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H I G H L I G H T S
c We demonstrate that friction-based locomotion with one-degree of freedom is possible.
c Locomotion depends on breaking symmetry in both physical properties and kinematics.
c This behavior is explained intuitively and through the system’s equations of motion.
c System locomotion is characterized for a range of physical and kinematic parameters.
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a b s t r a c t

Fluid-based locomotion at low Reynolds number is subject to the constraints of the scallop theorem,

which dictate that body kinematics identical under a time-reversal symmetry (in particular, those with

a single degree of freedom) cannot display locomotion on average. The implications of the theorem

naturally compel one to ask whether similar symmetry constraints exist for locomotion in different

environments. In this work we consider locomotion along a surface where forces are described by

isotropic Coulomb friction. To address whether motions with a single degree of freedom can lead to

transport, we analyze a model system consisting of two bodies whose separation distance undergoes

periodic time variations. The behavior of the two-body system is entirely determined by the kinematic

specification of their separation, the friction forces, and the mass of each body. We show that the

constraints of the scallop theorem can be escaped in frictional media if two asymmetry conditions are

met at the same time: the frictional forces of each body against the surface must be distinct and the

time-variation of the body–body separation must vary asymmetrically in time (so quick-slow or slow-

quick in the extension–contraction phases). Our results are demonstrated numerically and interpreted

using asymptotic expansions.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The capacity for locomotion is essential for the survival of
much of life on Earth and is manifested in strategies as diverse as
the organisms which depend on it. In fluids such as water or air
and on scales ranging from microns to tens of meters, creatures
swim and fly by beating flagella, tails, wings, undulating their
bodies, or actuating pumps (Vogel, 1994). On land, animals crawl,
walk, run, hop, climb, and slither using friction between their
bodies and the ground, or undulate and appear to ‘‘swim’’ through
sand or soil (Alexander, 2003).

The physics and scale of an environment determine the scope
of successful propulsive strategies. The strategy employed by a
ll rights reserved.

: þ1 858 822 3107.
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scallop, for example, which is to quickly open its shell, displacing
a large amount of fluid, and then close it slowly, displacing a small
amount of fluid, is ineffective if attempted in a fluid environment
where inertial forces are overwhelmed by viscous forces. This
notion forms the basis for the ‘‘scallop theorem’’, which holds that
locomotion at low Reynolds number is not possible if the kine-
matics of the body are identical under a time-reversal symmetry—

which is always true if the deformation is controlled by a single
degree of freedom (Purcell, 1977). The theorem relies on the
linearity and time-independence of the equations of motion for
the fluid (the Stokes equation) and states that in order to achieve
self-propulsion, a body at low Reynolds number must deform in a
manner indicating a clear direction of time, for example in a
waving motion (Lauga and Powers, 2009).

The beauty and important implications of this theorem, which
greatly restrict the viable propulsive strategies available to
organisms and machines at small Reynolds numbers, naturally
compel one to seek similar fundamental results for other types
of locomotion. For example, consider terrestrial locomotion for
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Fig. 1. Two-body system (1 and 2) with prescribed relative distance, l(t),

translating along the x-direction.
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which organisms make use of friction forces between their bodies
and a surface. Are strategies in this physical environment simi-
larly constrained?

In general, strategies for terrestrial locomotion may be divided
into two categories: those relying on the movement of limbs
(walking, hopping, climbing, and running) and those relying on
movements of the body (crawling and slithering). A number
of studies have explored slithering locomotion, including its
mechanics (Home, 1812; Mosauer, 1932; Gray, 1946; Hu et al.,
2009), evolutionary advantages (Gans, 1975), energetic efficiency
(Walton et al., 1991), optimization (Jing and Alben, 2012)
as well as its application to robotic propulsion (Hirose and
Morishima, 1990; Transeth et al., 2009). On crawling-types of
locomotion, which is perhaps the simplest of all forms of
terrestrial locomotion and is the subject of this work, investiga-
tions have examined the locomotion of maggots (Berrigan and
Pepin, 1995) and earthworms (Quillin, 1999), as well as hypothe-
tical discrete-mass systems including systems consisting of
two masses (Chernous’ko, 2002; Zimmerman et al., 2004) or a chain
of three or more (Figurina, 2004; Zimmerman et al., 2004, 2007,
2009; Bolotnik et al., 2011) connected by springs or rigid mechan-
isms and actuated by external forces or kinematic constraints.

A feature common to studies of the discrete-mass crawling
strategies is that they consider systems with either many degrees
of freedom (Zimmerman et al., 2004, 2007, 2009; Bolotnik et al.,
2011), anisotropic friction coefficients (Zimmerman et al., 2004), or
analyze only locomotion in the case where the masses alternately
stick and slide (Chernous’ko, 2002). Here we consider the most basic
situation where deformation with one degree of freedom (and
therefore time-reversible in its sequence of shapes) actuates a
system with isotropic Coulomb friction coefficients and which
always interacts with the surface through sliding friction forces,
and propose to quantify the minimal requirements necessary to
achieve locomotion. Is locomotion even possible with isotropic
friction using time-reversible deformations? What are the asso-
ciated minimum necessary mechanical or kinematic properties?
How do they determine the direction and magnitude of motion?

To answer these questions, we consider a simple system
consisting of two bodies which rest on a flat surface and are
joined by a mechanism that enforces the time-variation of their
separation distance. The variation in the distance between the
bodies gives rise to friction forces which determine their motion.
Friction forces are assumed to be isotropic (independent of the
direction of body velocity) as it is evident that friction anisotropy
will trivially lead to locomotion. We demonstrate that locomotion
is possible in a system with only one degree of freedom provided
that there is an asymmetry both in the friction properties of the
system as well as the deformation kinematics (meaning the time-
periodic variations in length display a quick-slow or slow-quick
sequence of extension–contraction strokes). Finally, we develop a
qualitative physical explanation for the mechanics of strategy of
locomotion through an asymptotic analysis of the equations of
motion (Bender and Orszag, 1999) and present a brief exploration
of the space of physical parameters available to the system.
2. Mathematical description of the two-body system

Consider a system consisting of two bodies with position xi

(i¼1, 2), velocity _xi, acceleration €xi, and mass mi which are
supported by a flat surface and are constrained to translate along
a horizontal line (the x-direction). The bodies are connected by a
mechanism which prescribes their relative distance and is the
single degree of freedom available to the system to form the basis
for its locomotion. The prescribed relative position of the bodies is
denoted as lðtÞ ¼ x2�x1. A schematic representation of this system
is shown in Fig. 1.

