + 2λ β

α+β
uα vβ−1

|x|s , in Ω,

u > 0,v > 0, in Ω,

u = v = 0, on ∂Ω,

(1.1)

where Ω is a C2 bounded domain in R
N with 0 ∈ ∂Ω , 0 < s < 2, λ > 0,

p+q = 2∗ =
2N

N−2
, α + β = 2∗(s) =

2(N− s)
N−2

, N � 3.
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The exponent 2∗(s) is the critical exponent for the Hardy-Sobolev inequality

(∫
RN

|u|2∗(s)
|x|s dx

) 2
2∗(s)

� C
∫

RN
|∇u|2 dx (1.2)

for u ∈ D1,2(RN) , where D1,2(RN) is the completion of C∞
0 (RN) under the norm

‖u‖D1,2(RN ) =
(∫

RN
|∇u|2 dx

) 1
2 .

Let Ω be a domain in R
N and denote by H1

0 (Ω) the usual Sobolev space, the best
constant μs(Ω) of the Hardy-Sobolev inequality is defined by

μs(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx(∫

Ω
|u|2∗(s)

|x|s dx
) 2

2∗(s)
. (1.3)

If s = 0, (1.2) is reduced to the Sobolev inequality. The best constant μs(Ω) becomes
the Sobolev constant

S = S(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx(∫

Ω |u|2∗ dx
) 2

2∗
. (1.4)

Due to the scaling invariance, S(Ω) = S(RN) , that is, S(Ω) is independent of the do-
main Ω . It is well known that S is achieved if and only if Ω = R

N , and by the function

Uε(x) =
(

ε
ε2 + |x|2

)N−2
2

. (1.5)

Similarly, if s �= 0 and 0 ∈ Ω , we also have μs(Ω) = μs(RN) . Thus μs(Ω) is never
attained unless Ω = R

N . However, if s �= 0 and 0 ∈ ∂Ω , the quantity μs(Ω) may
depend on the domain Ω . In fact, Ghoussoub and Robert [6, 7] proved that μs(Ω) is
attained if, among other things, the mean curvature H(0) of ∂Ω at 0 is negative. This
fact was used in [5] to study the existence of positive solutions of the critical problem

−Δu =
u2∗(s)−1

|x|s + λup, u > 0 in Ω, u = 0, on ∂Ω, (1.6)

where λ > 0,1 < p < N+2
N−2 , and Ω is a bounded domain in R

N ,0 ∈ ∂Ω . In the spirit
of [2], it was shown in [5] that the associated functional of (1.6) satisfies the (PS)c

condition for c ∈ (0, 2−s
2(N−s) μs(Ω)

N−s
2−s ) . Then the existence result can be obtained as [2]

by the mountain pass theorem. It was discussed in [11] the existence of a similar prob-
lem with Neumann boundary condition and 0 ∈ ∂Ω . In [9], the existence of positive
solutions for the problem with double critical nonlinearities

−Δu =
u2∗(s)−1

|x|s + λu
N+2
N−2 , u > 0 in Ω, u = 0, on ∂Ω, (1.7)



POSITIVE SOLUTION OF CRITICAL HARDY-SOBOLEV ELLIPTIC SYSTEMS 251

was considered. As a replacement of the energy level related to the best constant, the
least energy c0 of solutions of the problem

−Δu =
u2∗(s)−1

|x|s + λu
N+2
N−2 , u > 0 in R

N
+, u = 0, on ∂R

N
+, (1.8)

was taken into account. It was proved that the (PS)c condition holds for the functional
related to (1.7) and c ∈ (0,c0) .

In this paper, we consider the existence of positive solutions of system (1.1) with
double critical exponents and 0 ∈ ∂Ω . In [3], the existence of solutions for a critical
singular system was considered in Ω with 0 ∈ Ω . In our case, the geometry at the
singularity should be considered.

Suppose throughout this paper that ∂Ω is C2 at 0 , the mean curvature of ∂Ω at
0 is negative, and 0 < s < 1 if N = 3, 0 < s < 2 if N � 4.

Let

Sp,q(Ω) = inf
(u,v)∈(H1

0 (Ω))2\{0}

∫
Ω(|∇u|2 + |∇v|2)dx(∫

Ω |u|p|v|qdx
) 2

2∗
, (1.9)

where 2 � p+q � 2∗ . We know from [1] that

Sp,q(Ω) =
[( p

q

) q
p+q +

( p
q

) −p
p+q

]
S(Ω). (1.10)

Since S is independent of the domain Ω , so is Sp,q(Ω) . Moreover, if w0 is a minimizer
of S(RN) , then (p1w0,q1w0) is a minimizer of Sp,q(RN) with p1,q1 ∈ R satisfying
p1
q1

=
√

p
q .

We first consider the existence of the least energy solution of the problem
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δu = 2p
p+qup−1vq + 2λ α

α+β
uα−1vβ

|x|s , in R
N
+,

−Δv = 2q
p+qupvq−1 + 2λ β

α+β
uα vβ−1

|x|s , in R
N
+,

u > 0,v > 0, in R
N
+,

u = v = 0, on ∂R
N
+,

(1.11)

where R
N
+ = {x = (x1, · · · ,xN−1,xN) ∈ R

N ,xN > 0} is the half space. The functional
associated to system (1.11)

J(u,v) =
∫

R
N
+

(1
2
|∇u|2 +

1
2
|∇v|2 − 2

p+q
upvq − 2λ

α + β
uαvβ

|x|s
)

dx (1.12)

is C1 on H1
0 (RN

+)×H1
0 (RN

+) . We firstly construct an approximating sequence of so-
lutions by solving a subcritical system, then using blow up argument, we analyse the
limiting behavior of the sequence. In contrast with one equation case, there are two
components of the approximating sequence of solutions for the system, so we need to
carefully study the limiting behavior of both components. We find that both compo-
nents of approximating solutions have the same blow up rate. Eventually, we show that
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there exists a least energy solution of problem (1.11). By a least energy solution of
problem (1.11), we mean a solution with the energy level

c0 = inf{J(u,v) | (u,v) is a positive solution of (1.11) and J(u,v) > 0}, (1.13)

that is, it is a solution with the least energy among all solutions. We have the following
result.

