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Abstract— Bistatic SAR uses separated transmitter and re-
ceiver flying on different platforms. This configuration is en-
visaged to achieve benefits like the exploitation of additional
information contained in the bistatic reflectivity of targets,
reduced vulnerability in military systems or forward looking
SAR imaging. The feasibility of the bistatic concept was already
demonstrated by experimental investigations.

Nevertheless, a closed satisfying theory reaching from signal
modelling over the data collection strategies and the analysis of
possible imaging performance to the specification of processors
for practical use does not yet exist. The reason may be found
in the non-standard geometry resulting in radar signals of high
complexity.

In this paper, we will start from a signal model for a rather
general configuration. Since the changing imaging geometry
makes it difficult to derive a general processor, we first look over
the well known classes of monostatic SAR-processors. Then, the
inversion problem is formulated for the bistatic case resulting in
the matched filter processor. Emanating from this, two techniques
are derived which are locally optimum either for short apertures
or for small scenes. Special attention is turned to the transfer of
range-migration type algorithms to the bistatic case.

I. I NTRODUCTION

There is not much open literature treating bistatic SAR
processing. Some special aspects are already addressed in the
paper [2]. In [1] bistatic spotlight SAR is regarded from a
tomographic point of view. [6] describes the special case of
a two-dimensional geometry and parallel flight paths allowing
to apply an approximative application of the range-migration
algorithm. [7] and [8] treat a time domain technique as well as
a k-domain approach for the special case of a fixed transmitter.
Lastly, [4] introduces a fast backprojection technique in a two-
dimensional geometry. To the author’s knowledge, a general
modelling in three dimensions including an evaluation of rep-
resentative processing approaches has not yet been published.

II. GEOMETRY AND GENERAL SIGNAL MODEL

A. General geometry

We look at the geometrical situation as sketched in Fig.
1. The instantaneous position of the transmit antenna phase
centre T is denoted byRt(ξ), that of the receive antenna
R by Rr(ξ) (of course, the roles of transmit and receive
antennas can be exchanged without effect to the radar signals).
ξ parametrises the paths of the two antennas: for instance, it
can be the slow-time itself or the spatial covered distance of
one of the antennas or of their common centre of gravity.

We assume a spotlight situation; t. i., the beams of both
antennas are directed towards a scene fixed beam focus point
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Fig. 1. Bistatic Geometry

rb. Another scene fixed pointr0 serves as a reference point.1

Further, we regard an arbitrary point scatterer at the position
r = (x, y, z)t within the intersectionI of the transmit and
receive antenna footprint. The(x, y)-plane is considered to be
the local approximation of the earth’s surface.

We define thebistatic range historyof this scattering point
at r by

R(ξ; r) = |Rt(ξ)− r|+ |Rr(ξ)− r|. (1)

In the bistatic situation, the range history can be quite
unusual, even for straight motions of transmitter and receiver
(see Fig. 2), so hyperbolic or parabolic approximations have
to be applied only with great care!

B. Equi-range and Equi-rangeslope

The sets of all points with a fixed ranger, or a fixed
rangeslopev, respectively, are denoted by

Mr(ξ, r) = {r : R(ξ; r) = r} (2)

Mv(ξ, v) =
{
r :

∂

∂ξ
R(ξ; r) = v

}
(3)

and their cuts with the(x, y)-plane by Mr(ξ, r) and
Mv(ξ, v). As generally known,Mr(ξ, r) turns out to be an
ellipsoid with the two focal points at the places of transmitter

1To generalise the derivation to stripmap like configurations,rb and r0

could be also functions ofξ; nevertheless, we will concentrate on the spotlight
situation.
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Fig. 2. Example of a bistatic range history for constant velocities

and receiver, soMr(ξ, r) will be ellipses as cuts of an
ellipsoid with a plane (”Equi-range lines”).

The derivative of the bistatic range with respect to the path
parameterξ can be expressed by:

∂

∂ξ
R(ξ; r) =

∂

∂ξ
(|Rt(ξ)− r|+ |Rr(ξ)− r|) (4)

= ut
t(ξ)

∂

∂ξ
Rt(ξ) + ut

r(ξ)
∂

∂ξ
Rr(ξ) (5)

In this expression, the unit vectors

ut(ξ) =
Rt(ξ)− r
|Rt(ξ)− r| ur(ξ) =

Rr(ξ)− r
|Rr(ξ)− r| (6)

point to the line of sights of the transmitter resp. receiver
to the scatterer. The setMv(ξ, v) is given by the union of
all intersections of such ”velocity cone”-pairs, whose sum
of receiver and transmitter range slopes are equal tov. The
cut Mv(ξ, v) with the (x, y)-plane determines the”equi-
rangeslope lines”.

The momentary imaging grid on the plane is formed by
these equi-range and equi-rangeslope lines. It may be rather
complicated exhibiting in many cases the possibility to image
also in the direction of motion for one or both of the two radar
platforms (see Fig. 3).