The variation in time of l(t) gives rise to a driving force, FG,i,
which is exerted on each body by the linkage and is opposed by a
friction force, Ff ,i, exerted on each body by the solid surface. The
motion of the bodies is described by Newton’s second law

€xi ¼
1

mi
ðFG,iþFf ,iÞ: ð1Þ

The friction force may be described by a variety of different models.
Here, we restrict our analysis to isotropic Coulomb friction forces
which are independent of the sliding velocity. We use a standard
model which introduces a ‘‘static’’ friction force that requires
that the force opposing it be greater in order for the given
body to translate, which we take to be the same as the sliding
friction force. Mathematically we may express this by writing the
friction law

Ff ,i ¼
�Fi sgnð _xiÞ if 9FG,i94Fi,

�FG,i if 9FG,i9rFi,

(
ð2Þ

where Fi is then the magnitude of the sliding friction force exerted
on body i by the surface. Here we choose to represent the physical
properties of the bodies and the surface as a friction force as
opposed to a friction coefficient in order to simplify the analysis;
friction coefficients mi can be found by computing mi ¼ Fi=mig.
Without loss of generality we assume that F1=m14F2=m2 (or
m14m2) to ensure that only body 1 sticks to the surface if the
driving force is too weak to overcome the friction of both bodies.

For the prescription of the relative distance between the
bodies, we assume that l(t) is a periodic function which consists
of an extension phase in which the bodies are pushed apart and a
contraction phase in which the bodies are pulled together. Again
without loss of generality, we specify the kinematics such that the
extension phase is followed by the contraction phase and the
bodies begin and end each period of the kinematic specification at
their minimum separation. If the extension phase and contraction
phase are opposite and equal in magnitude, we say that the
kinematic specification is ‘‘symmetric’’; otherwise, the kinematic
specification is ‘‘asymmetric’’.

In order to determine the driving force between the bodies
arising from the variation of their relative distance, we subtract
the acceleration of each body to obtain

€x1� €x2 ¼
€lðtÞ ¼

1

m2
ðFf ,2þFG,2Þ�

1

m1
ðFf ,1þFG,1Þ: ð3Þ

The relative position is enforced by a rigid mechanism which
implies that FG,1 ¼�FG,2, and so we have

FG2
¼

m1m2

m1þm2

€l�
Ff ,2

m2
þ

Ff ,1

m1

� �
: ð4Þ

Inserting this relation into the equations of motion for each body,
we find

€x1 ¼�
m2

m1þm2

€lþ
Ff 2
þFf 1

m1þm2
,

€x2 ¼
m1

m1þm2

€lþ
Ff 2
þFf 1

m1þm2
, ð5Þ



G.L. Wagner, E. Lauga / Journal of Theoretical Biology 324 (2013) 42–5144
which completes our mathematical description of the body
motion. For this equation of motion to hold for the blocks, the
driving force must be large enough (and the kinematic accelera-
tion large enough) such that both blocks slide. When the kine-
matic acceleration is too small for both blocks to slide, only the
block with the smaller friction force will move. Also, since the
kinematics are specified externally, the driving force is necessarily
always large enough to force motion in one of the blocks. We
therefore find that the Froude number, Fr, which is the ratio
between driving forces and friction forces and is defined as
Fr¼ ðm1þm2ÞL=T2

ðF1þF2Þ, must be relatively large. In contrast,
the locomotion of snakes is usually associated with Fro1 (Hu
et al., 2009), and while insufficient data is available to calculate Fr
for organisms which use closely related mechanisms (such as
maggots, see Berrigan and Pepin, 1995), they are almost certainly
associated with low Froude numbers as well. It seems likely that
the reason for this is tied to the energy costs associated with
maintaining high Froude numbers in frictional media.

The most striking feature of the equations of motion is the
discontinuous dependence of the friction force on the body
velocity. This discontinuity is the critical nonlinearity which
enables locomotion. However, while the equations are globally
nonlinear, it is apparent that they are linear on intervals for
which the direction of body motion does not change and that
within these the position and velocity of the bodies can be
found analytically. The full solution can therefore be determined
by pasting together the exact solutions for adjacent intervals.
Another technique to find steady solution computes the position
and velocity of the system for a single period and equates initial
and final conditions.
3. Locomotion with one degree of freedom is possible

With the mathematical description of body motion estab-
lished, we ask whether sliding locomotion with a single degree
of freedom is even possible. For our simple two-body system we
observe two distinct modes of asymptotic motion, as illustrated in
Fig. 2: stationary oscillation around a fixed point (no locomotion,
see Fig. 2A and B) and net translation (locomotion, see Fig. 2C
and D). In both examples from Fig. 2, bodies 1 and 2 have the
same mass (m1 ¼m2) but are subject to different friction forces
on the surface (F2aF1). The two examples only differ in their
kinematic specification: in A and B, the bodies are actuated with a
symmetric kinematic specification, resulting in stationary oscilla-
tion, whereas in C and D an asymmetric kinematic specification
leads to locomotion. In both cases the bodies exhibit transient
behavior at the onset of motion which progresses into an
asymptotic, stable mode of motion after long times.

In general, three different regimes exist in the choice of relative
friction force and kinematic specification: (a) equal friction forces
and arbitrary kinematics, (b) unequal friction forces and symmetric
kinematics, and (c) unequal friction forces and asymmetric kine-
matics. Regimes (a) and (b) lead to stationary oscillation, whereas
parameter choices falling into regime (c) lead to translation. Locomo-
tion with a single degree of freedom is therefore possible provided
that there is an asymmetry in both the kinematics (actuation occurs
at a different rate one way than the other) and the friction forces
exerted by each block on the surface.
4. Physics of locomotion with one degree of freedom: double
symmetry-breaking

The locomotion of the system depends on the frictional
symmetry between the bodies as well as the symmetry between
the extension and contraction phases of the kinematic specifica-
tion. Physically, the asymmetry in friction forces is required
because if the friction forces are symmetric, a solution exists in
which the velocities of the bodies always oppose one another, and
accordingly their friction forces cancel each other such that their
resulting equations of motion are merely proportional to the
kinematic specification. The asymmetry in the kinematic specifi-
cation is required because if the extension and contraction phases
are opposite and equal in magnitude, a solution exists for which
the net motion of the bodies over each phase is equal and
opposite, which cumulatively result in no net motion over the
kinematic period. The breaking of each of these symmetries
divides the space of possible system properties into the three
aforementioned fundamental regimes; we now examine each
regime in detail.