THEOREM 1.1. For N � 3 , λ > 0 , there exists a least energy solution (u,v) of
system (1.11). Furthermore, the energy c0 of the least energy solution satisfies

c0 = J(u,v) <
1
N

2
2−N

2 S
N
2
p,q. (1.14)

Next, we turn to the existence of positive solutions for problem (1.1). We will
show that the functional associated to problem (1.1)

I(u,v) =
∫

Ω

(1
2
|∇u|2 +

1
2
|∇v|2− 2

p+q
upvq− 2λ

α + β
uαvβ

|x|s
)

dx (1.15)

defined on H1
0 (Ω)×H1

0 (Ω) , satisfies the (PS)c condition for c ∈ (0,c0) . Using the
blow up argument again, we obtain

THEOREM 1.2. Suppose that the mean curvature of ∂Ω at 0 is negative. There
exists λ ∗ > 0 such that system (1.1) has at least a positive solution provided 0 < λ <
λ ∗ .

In section 2, we find an upper bound of the mountain pass level of I and give a
nonexistence result for problem (1.1). Then, we prove Theorem 1.1 in section 3 and
Theorem 1.2 in section 4 respectively.

2. Some estimates and nonexistence results

In this section, we find an upper bound of the mountain pass level of I , which
will be used in the proof of Theorem 1.2. We also establish a nonexistence result for
problem (1.1).

LEMMA 2.1. For λ > 0 , there exist nonnegative functions u0 and v0 in H1
0 (Ω)\

{0} , such that I(u0,v0) < 0 , and

max
t�0

I(tu0,tv0) <
1
N

2
2−N

2 S
N
2
p,q. (2.1)

Proof. Let U be given in (1.5) and p1
q1

=
√

p
q . Then (p1U,q1U) is the minimizer

of Sp,q(RN) . Let x0 be an interior point of Ω such that B2r(x0) ⊂ Ω . Take ϕ ∈
C∞

0 (B3r(x0)) be a cutoff function such that ϕ |Br(x0) ≡ 1 and 0 � ϕ � 1. Let

uε(x) = p1ε−
N−2

2 ϕ(x)U(
x− x0

ε
), vε(x) = q1ε−

N−2
2 ϕ(x)U(

x− x0

ε
).
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We have uε ,vε ∈ H1
0 (Ω) .

Now, we estimate each term in I(uε ,vε) . Note that

∫
B2r(x0)

ϕ(x)U(
x− x0

ε
)∇ϕ(x)∇U(

x− x0

ε
)dx

= −1
2

∫
B2r(x0)

|∇ϕ(x)|2|U(
x− x0

ε
)|2 dx− 1

2

∫
B2r(x0)

ϕ(x)Δϕ(x)U2(
x− x0

ε
)dx,

we deduce that
∫

Ω
|∇uε |2dx = p2

1

∫
Ω
|∇(ε−

N−2
2 ϕ(x)U(

x− x0

ε
))|2dx

= p2
1ε−N

∫
B2r(x0)

∣∣ϕ(x)∇U(
x− x0

ε
)
∣∣2 dx

− p2
1ε2−N

∫
B2r(x0)\Br(x0)

U2(
x− x0

ε
)ϕ(x)Δϕ(x)dx

= p2
1

∫
B 2r

ε
(0)

|∇U(y)|2ϕ2(x0 + εy)dy

− ε2p2
1

∫
B 2r

ε
(0)\B r

ε
(0)

U2(y)ϕ(x0 + εy)Δϕ(x0 + εy)dy.

Direct calculation gives

p2
1

∫
B 2r

ε
(0)

|∇U(y)|2 dy = p2
1

∫
RN

|∇U(y)|2 dy+O(εN−2)

and

ε2p2
1

∫
B 2r

ε
(0)\B r

ε
(0)

U2(y)ϕ(x0 + εy)Δϕ(x0 + εy)dy = O(εN−2).

Hence, ∫
Ω
|∇uε |2dx = p2

1

∫
RN

|∇U(y)|2dy+O(εN−2). (2.2)

Similarly, ∫
Ω
|∇vε |2dx = q2

1

∫
RN

|∇U(y)|2dy+O(εN−2). (2.3)

In the same way, we have
∫

Ω
up

ε vq
ε dx = pp

1qq
1

∫
B r

ε
(0)

U
2N

N−2 (y)dy+ pp
1q

q
1

∫
B 2r

ε
(0)\B r

ε
(0)

(U(y)ϕ(x0 + εy))
2N

N−2 dy,

pp
1qq

1

∫
B 2r

ε
(0)\B r

ε
(0)

(U(y)ϕ(x0 + εy))
2N

N−2 dy = O(εN),
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and
pp

1qq
1

∫
RN\B 2r

ε
(0)

U
2N

N−2 (y)dy = O(εN).

Therefore,
∫

Ω
up

ε vq
εdx = pp

1qq
1

(∫
RN

U
2N

N−2 (y)dy−
∫

RN\B r
ε (0)

U
2N

N−2 (y)dy

)
+O(εN)

= pp
1qq

1

∫
RN

U
2N

N−2 (y)dy+O(εN). (2.4)

We can also infer that

∫
Ω

uα
ε vβ

ε
|x|s dx = Cεs

∫
B 2r

ε
(0)

U2∗(s)(y)
|x0 + εy|s ϕ2∗(s)(x0 + εy)dy. (2.5)

We remark that the integral on the righthand side is positive and independent of ε . Now,
we prove (2.1). Obviously, there exists T > 0 large such that I(tuε ,tvε) < 0 if t � T .
By (2.2)-(2.5), for t > 0 and 0 < s < N−2, i.e. 0 < s < 1 if N = 3 and 0 < s < 2 if
N � 4 we have

I(tuε , tvε) =
t2p2

1

2

∫
RN

|∇U(y)|2 dy+O(εN−2)+
t2q2

1

2

∫
RN

|∇U(y)|2 dy+O(εN−2)

− 2t2
∗

2∗
pp

1qq
1

∫
RN

U
2N

N−2 (y)dy+O(εN)

−Cεs
∫

B 2r
ε

(0)

U2∗(s)(y)
|x0 + εy|s ϕ2∗(s)(x0 + εy)dy

<
t2

2
(p2

1 +q2
1)

∫
RN

|∇U(y)|2 dy− 2t2
∗

2∗
pp

1qq
1

∫
RN

U
2N

N−2 (y)dy := j(t).