C. Signal model

The spectrum of the transmitted signalst(t) within one
pulse covers a certain frequency band[f1, ...f2] corresponding
to a band of wave-numbers[kr,1, ..., kr,2] with kr = 2πf/c,
and c = velocity of light. The received signal from a single
scatterer is - if the platform motion during one pulse is
neglected - in good approximation a time-delayed version
of st. If the measured signal is Fourier transformed to the
range frequency domain, inversely filtered over the frequency
band [f1, ...f2], (t.i. divided by the Fourier transform of the
transmitted signal), and if a variable substitution is performed
replacing the range frequency by the range wave-number, we
get the normalised signal from this scatterer:

s(ξ, kr; r) = e−jkrR(ξ;r). (7)

The antenna pattern has been neglected in this expression,
which can be justified by the spotlight assumption. The same
model can be applied, if the data are taken directly in the
frequency domain e.g. by a stepped frequency wave form or
by de-ramping.

We now look at a reflectivity distribution denoted bya(r).
This will be concentrated normally to the(x, y)-plane but
could also be carried by a vaulted area or even be distributed
three-dimensional. The signal of all scatterers is the superpo-
sition of the individual contributions:

z(ξ, kr) =
∫

I

s(ξ, kr; r)a(r)dr. (8)

If we apply a Fourier transformation alongξ, we get

Z(kξ, kr) =
∫∫

I

e−jkrR(ξ;r)−jkξξa(r)drdξ (9)

=
∫

I

K (kξ, kr, r) a(r)dr (10)

with K (kξ, kr, r) =
∫

e−jkrR(ξ;r)−jkξξdξ. (11)

We will call kξ the path-wavenumber, thinking of ξ as a
covered distance. The integral kernelK defines an operator
O from the space of all admitted reflectivity distributions into
the space of signals in the(kξ, kr)-domain.

III. T HE INVERSION PROBLEM

The SAR processor can be regarded as an operator in the
opposite mapping direction coming close to the inversion
of O. In the following, we will discuss several approaches
generalising well-known monostatic processors.

A. Classes of monostatic processors

The matched filter processor(MFP) optimises the signal-
to-noise-ratio and offers an optimum but computational in-
efficient solution. For each pixel of the image, the signal
expected from a scatterer at this place is complex conjugated,
multiplied to the measured data and summed up. Thelocal
aperture optimum processor(LAP) approximates the MFP
for short apertures yielding an image of in principle non
limited size with a coarse azimuth resolution. It is close
to the range-Doppler processorwhich starts with a range-
compression and then works along the range bins separately.
The local image optimum processor(LIP) approximates the
MFP in a small region around an image point. It results
in a polar reformatting scheme in the monostatic case. The
backprojection processor(BP) performes a successive image
formation after range-compression by projecting the range
lines from the appropriate direction onto the image plane. The
computational effort of this technique can be decreased byfast
backprojection processing(FBP) techniques. One of the most
popular technique is therange-migration processor(RMP)
combining near-optimum performance with high numerical
efficiency (see [3]). The key step of the RMP is formed by an
interpolation in the k-space.



Fig. 3. Example for a momentary bistatic image grid. The arrows symbolise the position and velocity of transmitter and receiver. The transmitter (left)
moves at an altitude of 15 km with a 7.5 times larger velocity than the receiver at an altitude of 10 km; no vertical velocity components

B. The bistatic matched filter processor

We now want to extend these classes of monostatic pro-
cessors to the bistatic case. The MFP can be used to study
the achievable imaging performance determined by the bistatic
geometry. Starting from Eq. (8) the maximum SNR is achieved
by the inversion formula

â(r) = C

∫∫
z(ξ, kr)ejkrR(ξ;r)dξdkr, (12)

provided that the superposed noise is white overξ and kr.
Apart from the more complicated range history, there is no
difference to the monostatic case. The MFP also can be applied
in the kr − kx domain:

â(r) = C

∫∫
Z(kξ, kr)K∗(kξ, kr, r)dkξdkr. (13)

C. The bistatic local image optimum processor

The bistatic LIP is based on the approximation of the
expected signal in a small regionB around a reference point
r0. The maximum extension ofB is given by the condition,
that receiver and transmitter are in the far field ofB. If this
is fulfilled, the signal in Eq. 7 can be approximated by

s(ξ, kr; r) ≈ e−jkrR(ξ;r0)e−jkr
∂
∂r R(ξ;r)|r=r0 (r−r0). (14)

With
∂

∂r
R(ξ; r) = (ut(ξ) + ur(ξ))t (15)

the image formation results in

â(r) = C

∫ ∫
ej2kru

t
eff (r−r0)z(ξ, kr)dξdkr (16)

with the effective LOS vectorueff (ξ) = 1
2 (ut(ξ) + ur(ξ)).