4.1. Symmetric friction forces

When the friction forces exerted by each bodies are identical,
the system does not translate. If the bodies are pushed apart in
opposing directions after an initial time t¼ t0, the velocity and
position of body 1 are given by

_x1 ¼�
m2

m1þm2

_l, ð6Þ

x1 ¼�
m2

m1þm2
½lðtÞ�lðt0Þ�þx1ðt0Þ, ð7Þ

where we have used _x1ð0Þ ¼ _lð0Þ ¼ 0. The position of body 2 can be
found similarly, and if for simplicity we use xCð0Þ ¼ 0, we find the
position of the center of mass to be

xCðtÞ ¼
1

2

m1

m2
�1

� �
½x1ðtÞ�x1ðt0Þ�: ð8Þ

Since x1ðtÞ is periodic in time (via Eq. (6)), we find that the
position of the geometric center is periodic as well and the system
exhibits stationary oscillation. When m1 ¼m2, the center of the
system is stationary for all times.

4.2. Asymmetric friction forces, symmetric kinematics

Further, even if the friction forces exerted by the bodies are
asymmetric, the system will not translate if the kinematic
specification is symmetric. This is best described mathematically
by stating that lðtÞ ¼ lðT�tÞ for all t, where T is the period of
oscillation of l(t). In this case, we are able to find a solution
in which the system does not exhibit locomotion. To simplify
the argument we consider the extension and contraction phases
separately, which we denote A and B, respectively. Each phase
begins at a time t0 and ends at time tf, and the position of the
geometric center during each phase is xA and xB.

When the friction forces exerted by the bodies are unequal and
the system is oriented as in Fig. 1, we observe that the system
velocity increases over the course of an extension phase. It is then
possible to find a small negative initial system velocity at the
beginning of the extension phase such that � _xAðt0Þ ¼ _xAðtf Þ. Then,
by examination of the equations of motion (1), it is evident that if
the relative acceleration imposed by the contraction phase is
opposite that imposed by the extension phase, then _xBðt0Þ ¼ _xAðtf Þ

implies _xBðt0Þ ¼� _xBðtf Þ and _xAðt0Þ ¼ _xBðtf Þ, and the considered
initial system velocity constitutes an equilibrium initial system
velocity in a periodic solution for the system motion. Further,
the same logic applies to the system position: if the kinematic
specification is opposite in sign and equal in magnitude, and if
the body velocities are opposite in sign, then the motion of the
geometric center over the extension and contraction phases,
respectively, will be opposite in sign and equal, and the system



Fig. 2. Example of asymptotic stationary oscillation for equal masses (m1 ¼m2 ¼ 1) but unequal friction forces (F1 ¼ 4, F2 ¼ 1) and a symmetric kinematic specification.

(A) Positions of both bodies (body 1, thick blue line; body 2, dashed red line) and geometric center (dash-dotted black line). (B) Time-variation of the normalized separation

distance between the two bodies, ðx2�x1Þ=L, showing symmetric kinematics. (C) and (D) the same as in (A) and (B) but with asymmetric kinematics leading to locomotion.
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will experience no net motion cumulatively over both phases.
Locomotion is therefore not possible when the extension and
contraction phases of the kinematic specification are symmetric,
even under asymmetric friction. The statements of Sections 4.1
and 4.2 constitute thus a form of scallop theorem for locomotion
under isotropic friction.
4.3. Asymmetric friction forces, asymmetric kinematics

We have demonstrated that asymmetric friction forces and
asymmetric kinematics can result in locomotion, but the question
remains: why? Some insight can be gained by considering the
system in the asymptotic limit of zero kinematic period, or fast
kinematics and strong driving forces. We make two key observa-
tions. First, over the duration of an extension phase, the body with
a smaller friction force (body 2) will move farther forward (x40)
than the body with a smaller friction force (body 1) when the
bodies are pushed part. This implies trivially that the geometric
center of the system will move forward during an extension phase
and backward during a contraction phase. Second, if the extension
phase is longer (and the kinematic velocity faster) than the
contraction phase, the net change in system position over both
intervals will be positive. This can be understood by examining
the first terms of an asymptotic expansion in the extension phase
duration for the change in system velocity and position over the
phase. Due to the piecewise nature of the equations, we must
consider separately the case where the bodies begin the extension
phase at rest from the case where they begin with some initial
velocity.
4.3.1. A single extension phase when bodies are initially at rest

Consider the two-block system when it is initially at rest at
time t0 ¼ 0. In this case, the extension phase is divided into
two intervals distinguished by the sign of the velocity of body 1,
as illustrated in Fig. 3 where we show both the body positions
(A) and velocities (B). In the first interval, which constitutes the
greater part of the extension phase, the bodies are pushed apart
from their stationary position so that body 2 moves forward
and body 1 backward, and €lðtÞ40. This interval ends when the
velocity of body 1, which is lesser in magnitude than body 2 due
to its larger friction force, reaches zero and changes direction.
In the second interval, both bodies move forward until the end of
the interval is reached.