The function j(t) attains its maximum value at

t =
(

p2
1 +q2

1

2pp
1qq

1

)N−2
4

(∫
RN |∇U(y)|2 dy∫
RN U

2N
N−2 (y)dy

)N−2
4

with the maximum value

max
t�0

j(t) =
1
N

(p2
1 +q2

1)
(

p2
1 +q2

1

2pp
1q

q
1

)N−2
2

S
N
2

=
1
N

(p2
1 +q2

1)
(

p2
1 +q2

1

2pp
1q

q
1

)N−2
2

[( p
q

) q
p+q +

( p
q

) −p
p+q

]− N
2

S
N
2
p,q.

Since
p2
1

q2
1

= p
q , we find

max
t�0

j(t) =
1
N

2
2−N

2 S
N
2
p,q.



POSITIVE SOLUTION OF CRITICAL HARDY-SOBOLEV ELLIPTIC SYSTEMS 255

As a result, for 0 < ε < ε0 ,

max
t�0

I(tuε ,tvε) < max
t�0

j(t) =
1
N

2
2−N

2 S
N
2
p,q.

Choosing u0 = Tuε0 , v0 = Tvε0 , we obtain (2.1). The proof is complete.

LEMMA 2.2. If the domain Ω ⊂ R
N is bounded and star-shaped around the ori-

gin, then system (1.1) has no positive solution.

Proof. Multiplying the first equation in (1.1) by x ·∇u and the second one by
x ·∇v respectively, integrating by part and adding both of them, we obtain

N−2
2

∫
Ω

(|∇u|2 + |∇v|2)dx+
1
2

∫
∂Ω

[(
∂u
∂ν

)2

+
(

∂v
∂ν

)2]
(x,ν)dS

= (N−2)
∫

Ω

(
upvq + λ

uαvβ

|x|s
)

dx, (2.6)

which and (1.1) lead to

∫
∂Ω

[(
∂u
∂ν

)2

+
(

∂v
∂ν

)2]
(x,ν)dS = 0. (2.7)

Since Ω is a star-shaped around the origin, then (x ·ν) > 0. We deduce that

∂u
∂ν

= 0 and
∂v
∂ν

= 0 a.e on ∂Ω

and by (1.1)

∫
Ω
−Δudx =

∫
∂Ω

∂u
∂ν

dS =
∫

Ω
(

2p
p+q

up−1vq +
2λ α

α + β
uα−1vβ

|x|s )dx = 0.

Hence, the result follows.

3. Problem in the half space

In this section, we prove Theorem 1.1 by the blow up argument and the mountain
pass theorem. We start with the following lemma, which is a counterpart of Lemma 2.6
in [10], for reader’s convenience, we sketch the proof.

LEMMA 3.1. Let (u,v) be a positive solution of system (1.11). Then the following
conclusions hold:
(1) u,v ∈C1,β (R

N
+);

(2) There is a constant C , such that

|u(y)|, |v(y)| � C(1+ |y|)1−N, |∇u(y)|, |∇v(y)| � C(1+ |y|)−N.
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Proof. We consider the regularity result first. It is enough to consider the regularity
at 0 ∈ ∂R

N
+. By the Nash-Moser iteration method, u and v are locally bounded. Then

we have u ∈Cα(B
+
1 ) for 0 < α < min{2− s,1} , where B+

1 := B1(0)∩R
N
+. Set

α0 := sup{α; supB+
1

|u(x)|
|x|α < ∞,0 < α < 1}.

Then for any 0 < α < α0 , we have |u(x)| � C|x|α for x ∈ B+
1 , and

|u(x)|2∗(s)−1

|x|s � C|x|(2∗(s)−1)α−1 for x ∈ B+
1 . (3.1)

We may prove α0 = 1. So (3.1) holds for any 0 < α < 1.

Furthermore, if 2∗(s)−1− s � 0, i.e., s � (N+2)
N , by taking α close to 1, we see

that
|u|2∗(s)−1

|x|s ∈ Lq(B+
1 ) for 1 < q < ∞,

Similarly,

|v|2∗(s)−1

|x|s ∈ Lq(B+
1 ) for 1 < q < ∞.

By Hölder’s inequality,

∫
B+

1

( |u|α−1|v|β
|x|s

)q

�
(∫

B+
1

( |u|2∗(s)−1

|x|s
)q

) (α−1)q
2∗(s)−1

(∫
B+

1

( |v|2∗(s)−1

|x|s
)q

) qβ
2∗(s)−1

,

that is
|u|α−1|v|β

|x|s ∈ Lq(B+
1 ) for 1 < q < ∞.

Therefore, u ∈C1;β (B+
1
2
) for 0 < β < 1. The same conclusion also holds for v .

To show (2) , by the Kelvin transformation, we see that

ũ =
1

|x|N−2 u(
x
|x|2 ) and ṽ =

1
|x|N−2 v(

x
|x|2 )

satisfy (1.11) and ũ, ṽ ∈ H1
0 (RN

+) . By (1) of the lemma, |ũ(y)| � C|y| for y ∈ B+
1 , it

yields
|u(y)| � C(1+ |y|)1−N, ∀y ∈ R

N
+.

The gradient estimate enables us to find |∇u(y)| � C|y|−N for y ∈ R
N
+ . The proof is

complete.
Proof of Theorem 1.1 We use the blowing up argument to show the result. Let

Ω be a star-shaped domain with respect to 0 and 0 ∈ ∂Ω . For any ε > 0, by applying
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Lemma 2.1 and the mountain pass theorem, we can find a positive solution (uε ,vε) of
the following subcritical system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δuε = 2pε
pε+qupε−1

ε vq
ε + 2λ α

α+β−ε
uα−1

ε vβ−ε
ε

|x|s , x ∈ Ω,

−Δvε = 2q
pε+qupε

ε vq−1
ε + 2λ (β−ε)

α+β−ε
uα

ε vβ−1−ε
ε
|x|s , x ∈ Ω,

uε > 0,vε > 0, x ∈ Ω,

uε = vε = 0, x ∈ ∂Ω.

(3.2)

The mountain pass level cε satisfies

0 < δ � cε = Iε(uε ,vε) <
1
N

2
2−N

2 S
N
2
p,q (3.3)

for some δ > 0 independent of ε > 0 small, where pε +q = 2N
N−2 − 2ε

2−s and

Iε(uε ,vε) =
∫

Ω

(1
2
|∇uε |2 +

1
2
|∇vε |2− 2

pε +q
upε

ε vq
ε − 2λ

2∗(s)− ε
uα

ε vβ−ε
ε

|x|s
)

dx.

By (3.2) and (3.3), we may verify that both ‖uε‖H1
0 (Ω) and ‖vε‖H1

0 (Ω) are uniformly

bounded in ε for ε > 0 small. Thus, there is a subsequence {(u j,v j)} of {(uε ,vε)}
such that

u j ⇀ u, v j ⇀ v, in H1
0 (Ω),

u j ⇀ u, v j ⇀ v, in L
2N

N−2 (Ω),

u j ⇀ u, v j ⇀ v, in L2∗(s)(Ω, |x|−sdx)

(3.4)

with (u,v) satisfies (1.1). By Lemma 2.2, u ≡ v ≡ 0 since Ω is a star-shaped. Let

mj := u j(x j) = max
Ω

u j(x), n j := v j(y j) = max
Ω

v j(x).

Then, we have either mj → ∞ or n j → ∞ as j → ∞ . Indeed, on the contrary we would
have mj � C and n j � C for a positive constant C . By the Sobolev embedding,

∫
Ω

u
pε j
j vq

j dx � C
∫

Ω
vq

jdx → 0,

∫
Ω

uα
j v

β−ε j
j

|x|s dx � C
∫

Ω

vα
j

|x|s dx → 0

as j → ∞ . This implies

∫
Ω
(|∇u j|2 + |∇v j|2)dx = 2

∫
Ω

upε
j vq

jdx+2λ
∫

Ω

uα
j vβ−ε

j

|x|s dx → 0,

that is, u j → 0, v j → 0 strongly in H1
0 (Ω) . It yields

0 = lim
j→∞

1
2

∫
Ω
(|∇u j|2 + |∇v j|2)dx � δ
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a contradiction.
We will show that mj = O(1)n j , and x j → 0, y j → 0 at the same time, which

implies that the origin is the only blow up point. Suppose n j � mj → ∞ and denote

ũ j(y) = m−1
j u j(k jy+ x j), ṽ j(y) = m−1

j v j(k jy+ x j),

where

k j = m
− pε j +q−2

2
j and pε j +q =

2N
N−2

− 2ε j

2− s
.

Then (ũ j, ṽ j) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δũ j =
2pε j
pε j+q ũ

pε j−1

j ṽq
j +

2λ α
α+β−ε j

ũα−1
j ṽ

β−ε j
j

| x j
k j

+x|s , in Ω j,

−Δṽ j = 2q
pε j+q ũ j

pε j ṽq−1
j + 2λ (β−ε j)

α+β−ε j

ũα
j ṽ

β−1−ε j
j

| x j
k j

+x|s , in Ω j,

0 � ũ j, ṽ j � 1, in Ω j,

ũ j = ṽ j = 0, on ∂Ω j,

(3.5)

where Ω j = {x ∈ R
N | x j + k jx ∈ Ω} .

We claim that |x j| = O(k j) and x j → 0 as j → ∞ . Suppose on the contrary that

limsup
j→∞

|x j|
k j

= ∞.

Since mj → ∞ , k j → 0 as j → ∞ . Because (ũ j, ṽ j) is uniformly bounded in C2,α
loc , we

may assume that ũ j → u, ṽ j → v in C2
loc .

Suppose x j → x0 ∈ Ω . There are two cases: (1) x0 ∈ Ω or x0 ∈ ∂Ω and

dist(x j,∂Ω)
k j

→ ∞;

and (2) x0 ∈ ∂Ω and
dist(x j ,∂Ω)

k j
→ σ � 0.

In the case (1), we have Ω j → R
N as j → ∞ and (u,v) with u(0) = 1 satisfies

−Δu =
2p

p+q
up−1vq, −Δv =

2q
p+q

upvq−1, 0 � u,v � 1 in R
N . (3.6)

Furthermore, we have

lim
j→∞

∫
Ω
|∇u j|2 dx = lim

j→∞
(m

ε j (N−2)
2−s

j

∫
Ω j

|∇ũ j|2 dy) �
∫

RN
|∇u|2 dy,

lim
j→∞

∫
Ω
|∇v j|2 dx = lim

j→∞
(m

ε j (N−2)
2−s

j

∫
Ω j

|∇ṽ j|2 dy) �
∫

RN
|∇v|2 dy,
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lim
j→∞

∫
Ω

upε
j vq

j dx = lim
j→∞

(m
ε j (N−2)

2−s
j

∫
Ω j

ũpε
j ṽq

jdy) �
∫

RN
upvq dy,

lim
j→∞

∫
Ω

uα
j v

β−ε j
j

|x|s dx = lim
j→∞

(
m

ε j(N−2)
2−s

j

∫
Ω j

ũα
j ṽ

β−ε j
j

| x j
k j

+ y|s dy

)
.