The motion of each body is described by Eq. (5). In the first
interval we have that Ff 1

¼ F1 and Ff 2
¼�F2, which yields

€x1 ¼�
m2

m1þm2

€lðtÞþ
F1�F2

m1þm2
� ð9Þ

Integrating from t¼0 to t, and noting that the body is initially at
rest, we find the body velocity

_x1ðtÞ ¼�
m2

m1þm2

_lðtÞþ
F1�F2

m1þm2
t, ð10Þ

and integrating again and setting x1ð0Þ ¼ 0, we obtain the body
position

x1ðtÞ ¼ �
m2

m1þm2
lðtÞþ

F1�F2

m1þm2

t2

2
� ð11Þ

The first interval ends when the velocity of body 1 reaches zero.
We expect this to occur very close to the end of the interval at a
time t¼ T�DT , where DT5T (see Fig. 3). We therefore expand _lðtÞ



Fig. 3. Illustration of body position (A) and velocity (B) in an extension phase when both bodies start from rest; (A) normalized body positions, xi=L; (B) normalized body

velocities, _xi � ðT=LÞ. There are two intervals distinguished by the signs of the body velocities; in the first, the bodies have opposite velocity and are pushed apart; in the

second, both bodies translate forward.
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near t¼T to find

_x1ðT�DTÞ ¼ 0¼DT½m2
€lðTÞ�F1þF2�þðF1�F2ÞTþOðDT2

Þ, ð12Þ

which implies that

DT ¼�
F1�F2

m2
€lðTÞ�F1þF2

T : ð13Þ

To emphasize the dependence of quantities on the phase duration
T, we note that if the length of extension remains constant we
expect the kinematic acceleration to scale as €l � 1=T2. We there-
fore introduce the notation €lðTÞ ¼ lT=T2, where lT is some constant
which is proportional to the maximum separation between the
bodies l(T), and write

DT ¼�
F1�F2

m2lT
T3
þOðT5

Þ: ð14Þ

The position of body 1 at the end of the interval is

x1ðT�DTÞ ¼�
m2

m1þm2
lðTÞþ

F1�F2

m1þm2

T2

2
þOðT3

Þ: ð15Þ

We can now find the final body velocities and positions. In the
second interval we have that both body velocities are positive
implying that Ff 1

¼�F1 and Ff 2
¼�F2. This yields the equation of

motion

€x1 ¼�
m2

m1þm2

€lðtÞ�
F1þF2

m1þm2
� ð16Þ

The velocity of body 1 is found by integration, where by
specification the initial velocity of the body in this interval is zero

_x1ðtÞ ¼ �
m2

m1þm2
½_lðtÞ�_lðT�DTÞ��

F1þF2

m1þm2
½t�ðT�DTÞ�, ð17Þ

and at time t¼T we find

_x1ðTÞ ¼
F1�F2

m1þm2
TþOðT3

Þ: ð18Þ

It is not necessary to solve for the velocity of body 2, because by
definition of the kinematics it will equal the velocity of body 1 at
time t¼T. The position of body 1 is found by integrating the body
velocity

x1ðTÞ ¼�
m2

m1þm2
lðTÞþ

F1�F2

m1þm2

T2

2
þOðT4

Þ: ð19Þ

Since x2ðTÞ ¼ x1ðTÞþ lðTÞ, we find that

x2ðTÞ ¼
m1

m1þm2
lðTÞþ

1

2

F1�F2

m1þm2
T2
þOðT4

Þ, ð20Þ
and the geometric center xC ¼ ðx1þx2Þ=2 is

xCðTÞ ¼
1

2

m1�m2

m1þm2
lðTÞþ

1

2

F1�F2

m1þm2
T2
þOðT4

Þ: ð21Þ

The first term in this expression is the change in position due to
the difference in body inertia and is independent of the phase
duration. The second term, however, is proportional to the
difference in friction forces between the blocks and therefore
contains the key to the direction of body translation. Its origin is
in the short interval of time that both bodies are moving forward:
because an increase in phase duration causes the length of
this interval to increase, the change in final system position is
correspondingly increased as well.

4.3.2. A single extension phase when bodies have an initial positive

velocity

The situation detailed in the previous section is modified
somewhat by the existence of an initial system velocity at the
beginning of the kinematic period. A similar asymptotic analysis
(the details of which are given in Appendix A) with an initial
positive velocity _x0 yields the change in system velocity and
position, respectively

_xCðTÞ� _x0 ¼
F1�F2

m1þm2
T� _x0

2F1

m2

1

l0
�

1

lT

� �
T2
þOðT3

Þ, ð22Þ

and

xCðTÞ ¼
1

2

m1�m2

m1þm2
lðTÞþ _x0Tþ

1

2

F1�F2

m1þm2
T2
� _x0

2F1

m2l0
T3
þOðT4

Þ,

ð23Þ

where lT and l0 are the lengths which characterize the acceleration
term in the kinematic specification. The effect of the small initial
velocity is to increase the total change in system position and to
decrease the change in system velocity. The first is intuitive and
easy to understand. The second is also intuitive and explains why
the system exhibits stable dynamics, since period-wise increases
in the initial velocity decay until the initial velocity reaches some
steady-state.

4.3.3. A full kinematic period when bodies translate in steady-state

We can then address an extension phase followed by a
contraction phase when the bodies are translating in steady-
state. This requires us to first obtain the steady-state velocity
for particular system parameters, and then insert this into our
equation for the final body position after the full kinematic period.
To derive the steady-state velocity, we consider the change in
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velocity after an extension phase and a contraction phase and set
the final and initial velocities equal to one another.

For the contraction phase, the final velocity and position of the
body when starting with some small initial positive velocity are
simply the opposite of that for the extension phase

_xCðTÞ� _x0 ¼�
F1�F2

m1þm2
Tþ _x0

2F2

m1

1

l0,c
�

1

lT ,c

� �
T2
þOðT3

Þ, ð24Þ

and

xCðTÞ ¼ �
1

2

m1�m2

m1þm2
lðTÞþ _x0T�

1

2

F1�F2

m1þm2
T2
þ _x0

2F2

m1l0,c
T3
þOðT4

Þ,

ð25Þ

where we have used the subscript c to differentiate the kinematic
constants in the contraction phase (c) from the extension phase
(e). The details of this calculation are found in Appendix B. For a
contraction phase which is functionally equivalent and opposite
to the extension phase, we have l0,e ¼�l0,c , and lT,e ¼�lT ,c , even if
the phases have different durations. We then find the steady-state
velocity by combining an extension phase with a contraction
phase and setting the final velocity equal to the initial velocity. By
writing the extension phase duration as aT and the contraction
phase duration as ð1�aÞT with kinematic period T, we obtain