Using these facts and (3.5), we deduce

c = lim
j→∞

cε j = lim
j→∞

Iε j(u j,v j)

=
(

1
2
− 1

2∗(s)

)
lim
j→∞

∫
Ω

(|∇u j|2 + |∇v j|2
)
dx

+
(

2
2∗(s)

− 2
2∗

)
lim
j→∞

∫
Ω

u
pε j
j vq

j dx

�
(

1
2
− 1

2∗(s)

)∫
RN

(|∇u|2 + |∇v|2)dx+
(

2
2∗(s)

− 2
2∗

)∫
RN

upvq dx. (3.7)

On the other hand, by the definition of Sp,q , we see that

Sp,q(RN)
(∫

RN
upvq dx

) 2
2∗

�
∫

RN

(|∇u|2 + |∇v|2)dx = 2
∫

RN
upvq dx, (3.8)

that is

2−
N
2 S

N
2
p,q(RN) �

∫
RN

upvq dx. (3.9)

Therefore,

c � 2
N

∫
RN

upvq dx � 1
2
2

2−N
2 S

N
2
p,q(RN),

which contradicts to the fact that

c � max
0�t�1

I(tu0,tv0) <
1
2
2

2−N
2 S

N
2
p,q(RN).

In the case (2), after an orthogonal transformation, we have Ω j → R
N
+ = {x =

(x1, · · · ,xN) | x1 > 0} as j → ∞ and ũ j , ṽ j converge to some u , v uniformly in every
compact subset of R

N
+ . Apparently, u(0) = 1 and 0 � v(0) � 1. Hence, (u,v) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = 2p
p+qup−1vq in R

N
+,

−Δv = 2q
p+qupvq−1 in R

N
+,

0 � u,v � 1 in R
N
+,

u = v = 0 on ∂R
N
+.

(3.10)

The boundary condition violates to u(0)= 1. Consequently, limsup j→∞
|x j |
k j

< ∞ . Since

k j → 0, we have x j → 0 as j → ∞ .
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Next, we show that liminf j→∞
|x j |
k j

> 0. Were it not the case, we would have, up

to a subsequence, that lim j→∞
|x j |
k j

= 0. Up to a rotation, we have Ω j → R
N
+ and ũ j

, ṽ j converge to some u , v uniformly in compact subsets of R
N
+ respectively, where

(u,v) is a solution of (1.11) with 0 � u,v � 1. Again u(0) = 0 contradicts to the fact

u(0) = 1. Hence, liminf j→∞
|x j |
k j

> 0.
Now, we show that problem (1.11) has a nontrivial solution. We may assume

dist(x j,∂Ω)
k j

→ σ � 0.

By an affine transformation, we find (ũ j, ṽ j) converges to (u,v) uniformly in any com-
pact subset of R

N
+ and (u,v) satisfies (1.11) with u(σ , · · · ,0) = 1. Since u is nontrivial,

so is v . Indeed, otherwise if v ≡ 0, we would have⎧⎪⎨
⎪⎩

Δu = 0 in R
N
+,

0 � u � 1,u(σ , · · · ,0) = 1 in R
N
+,

u = 0 on ∂R
N
+.

By the strong maximum principle, u would be a constant because it attains its maximum
value inside R

N
+ . This yields a contradiction between u(σ , · · · ,0) = 1 and the boundary

condition. Therefore, there exists y0 ∈ R
N
+ such that v(y0) �= 0. So we have proved that

problem (1.11) has a nontrivial solution. As a by product, this also implies

ṽ j(y0) = m−1
j v j(x j + k jy0) → v(y0) > 0,

and then

1 � n j

mj
� v j(x j + k jy0)

mj
� v(y0)− ε > 0

for ε > 0 small and j large. As a result, n j = O(1)mj as j → ∞ . Replacing mj by n j

in above blow up process, we may deduce that |y j| = O(k̃ j) , where

k̃ j = n
− pε j+q−2

2
j .

So we also have y j → 0. Consequently, the origin is the only blow up point and problem
(1.11) has a solution (u,v) . Observe that such a solution verifies

J(u,v) = (1− 2
2∗

)
∫

R
N
+

upvq dy+ λ (1− 2
2∗(s)

)
∫

R
N
+

uαvβ

|y|s dy

� lim
j→∞

cε <
1
N

2
2−N

2 S
N
2
p,q

(3.11)

since

∫
RN

upvqdy � lim
j→∞

∫
Ω

up
j v

q
j dy,

∫
RN

uαvβ

|y|s dy � lim
j→∞

∫
Ω

uα
j v

β−ε j
j

|y|s dy.
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Finally, we show that there exists a least energy solution of problem (1.11). Let

c0 = inf{J(u,v) | (u,v) is a positive solution of (1.11) and J(u,v) > 0}, (3.12)

which is finite. For any positive solution (u,v) of (1.11), by Hölder’s inequality,
Sobolev and Hardy-Sobolev inequalities we deduce from

1
2

∫
R

N
+

(|∇u|2 + |∇v|2)dy =
∫

R
N
+

upvq dy+ λ
∫

R
N
+

uαvβ

|y|s dy

that
‖u‖H1

0 (RN
+) +‖v‖H1

0 (RN
+) � γ > 0 (3.13)

for some constant γ . This implies c0 > 0.
Let (u j,v j) be a minimizing sequence of c0 . Denote mj = maxu j(x), n j =

maxv j(x). By Lemma 3.1, we may assume that the maximum points of u j or v j are
uniformly bounded. If mj or n j tends to infinity, we may show as before that mj =
O(1)n j . Hence, mj → ∞ if and only if n j → ∞ . So we need to treat two cases:(i) both
u j and v j are uniformly bounded; (ii) both mj and n j tend to infinity.

In the case (i), we have u j → u and v j → v and (u,v) is a positive solution of
problem (1.11) with J(u,v) = c0 . The assertion follows.

In the case (ii), since there is a solution of (1.11) such that (3.11) holds, we have

J(u j,v j) <
1
N

2
2−N

2 S
N
2
p,q.

Applying the blow up argument as before, we have that mj = O(1)n j and x j → 0.
Moreover, the functions

u j(y) = m−1
j u j(x j + k jy), v j(y) = m−1

j v j(x j + k jy),

where k j = m
− 2

N−2
j , converge to a positive solution (u,v) of (1.11) with J(u,v) �

lim j→∞ J(u j,v j) = c0 . This means that (u,v) is the least energy solution of problem
(1.11), which satisfies (1.14). The proof is completed. �

4. Existence of solutions in bounded domains

In this section, we shall prove the existence of positive solution of system (1.1).
To this end, we need the following lemma.

LEMMA 4.1. For λ > 0 small, there exist nonnegative functions u0, v0 ∈H1
0 (Ω)\

{0} such that I(u0,v0) < 0 and

max
t�0

I(tu0,tv0) < c0, (4.1)

where c0 is defined in (1.14).
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Proof. Without loss of generality, we may assume that in a neighborhood of 0,
the boundary ∂Ω can be represented by xn = ϕ(x′) with ϕ(0) = 0, ∇′ϕ(0) = 0 and
the outer normal of ∂Ω at 0 is −eN = (0,0, · · · − 1) , where x′ = (x1, · · ·xN−1) , ∇′ =
(∂1, · · ·∂N−1) . Define

ψ(x) = (x′,xn−ϕ(x′))

We choose a positive number r0 small so that there exist neighborhoods U and Ũ of
0, such that

ψ(U) = Br0(0), ψ(U ∩Ω) = B+
r0(0) = Br0(0)∩R

N
+,

ψ(Ũ) = Br0
2
(0), ψ(Ũ ∩Ω) = B+

r0
2
(0).

Suppose that (u,v) is the least energy solution of (1.11). For ε > 0, we define

uε(x) = ε−
N−2

2 η(x)u
(

ψ(x)
ε

)
, vε(x) = ε−

N−2
2 η(x)v

(
ψ(x)

ε

)
,

where η ∈C∞
0 (U) is a positive cut-off function with η ≡ 1 in Ũ .

Now we estimate each term in I(uε ,vε) .
First, by the change of the variable y = ψ(x)

ε ∈ B+
r0
ε
(0) , we obtain

∫
Ω

up
ε vq

ε dx = ε−
(N−2)(p+q)

2 +N
∫

B+
r0
ε

η p+q(ψ−1(εy))up(y)vq(y)dy

=
∫

R
N
+

upvq dy−
∫

R
N
+\B+

r0
ε

upvq dy

=
∫

R
N
+

upvq dy+O(ε
N(p+q)

2 ).

Next, we estimate
∫

Ω
|∇uε |2dx =

∫
Ω
(|∇η |2u2

ε + η2|∇uε |2 +2∇η∇uεηuε)dx.

Since∫
Ω

ηuε ∇η∇uε dx = −
∫

Ω
|∇η |2u2

ε dx−
∫

Ω
∇ηη∇uεuε dx−

∫
Ω

η(Δη)u2
ε dx,

we have ∫
Ω
|∇uε |2 dx =

∫
Ω∩U

η2|∇uε |2 dx−
∫

Ω∩U
η(Δη)u2

ε dx.

By the change of the variable y = ψ(x)
ε and Lemma 3.1,

|
∫

Ω∩U
η(Δη)u2

ε dx| � Cε2
∫

B+
r0
ε

(0)\B+
r0
2ε

(0)
η(ψ−1(εy))|Δη(ψ−1(εy))|u2(y)dy

= o(ε2).
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Similarly,
∫

Ω∩U
η2|∇uε(x)|2 dx

= ε2
∫

B+
r0
ε

η2(ψ−1(εy))|∇xu(y)|2 dy

=
∫

B+
r0
ε

(0)
η2(ψ−1(εy))(|∇yu(y)|2−2∂nu(y)∇′u(y)(∇′ϕ)(εy′)

+ [∂nu(y)]2|(∇′ϕ)(εy′)|2)dy

= I1 + I2 + I3.

Obviously,

|I1| �
∫

RN
+

|∇u|2 dy.

Since ∂Ω is C2 at 0 , it holds that

ϕ(y′) =
N−1

∑
i=1

αiy
2
i +o(1)(|y′|2).

By Lemma 3.1, we have

|I3| � Cε2
∫

RN

|y|2
(1+ |y|)2N dy = O(ε2).

Integrating by part, we obtain that

I2 =
4
ε

∫
B+

r0
ε

(0)
η(ψ−1(εy))∇′[η(φ−1(εy))]∂Nu(y)∇′u(y)ϕ(εy′)dy

+
2
ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))∇′∂Nu(y)∇′u(y)ϕ(εy′)dy

+
2
ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))∂Nu(y)

n−1

∑
i=1

∂iiu(y)u(y)ϕ(εy′)dy

= I21 + I22 + I23.

By Lemma 3.1, we deduce

|I21| � cε2
∫

B+
r0
ε

(0)\B r0
2ε

(0)
(1+ |y|)−2N|y|2 dy � c2εN .

In the same way, I22 = O(εN) . Since (u,v) satisfies the system (1.11), we have

n−1

∑
i=1

∂iiu = Δu− ∂NNu = − 2p
p+q

up−1vq− 2λ α
α + β

uα−1vβ

|x|s − ∂NNu,
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and then

I23 = −2
ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))

2p
p+q

up−1vq∂Nu(y)ϕ(εy′)dy

− 2
ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))

2λ α
α + β

uα−1vβ

|y|s ∂Nu(y)ϕ(εy′)dy

− 2
ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))∂NNu(y)∂Nu(y)ϕ(εy′)dy

=: Ia + Ib + Ic.