_x0 ¼
ðF1�F2Þð2a�1Þ

2Tð1=l0�1=lT Þ½a2F1m1þð1�aÞ2F2m2�

m1m2

m1þm2

� �
þOðTÞ: ð26Þ

We can simplify this expression by defining a reduced system
mass mn ¼m1m2=ðm1þm2Þ and lumping the kinematic-dependent
parameters into a single parameter with dimensions of length
Lkin ¼ l0lT=½2ðlT�l0Þ�; if L is the difference between the greatest and
least separation of the bodies, then Lkin ¼ L for a piecewise quadratic
form for the kinematic specification and p2L=8 for a sinusoidal form.
The relation becomes

_x0 ¼ ðF1�F2Þð2a�1Þ
Lkinmn

a2F1m1þð1�aÞ2F2m2

1

T
þOðTÞ: ð27Þ

Accordingly we find that the steady-state initial velocity is inversely
proportional to the total phase duration (or proportional to the
prescribed kinematic velocity). Using this initial velocity to compute
the final position of the bodies, we find that

xC ¼ ðF1�F2Þð2a�1Þ
Lkinmn

a2F1m1þð1�aÞ2F2m2

þOðT4
Þ: ð28Þ

This expression encapsulates the main result of this paper and
explicitly establishes the two conditions necessary for loco-
motion. The first condition is that aa1=2; or there must be an
Fig. 4. Change in system position (A) and velocity (B) over a single extension phase vers

normalized system velocity, D _xC � T=L. The full calculation is plotted with solid lines w

shown with dashed lines. The parameters are lðTÞ ¼ 10, F2 ¼ 1, m1 ¼m2 ¼ 1 and the plo
asymmetry between the extension and contraction phases of the
kinematics. The second condition is that F1aF2; or there must be
an asymmetry between the friction force exerted by each body
on the supporting surface. It is important to note that condition
requires an asymmetry in the friction force specifically, regardless of
how this force depends on material parameters (such as mass
or friction coefficient). Furthermore, we see that the change in
position of the bodies therefore goes to a constant as the kinematic
period vanishes, and the effective velocity of the system scales as
xC=T � 1=T , or with the velocity of the kinematics.

4.4. A physical description for all parameter regimes

With an explanation in hand for when the driving force is
large compared to the friction force, we now examine the
relationship between phase interval and the change in system
velocity and position for the full range of extension phase
durations. In Fig. 4 we plot the change in system position
(A) and velocity (B) against the length of the extension phase
for all physically valid extension phase durations and a kinematic
specification which is piecewise quadratic and continuous in
position and velocity.

The dependence on the change in system position on phase
duration (Fig. 4A) provides an indication of the direction of
system translation. We see that this dependence is monotonic,
which implies that the system will always translate forward
when the extension phase is longer than the contraction phase,
and vice versa.

The dependence of system velocity on phase duration (Fig. 4B)
provides an indication of the nature of the system dynamics. Here
we find that the change in system velocity is not monotonic with
phase duration. When the phase duration is short (large driving
force, high Froude number) the change in system velocity increases
as the phase duration increases. When the phase duration is long
(smaller driving force, relatively smaller Froude number) this
dependence is reversed.

The combination of these two effects implies that there are
two distinct regimes of translation for sliding locomotion of this
system. When the change in system velocity is increasing with
increasing duration, period-wise initial velocity of the system
will be positive when the bodies are translating in the forward
direction. However when the system velocity decreases with
increasing phase duration, we find that the period-wise initial
velocity of the system is antagonistic to the overall direction of
translation. Finally, the maximum period-wise displacement of
the system and therefore maximum average system velocity for
us phase duration; (A) change in normalized system position, DxC=L; (B) change in

hile the asymptotic expansion presented in the text for small phase durations is

ts are shown for three different friction asymmetries F1=F2 ¼ f2,10,40g.



Fig. 5. (A) Dependence of the period-averaged velocity, /US, on the kinematic asymmetry, a, for F2 ¼ 1 and three values of F1; (B) dependence of /US on the friction

asymmetry F1=F2 for a¼ 3=4 and three values of F2. In both cases we have m1 ¼m2 ¼ 1, lðTÞ ¼ 10.
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a given kinematic specification occurs at the boundary between
these two regimes. This can be explained by observing that a zero
initial velocity at the beginning of the extension phase implies
that the initial velocity for the contraction phase is at a maximum,
which minimizes the decrease in system position over this phase.

4.5. Parameter studies

Once it is known that both an asymmetry in the specified
kinematics and an asymmetry in the critical friction forces are
necessary for the system to achieve net locomotion, we may ask
how the motion of the system is dependent on the extent of the
asymmetries. One metric which characterizes the capacity of the
system for locomotion is its velocity, and so to probe the effect
of physical asymmetry on system behavior we define a ‘‘period-
averaged velocity’’ as

/US¼
xCðt0þTÞ�xCðt0Þ

T
� ð29Þ

For the kinematic specification, we choose a simple piecewise
quadratic form and define a parameter a to characterize the
asymmetry of the kinematics. The length of the extension phase is
then aT and the contraction phase is ð1�aÞT, and a¼ 1=2 implies
a symmetric kinematic specification.

In Fig. 5, we plot the period-averaged velocity against both the
kinematic asymmetry (left) and the asymmetry in friction forces
(right). For the kinematic asymmetry, we observe that the period-
averaged velocity of the system increases as the specified kine-
matics become more asymmetric.

For the frictional asymmetry, we observe that the period-
averaged velocity increases to a maximum and then decays
to zero as the asymmetry increases, which is expected since no
translation occurs either for F1=F2 ¼ 1 or as F1=F2-1 (when the
friction force is too large for the kinematic specification to
force the system into a sliding mode of locomotion). Further,
as explained in the previous section, we observe the two distinct
regimes of translation in which the period-wise initial system
velocity is either in the same direction as translation (small F1=F2)
or in the opposite direction (large F1=F2).
5. Discussion

In this work, we attempt to understand the behavior of
the conceptually simplest crawler possible: a one-dimensional,
one-degree of freedom system consisting of two mechanically
connected point masses. We find that such a system is able to
achieve time-averaged translation even when its frictional inter-
actions with the surface are isotropic and are mediated only
through sliding contact, in addition to the more evident cases
of intermittent static contact and anisotropic friction. We use
computations and physical reasoning to show which and in what
manner symmetries must to be broken to obtain net locomotion.
In doing so, we demonstrate that
�
 Friction-based locomotion with one degree of freedom is
possible because of the non-linear dependence of the friction
force on body velocity.

�
 Two symmetries must be broken in order for the system to

achieve locomotion: the two components of the body must
exert a different friction force on the supporting surface, and
the body kinematics must be asymmetric on a single period of
actuation.

�
 The physical mechanism of locomotion results from an inter-

val within a single kinematic period in which the body with a
smaller friction force (faster) carries the other body (slower)
forward.

�
 For each chosen set of physical parameters and kinematic

function the system always eventually achieves a steady-state
of locomotion.

�
 Two fundamental regimes of translation exist which corre-

spond to the relative strength of the driving force to the
friction force (or Froude number): when the driving force is large
(higher Froude numbers) the system velocity at the beginning
of each period is in the direction of translation; when the
driving force is smaller (relatively lower Froude numbers) this
initial system velocity opposes the direction of translation;
and the maximum velocity occurs on the boundaries of these
two regimes.

Further, we observe that locomotion in this system occurs
necessarily at relatively high Froude number. While experimental
data on the forces exerted by crawling organisms is difficult to
obtain, it seems likely that most crawling organisms locomote
low Froude numbers. This may have something to do with
the energetic cost of maintaining high velocities (and therefore
high Froude numbers) in frictional media; in our system, much
mechanical energy is wasted in applying sufficiently large forces
to the blocks to ensure that they always slide.

The established criterion for the asymmetries of a two mass,
friction-based system is fundamental knowledge in the physics of
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terrestrial locomotion. Additionally we hope that this study will
help guide the analysis and design of simple crawlers for use
in exploration and medicine, as well aid in the development of
intuition and understanding of more advanced and complex
modes of terrestrial locomotion.
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Appendix A. Analysis of a single extension phase when bodies
start with some small initial velocity

We examine here the effect some small initial positive velocity
has on the final position and velocity of the system after a single
extension phase. When both bodies begin with a positive velocity
the equation of motion for body 1 is

€x1 ¼�
m2

m1þm2

€lðtÞ�
F1þF2

m1þm2
� ðA:1Þ

Integration yields the body velocity

_x1ðtÞ ¼ �
m2

m1þm2

_lðtÞ�
F1þF2

m1þm2
tþ _x0, ðA:2Þ

and the body position

x1ðtÞ ¼�
m2

m1þm2
lðtÞ�

F1þF2

m1þm2

t2

2
þ _x0t, ðA:3Þ

where we set the initial position of body 1 to x1ð0Þ ¼ 0. The first
interval ends at time t¼ t1 when the velocity of body 1 decreases
to 0. In general this can only be solved if l(t) is specified, but to
start let us assume that t1 is small. We can then expand _lðt1Þ to
obtain

_x1ðt1Þ ¼�
m2

m1þm2
t1
€lð0Þ�

F1þF2

m1þm2
t1þ _x0þOðt2

1Þ: ðA:4Þ

We then find that _x1ðt1Þ ¼ 0 when

t1 ¼ _x0
m1þm2

m2
€lð0ÞþF1þF2

� ðA:5Þ

When T-0 and using the notation €lð0Þ ¼ l0=T2 we have that

t1 ¼
_x0ðm1þm2Þ

m2l0
T2 1

1þT2F1þ F2
m2 l0

 !
,

¼
_x0ðm1þm2Þ

m2l0
T2 1�T2 F1þF2

m2l0
þT4 F1þF2

m2l0

� �2

þ � � �

" #
,

¼ _x0
ðm1þm2Þ

m2l0
T2 1�T2 F1þF2

m2l0

� �
þOðT6

Þ, ðA:6Þ

which confirms our assumption that t1 is small when T-0. The
position of body 1 at the end of the first interval is

x1ðt1Þ ¼�
m2

m1þm2

t2
1

2
€lð0Þ�

F1þF2

m1þm2

t2
1

2
þ _x0t1,

¼ t1 _x0�
t1

2

m2
€lð0ÞþF1þF2

m1þm2

 !
,

¼
_x0t1

2
¼ OðT2

Þ: ðA:7Þ

In the second interval, body 1 is moving backward and body 2 is
moving forward. The equation of motion is

€x1 ¼�
m2

m1þm2

€lðtÞþ
F1�F2

m1þm2
� ðA:8Þ
Integration yields the body velocity

_x1ðtÞ ¼�
m2

m1þm2

_lðtÞ�_lðt1Þ

h i
þ

F1�F2

m1þm2
ðt�t1Þ, ðA:9Þ

and integrating again yields the body position

x1ðtÞ ¼ �
m2

m1þm2
½lðtÞ�lðt1Þ�þ

m2

m1þm2

_lðt1Þðt�t1Þ

þ
1

2

F1�F2

m1þm2
ðt�t1Þ

2
þx1ðt1Þ: ðA:10Þ

This interval ends at time t¼ t2 when the velocity of body 1 goes
to zero again and both bodies are translating forward. We use the
ansatz that t2 is very close to the end of the interval T and, as in
the case where the bodies start from rest, define DT ¼ T�t2. We
then have that

_lðT�DTÞ ¼ _lðTÞ�DT€lðTÞþOðDT2
Þ,

¼�DT€lðTÞþOðDT2
Þ, ðA:11Þ

and

lðT�DTÞ ¼ lðTÞ�DT_lðTÞþ
DT2

2
€lðTÞþOðDT3

Þ,

¼
DT2

2
€lðTÞþOðDT3

Þ: ðA:12Þ

The equation for body velocity becomes

0¼�
m2

m1þm2
½�DT€lðTÞ�t1

€lð0Þ�þ
F1�F2

m1þm2
½ðT�DTÞ�t1�,

¼DT½m2
€lðTÞ�ðF1�F2Þ�þt1½m2

€lð0Þ�ðF1�F2Þ�þðF1�F2ÞT

¼DT½m2
€lðTÞ�ðF1�F2Þ�þ _x0ðm1þm2Þ

m2
€lð0Þ�F1þF2

m2
€lð0ÞþF1þF2

þðF1�F2ÞT :

ðA:13Þ

This implies that

DT ¼�
1

m2
€lðTÞ�F1þF2

2
4 _x0ðm1þm2Þ

m2
€lð0Þ�F1þF2

m2
€lð0ÞþF1þF2

� � � þðF1�F2ÞT

3
5:

ðA:14Þ

Using the notation €lð0Þ ¼ l0=T2 and €lðTÞ ¼ lT=T2, we find

DT ¼�
T2

m2lT

1

1�T2F1�F2

m2 lT

 !
_x0ðm1þm2Þ

1�T2F1�F2

m2 l0

1þT2F1þF2

m2 l0

"
þðF1�F2ÞT

3
5,

¼�T3 F1�F2

m2lT
1þT2 F1�F2

m2lT

� �
þOðT7

Þ . . .