Using Lemma 3.1, we can show that Ia = O(ε
N2−N+2

N−2 ) . Integrating by parts, we obtain

Ib = − 4λ
(α + β )ε

∫
B+

r0
ε

(0)
∂N

(
η2(ψ−1(εy))

ϕ(εy′)vβ

|y|s
)
uα dy

=
4λ

(α + β )ε

∫
B+

r0
ε

(0)
2η(ψ−1(εy))∂N [η(ψ−1(εy))]ϕ(εy′)

uαvβ

|y|s dy

+
4λ

(α + β )ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))∂N [ϕ(εy′)]

uαvβ

|y|s dy

+
4λ

(α + β )ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))ϕ(εy′)β ∂Nv

uαvβ−1

|y|s dy

− 4λ s
(α + β )ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))ϕ(εy′)yN

uαvβ

|y|s+2 dy

=: Ib1 + Ib2 + Ib3 + Ib4.

In the same way, we have

Ib1, Ib2 = O(ε
N2−N−Ns+2

N−2 ), Ib3 = O(ε
N(N−s)

N−2 ).

Hence,

Ib = − 4λ s
(α + β )ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))ϕ(εy′)yN

uαvβ

|y|s+2 dy+O(ε
N2−N−Ns+2

N−2 ).

Similarly,

Ic =
1
ε

∫
B+

r0
ε

(0)∩∂R
N
+

η2(ψ−1(εy))ϕ(εy′)(∂Nu(y))2 dSy +O(εN−1)
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Therefore,

I2 = − 4λ s
(α + β )ε

∫
B+

r0
ε

(0)
η2(ψ−1(εy))ϕ(εy′)yN

uαvβ

|y|s+2 dy

+
1
ε

∫
B+

r0
ε

(0)∩∂R
N
+

η2(ψ−1(εy))ϕ(εy′)(∂nu(y))2dSy +O(εN−1)

=: J1 + J2 +O(εN−1).

We may write

J1 = − 4λ s
(α + β )ε

∫
B+

r0
ε

(0)\B+
r0
2ε

(0)
η2(ψ−1(εy))ϕ(εy′)yN

uαvβ

|y|s+2 dy

− 4λ s
(α + β )ε

∫
B+

r0
2ε

(0)
ϕ(εy′)yN

uαvβ

|y|s+2 dy =: J11 + J12.

We estimate

|J11| � cε
∫

B+
r0
ε

(0)\B+
r0
2ε

(0)

|y|3
|y|s+2(1+ |y|)(N−1)2∗(s) dy � c2ε

N(N−s)
N−2 ,

and
4λ s

(α + β )ε

∫
R

N
+\B+

r0
ε

(0)
ϕ(εy′)yN

uαvβ

|y|s+2 dy = O(ε
N(N−s)

N−2 ).

Hence,

J12 = − 4λ s
(α + β )ε

∫
R

N
+

ϕ(εy′)yN
uαvβ

|y|s+2 dy+
4λ s

(α + β )ε

∫
R

N
+\B+

r0
ε

(0)
ϕ(εy′)yN

uαvβ

|y|s+2 dy

= − 4λ s
(α + β )ε

∫
R

N
+

ϕ(εy′)yN
uαvβ

|y|s+2 dy+O(ε
N(N−s)

N−2 )

= − 4λ sε
(α + β )

N−1

∑
i=1

αi

∫
R

N
+

y2
i yNuαvβ

|y|s+2 dy(1+o(1))+O(ε
N(N−s)

N−2 )

= − 4λ sε
(α + β )(N−1)

∫
R

N
+

|y′|2yNuαvβ

|y|s+2 dy
N−1

∑
i=1

αi(1+o(1))+O(ε
N(N−s)

N−2 )

= −λK1H(0)(1+o(1))ε +O(ε
N(N−s)

N−2 ),

where

H(0) =
1

N−1

N−1

∑
i=1

αi and K1 =
4s

(α + β )

∫
R

N
+

|y′|2yNuαvβ

|y|s+2 dy.
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On the other hand, we write

J2 =
1
ε

∫
(B+

r0
ε

(0)\B+
r0
2ε

(0))∩∂R
N
+

η2(ψ−1(εy))ϕ(εy′)(∂Nu(y))2 dSy

+
1
ε

∫
B+

r0
2ε

∩∂R
N
+

ϕ(εy′)(∂nu(y))2 dSy =: J21 + J22,

and estimate

|J21| � C
ε

∫
{ r0

2 <|εy′|�r0}
|(∂nu)(y′,0)|2|ϕ(εy′)|dy′

� Cε
∫
{ r0

2 <|εy′|�r0}
|y′|−2N+2dy′ = O(εN).

Similarly, ∫
RN−1\(B+

r0
2ε

∩∂R
N
+)

ϕ(εy′)(∂Nu(y))2 dSy = O(εN .)

Therefore,

J22 =
1
ε

∫
RN−1

ϕ(εy′)(∂Nu(y))2dSy− 1
ε

∫
RN−1\(B+

r0
2ε

∩∂R
N
+)

ϕ(εy′)(∂Nu(y))2dSy

=
1
ε

∫
RN−1

ϕ(εy′)(∂Nu(y))2 dSy +O(εN−1)

= ε
N−1

∑
i=1

αi

∫
RN−1

[(∂Nu)(y′,0)]2y2
i dy′(1+o(1))+O(εN−1)

=
ε

N−1

∫
RN−1

|(∂Nu)(y′,0)|2|y′|2 dy′
N−1

∑
i=1

αi(1+o(1))+O(εN−1)

= K2H(0)(1+o(1))ε +O(εN−1),

where K2 =
∫
RN−1 |(∂Nu)(y′,0)|2|y′|2 dy′ . Consequently, we have

∫
Ω
|∇uε |2 dx �

∫
R

N
+

|∇u|2 dx−λK1H(0)(1+o(1))ε +K2H(0)(1+o(1))ε +O(ε2)

and in the same way,
∫

Ω
|∇vε |2 dx �

∫
R

N
+

|∇v|2 dx−λK1H(0)(1+o(1))ε +K′
2H(0)(1+o(1))ε +O(ε2)

where K′
2 =

∫
RN−1 |(∂Nv)(y′,0)|2|y′|2 dy′ .