�T2 _x0ðm1þm2Þ

m2lT
1þT2 F1�F2

m2lT

� �
1�T2 F1�F2

m2l0

� �
� � �

� 1�T2 F1þF2

m2l0

� �
þOðT6

Þ: ðA:15Þ

Rearranging, we find

DT ¼�
_x0ðm1þm2Þ

m2lT

� �
T2
�

F1�F2

m2lT

� �
T3

�
_x0ðm1þm2Þ

m2lT

F1�F2

m2lT
�

2F1

m2l0

� �� �
T4
þOðT5

Þ: ðA:16Þ

The position of body 1 at the end of the second interval is

x1ðT�DTÞ ¼�
m2

m1þm2
½lðT�DTÞ�lðt1Þ�

þ
m2

m1þm2

_lðt1ÞðT�DT�t1Þ

þ
1

2

F1�F2

m1þm2
ðT�DT�t1Þ

2
þx1ðt1Þ,

¼�
m2

m1þm2
lðTÞ�

1

2

m2

m1þm2
½DT2€lðTÞ�t2

1
€lð0Þ�

þ
m2

m1þm2
t1
€lð0ÞðT�DT�t1Þ
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þ
1

2

F1�F2

m1þm2
ðT�DT�t1Þ

2
þ
_x0t1

2
þOðT4

Þ,

¼�
m2

m1þm2
lðTÞþT2 1

2

F1�F2

m1þm2

� �

þDT2
�

1

2

m2
€lðTÞ

m1þm2
þ

1

2

F1�F2

m1þm2

" #

þt2
1 �

1

2

m2
€lð0Þ

m1þm2
þ

1

2

F1�F2

m1þm2

" #

�TDT
F1�F2

m1þm2

� �
þt1T

m2
€lð0Þ

m1þm2
�

F1�F2

m1þm2

" #

þt1DT �
m2

€lð0Þ

m1þm2
þ

F1�F2

m1þm2

" #
þ
_x0t1

2
þOðT4

Þ: ðA:17Þ

After much algebra, we obtain

x1ðT�DTÞ ¼�
m2

m1þm2
lðTÞþ _x0Tþ

1

2

F1�F2

m1þm2
þð _x0Þ

2 m1þm2

m2lT

� �
T2

þ
_x0

m2

F1�F2

lT
�

2F1

l0

� �
T3
þOðT4

Þ: ðA:18Þ

In the final interval both bodies have a positive velocity. The
equation of motion for body 1 is

€x1 ¼�
m2

m1þm2

€lðtÞ�
F1þF2

m1þm2
, ðA:19Þ

so, noting that body 1 is at rest at the beginning of the final
interval, the velocity of body 1 is

_x1 ¼�
m2

m1þm2
½_lðtÞ�_lðt2Þ��

F1þF2

m1þm2
ðt�t2Þ, ðA:20Þ

and its position

x1 ¼�
m2

m1þm2
½lðtÞ�lðt2Þ�þ

m2

m1þm2

_lðt2Þðt�t2Þ

�
1

2

F1þF2

m1þm2
ðt�t2Þ

2
þx1ðt2Þ: ðA:21Þ

At time t¼T we find for the body velocity

_x1ðTÞ ¼�
m2

m1þm2
½_lðTÞ�_lðT�DTÞ��

F1þF2

m1þm2
DT ,

¼�DT
m2

m1þm2

€lðTÞþ
F1þF2

m1þm2

� �
þOðT4

Þ,

¼�DT
m2

m1þm2
lT T�2

þ
F1þF2

m1þm2

� �
þOðT4

Þ,

¼ _x0þ
F1�F2

m1þm2
T� _x0

2F1

m2

1

l0
�

1

lT

� �
T2
þOðT3

Þ, ðA:22Þ

and for the position of body 1

x1 ¼�
m2

m1þm2
½lðTÞ�lðT�DTÞ�þ

m2

m1þm2

_lðT�DTÞDT

�
1

2

F1þF2

m1þm2
DT2
þx1ðT�DTÞ,

¼�
1

2

m2

m1þm2
DT2€lðTÞ�

1

2

F1þF2

m1þm2
DT2
þx1ðT�DTÞþOðT6

Þ,

¼�
1

2

m2

m1þm2

lTDT2

T2
þx1ðT�DTÞþOðT4

Þ,

¼�
m2

m1þm2
lðTÞþ _x0Tþ

1

2

F1�F2

m1þm2

� �
T2
þ _x0

2F1

m2l0
T3
þOðT4

Þ:

ðA:23Þ

At the end of the extension phase, the velocity of body 2 is equal
to that of body 1, and the position of body 2 is x2ðTÞ ¼

x1ðTÞþ lðTÞThe velocity of the geometric center _xC ¼ ð _x1þ _x2Þ=2 is
therefore

_xCðTÞ ¼ _x0þ
F1�F2

m1þm2
T� _x0

2F1

m2

1

l0
�

1

lT

� �
T2
þOðT3

Þ, ðA:24Þ
and the position of the geometric center xC ¼ ðx1þx2Þ=2 is

xCðTÞ ¼
1

2

m1�m2

m1þm2
lðTÞþ _x0Tþ

1

2

F1�F2

m1þm2

� �
T2
þ _x0

2F1

m2l0
T3
þOðT4

Þ:

ðA:25Þ
Appendix B. Analysis of a single contraction phase when
bodies start with some small initial velocity