Finally, we estimate

∫
Ω

uα
ε vβ

ε
|x|s dx �

∫
Ω∩Ũ

uα
ε vβ

ε
|x|s dx =

∫
B+

r0
2ε

(0)

uα(y)vβ (y)

|ψ−1(εy)
ε |s

dy.
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Since |ψ−1(y)|2 = |y|2 +2yNϕ(y′)+ ϕ2(y′) , we have

1

|ψ−1(εy)
ε |s

=
1
|y|s

(
1− syNϕ(εy′)

ε|y|2 − sϕ2(εy′)
2ε2|y|2

)

+
1
|y|s O

((2yNϕ(εy′)
ε|y|2 +

ϕ2(εy′)
ε2|y|2

)2
)

.

Therefore,

∫
Ω∩Ũ

uα
ε vβ

ε
|x|s dx =

∫
B+

r0
2ε

(0)

uαvβ

|y|s dy− s
ε

∫
B+

r0
2ε

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy+O(ε2).

The fact ∫
R

N
+\B+

r0
2ε

(0)

uαvβ

|y|s dy = O(ε
N(N−s)

N−2 )

allows us to show that

∫
Ω∩Ũ

uα
ε vβ

ε
|x|s dx =

∫
R

N
+

uαvβ

|y|s dy− s
ε

∫
B+

r0
2ε

(0)

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy+O(ε2).

While
s
ε

∫
R

N
+\B+

r0
2ε

(0)

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy = O(ε

N2−Ns+4N
N−2 )

implies that

− s
ε

∫
B+

r0
2ε

(0)

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy

= − s
ε

∫
R

N
+

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy+

s
ε

∫
R

N
+\B+

r0
2ε

(0)

yNϕ(εy′)uα(y)vβ (y)
|y|s+2 dy

= −sε
N−1

∑
i=1

αi

∫
R

N
+

yNy2
i u

αvβ

|y|s+2 dy(1+o(1))+O(ε
N2−Ns+4N

N−2 )

= − sε
N−1

∫
R

N
+

yN |y′|2uαvβ

|y|s+2 dy
N−1

∑
i=1

αi(1+o(1))+O(ε
N2−Ns+4N

N−2 ).

So we obtain

∫
Ω∩Ũ

uα
ε vβ

ε
|x|s dx =

∫
R

N
+

uαvβ

|y|s dy−K3H(0)(1+o(1))ε +O(ε2),

where K3 = s
∫
R

N
+

yN |y′|2uα vβ

|y|s+2 dy = (α+β )
4 K1 .
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We may verify that there exists T > 0 such that I(tuε ,tvε) < 0 if t � T . For
0 < t � T ,

I(tuε , tvε) = J(tu, tv)+
H(0)

2
((K2 +K′

2−2λK1 +o(1))t2

+
4λ

2∗(s)
(K3 +o(1))t2

∗(s))ε +O(ε2).

It readily verifies that
max
t�0

J(tu,tv) = J(u,v) = c0

and

K2 +K′
2−2λK1 +

4λ
2∗(s)

K3 = K2 +K′
2−λK1 > 0

for λ > 0 small. Hence, for ε > 0 small and H(0) < 0, we conclude that

max
t�0

I(tuε ,tvε) < c0.

Taking u0 = t0uε , v0 = t0vε , where t0 is large enough so that I(u0,v0) < 0, we obtain
maxt�0 I(tu0, tv0) < c0 . The lemma is proved.

Proof of Theorem 1.2 Let λ ∗ = sup{λ > 0|(4.1) holds} . By the mountain pass
theorem and Lemma 4.1, we can find a positive solution (uε ,vε) of (3.2) such that

cε = Iε(uε ,vε) < c0 (4.2)

for ε > 0 small. We may show that ‖uε‖H1
0 (Ω), ‖vε‖H1

0 (Ω) �C , where C is independent

of ε > 0. Thus, there is a subsequence (u j,v j) of (uε ,vε) such that

u j ⇀ u, v j ⇀ v, in H1
0 (Ω), L

2N
N−2 (Ω), L2∗(s)(Ω, |x|−s dx),

and (u,v) with u,v � 0 is a solution of (1.1). If (u,v) is nontrivial, by the strong
maximum principle, u,v > 0, the theorem is proved.

In what follows, we shall prove that (u,v) is a nontrivial solution. We will use the
blow up argument as the proof of Theorem 1.1. We sketch the proof, the details may be
worked out as the proof of Theorem 1.1.

Suppose, on the contrary, that u = v = 0. Let

mj = u j(x j) = max
Ω

u j(x), n j = v j(y j) = max
Ω

v j(x),

we have either mj or n j tends to infinity, we might assume n j � mj → ∞ . Set

ũ j(y) = m−1
j u j(k jy+ x j), ṽ j(y) = m−1

j v j(k jy+ x j),

where

k j = m
− pε +q−2

2
j and pε +q =

2N
N−2

− 2ε j

2− s
.
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Then, (ũ j, ṽ j) satisfies (3.5). Using the fact that

cε < c0 <
1
N

2
2−N

2 S
N
2
p,q,

we may show as the proof of Theorem 1.1 that 0 < lim j→∞
|x j |
k j

< ∞ , mj = O(1)n j

and x j → 0, y j → 0. Suppose
x j
k j

→ y0 �= 0, and up to an affine transformation, we
see that and ũ j and ṽ j uniformly converge to u and v respectively in compact subsets
of R

N
+ with (u,v) �≡ (0,0) , which satisfies (1.11). Inferring as (3.7), we obtain c =

lim j→∞ cε j � c0 , which contradicts to the fact c < c0 . So (u,v) is a nontrivial solution
of (1.1), the proof is complete. �
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