We examine here the change in velocity of the two body
system after a contraction phase when the bodies begin and end
with some small initial positive velocity. This velocity is pre-
sumed small enough such that the contraction kinematics induce
a reversal in the velocity of body 2, but large enough such that
the body still has a positive velocity at the end of the phase. This
analysis is very similar to the extension phase analysis, except
that it is the velocity of body 2 which is now of interest. The
equation of motion for body 2 is

€x2 ¼
m1

m1þm2

€lðtÞ�
F1þF2

m1þm2
� ðB:1Þ

This equation of motion holds until the velocity of body 2 changes
sign. Using the same steps as for the extension phase and letting
T-0, we find the time t1 at which _x2ðt1Þ ¼ 0

t1 ¼ _x0
m1þm2

�m1
€lð0ÞþF1þF2

,

¼� _x0
m1þm2

m1l0
T2 1þT2 F1þF2

m1l0

� �
þOðT6

Þ: ðB:2Þ

The position of body 2 at t¼ t1 is

x2ðt1Þ ¼ x2ð0Þþ
m1

m1þm2
ðlðt1Þ�lð0ÞÞ�

1

2

F1�F2

m1þm2
t2

1þ _x0t1,

¼ x2ð0Þþt1 _x0�
t1

2

F1þF2�
€lð0Þm1

m1þm2

" #
,

¼ x2ð0Þþ
_x0t1

2
þOðT2

Þ: ðB:3Þ

In the second interval, body 1 is moving forward and body 2 is
moving backward, and the equation of motion for body 2 is

€x2 ¼
m1

m1þm2

€lðtÞ�
F1�F2

m1þm2
� ðB:4Þ

As in the extension phase with body 1, this interval ends when
the velocity of body 2 changes sign. It is convenient to again
define DT ¼ T�t2, and we find

DT ¼
1

m1
€lðTÞ�F1þF2

2
4 _x0ðm1þm2Þ

m1
€lð0Þ�F1þF2

m1
€lð0Þ�F1�F2

�ðF1�F2ÞT

3
5
ðB:5Þ

With the notation €lð0Þ ¼ l0=T2 and €lðTÞ ¼ lT=T2, and expanding in
powers of T, this becomes

DT ¼�
F1�F2

m1lT
T3 1þT2 F1�F2

m1lT

� �
þOðT7

Þ

þT2 _x0ðm1þm2Þ

m1lT
1þT2 F1�F2

m1lT

� �
1�T2 F1�F2

m1l0

� �
� � �

� 1þT2 F1þF2

m1l0

� �
þOðT6

Þ,

¼
_x0ðm1þm2Þ

m1lT

� �
T2
�

F1�F2

m1lT

� �
T3

þ
_x0ðm1þm2Þ

m1lT

F1�F2

m1lT
þ

2F2

m1l0

� �� �
T4
þOðT5

Þ: ðB:6Þ

Expanding the kinematic specification in the same way as in the
extension phase calculation, and noting that in this case lðTÞ ¼ 0,
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we find the position of body 2 at the end of the second interval

x2ðT�DTÞ ¼
m1

m1þm2
½lðT�DTÞ�lðt1Þ��

m1

m1þm2

_lðt1ÞðT�DT�t1Þ

�
1

2

F1�F2

m1þm2
ðT�DT�t1Þ

2
þx2ðt1Þ,

¼�
m1

m1þm2
lð0Þþ

1

2

m1

m1þm2
½DT2€lðTÞ�t2

1
€lð0Þ�

�
m1

m1þm2
t1
€lð0ÞðT�DT�t1Þ

�
1

2

F1�F2

m1þm2
ðT�DT�t1Þ

2
þx2ð0Þþ

_x0t1
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Þ, ðB:7Þ

which simplifies to

x2ðT�DTÞ ¼ x2ð0Þ�
m1

m1þm2
lð0Þþ _x0T

�
1

2

F1�F2

m1þm2
þð _x0Þ

2 m1þm2

m1lT

� �
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þ
_x0

m1

F1�F2

lT
þ

2F2

l0

� �
T3
þOðT4

Þ� ðB:8Þ

In the third interval, both bodies are translating forward. The
equation of motion for body 2 is then

€x2 ¼
m1

m1þm2

€lðtÞ�
F1þF2

m1þm2
� ðB:9Þ

By integrating from T�DT to T and employing the fact that
_x2ðT�DTÞ ¼ 0, we find the velocity of body 2 at the end of the
contraction phase

_x2ðTÞ ¼
m1

m1þm2
½_lðTÞ�_lðT�DTÞ��

F1þF2

m1þm2
DT ,

¼
m1
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2F2

m1

1

l0
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lT

� �
þOðT3

Þ: ðB:10Þ

The position of body 2 is

x2ðTÞ ¼
m1

m1þm2
½lðTÞ�lðT�DTÞ�þ

m1
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�
1
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DT2
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¼
1

2
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Þ,
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m1
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1

2

F1�F2

m1þm2
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þ _x0

2F2

m1l0
T3
þOðT4

Þ:

ðB:11Þ
Finally, we find the velocity of the geometric center by observing
that at the end of the contraction phase we have _x1ðTÞ ¼ _x2ðTÞ ¼
_xCðTÞ, and we find the position of the geometric center by
observing that because lðTÞ ¼ 0 then we must have xCðTÞ ¼ x2ðTÞ.
Further, if we presume that, as in the extension interval calcula-
tion, the initial position of the geometric center is xCð0Þ ¼ 0, we
find that x2ð0Þ ¼ lð0Þ=2. The velocity of the geometric center at the
end of the contraction phase is therefore

_xCðTÞ ¼ _x0�
F1�F2

m1þm2

� �
Tþ _x0

2F2

m1

1

l0
�

1

lT

� �
þOðT3

Þ, ðB:12Þ

and the position of the geometric center is

xCðTÞ ¼�
1

2

m1�m2

m1þm2
lð0Þþ _x0T�

1

2

F1�F2

m1þm2
T2
þ _x0

2F2

m1l0
T3
þOðT4

Þ:

ðB:13Þ

Appendix C. Supplementary materials

Supplementary data associated with this article can be found in
the online version, at http://dx.doi.org.10.1016/j.jtbi.2013.01.021
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