Introducing the new variablek = 2krueff and refor-
matting the measured values to a functionz̃(k) according
to z̃(2krueff (ξ)) = z(ξ, kr), this equation simplifies to a
common Fourier transform

â(r) = C

∫

K
ejk(r−r0)z̃(k)dk. (17)

The setK (”k-set”, see [5]), over which the integration is
performed, is composed of all vectors2krueff (ξ), wherekr

runs through the wave-numbers of the emitted waveform andξ
through an interval determining the part of the synthetic aper-
ture used for the image formation. If the scene is assumed to
be flat, it is sufficient to regard the two-dimensional projection
of K to the (x, y)-plane.

The shape ofK (or its projection) can be quite different
from that known from the monostatic case. The local form
of the point spread function atr0 is given by the (possibly
windowed) back transform of the indicator function of the k-
set. Since the bistatic LIP is locally identical to the MFP, this
analysis can also serve as a tool to study the global imaging
performance by variation ofr0.

D. The bistatic local aperture optimum processor

If only a small part of the aperture is used, a Taylor
expansion of the range history around the variableξ0 at the
centre of the used aperture part can be performed up to the
first or second degree:

R(ξ, r) ≈ R(ξ0, r) + R′(ξ0, r)(ξ − ξ0)[
+

1
2
R′′(ξ0, r)(ξ − ξ0)2

]
. (18)

The prime and double prime here stand for the first and
second derivatives with respect toξ. If the approximation is
performed only to the first order, the MFP simplifies to a
range-Doppler processor with linear range-walk compensation,
while the treatment of the second order approximation for
arbitrary geometries imposes similar problems as the general
solution.

E. Bistatic backprojection processing

According to Eq. 13, the integration alongkr may be
performed for eachξ resulting in a range-compressed signal
Z(ξ, r). The second integral sums up all the contributions from
the different points of the path:

â(r) =
∫

Z(ξ, R(ξ; r))dξ. (19)



This integral can be carried out by adding from pulse to
pulse the relating contributions from the range compressed
signal for each pixel of the later image. Note, that the principle
is the same as in the monostatic case, but the mappingr →
R(ξ; r) is more complicated.

F. Bistatic range-migration processing

The simple and efficient scheme of the monostatic RMP
cannot be transferred to the bistatic situation by a simple
means. In our approach, we try to hold the assumptions as
general as possible, intending to come to satisfying solutions
at least for special geometrical situations. So, the focused
image is not forced to a rectangular grid; we are content, if we
get it well focused, a further step then is to ortho-rectify the
image by interpolation. We introduce a second vector variable
q which is related to the original scene coordinate variabler
via an invertible mappingT with T(q) = r. The reflectivity
now is regarded as a function of the new variableq. So, with
I ′ = T−1(I), Eq. 9 can be re-arranged to

Z(kξ, kr) =
∫ ∫

I′
e−jkrR(ξ;T−1(q))−jkξξa(q)dqdξ

=
∫

I′
K (kξ, kr,q) a(q)dq (20)

with the modified kernel

K (kξ, kr,q) =
∫

e−jkrR(ξ;T−1(q))−jkξξdξ (21)

=
∫

e−jkr[R(ξ;T−1(q))+ζξ]dξ (22)

andζ := kξ/kr. To simplify the kernel, we apply the principle
of stationary phase. We define

F (ξ, ζ,q) := R(ξ,T−1(q)) + ζξ (23)

and assume that there exists an uniqueξ0(ζ,q) with

∂

∂ξ
F (ξ, ζ,q)|ξ=ξ0(ζ,q) = 0. (24)

For this ξ0(ζ,q) we find the phase−krG(ζ,q) with
G(ζ,q) = F (ξ0(ζ,q), ζ,q) and the kernel can be simplified
to

K (kξ, kr,q) ≈ e−jkrG(ζ,q), (25)

if the amplitude is neglected.
The properties ofG(ζ,q) determine, wether the approxi-

mated kernel can be used to transfer the imaging equations to
a Fourier based processor.

We define: The kernel is calledseparable, if there exist a
vector valued functionw(ζ) and a scalar functionG0(ζ) with
G(ζ,q) = G0(ζ) + wt(ζ)q. If the kernel is separable, Eq. 20
can be written as

Z(ζkr, kr) ≈ e−jkrG0(ζ)

∫

I′
exp

{−jkrwt(ζ)q
}

a(q)dq

= e−jkrG0(ζ)A(krw(ζ)), (26)

where A(.) is the Fourier transform ofa(.). Now, the data
Z(kξ, kr) can be re-sampled to a rectangular grid for the
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Fig. 4. Range migration processing

new wave-number domainkq = krw(kξ/kr) and back-
transformed to theq-domain after removing the phase intro-
duced byG0. The last step is to reverse the application of
the mappingT, t. i. to interpolate the image to the original
r-domain. The processing chain is sketched in Fig. 4

The main question is, for which geometrical situations it is
possible to find a parametrisationξ of the flight paths and a
mappingT producing a separable kernel (which is no problem
for the monostatic case). Since it is difficult (or impossible) to
find a closed formula forG(ζ,q), numerical representations
have to be used. Numerical techniques also can serve for a
good approximation by a separable kernel.

IV. CONCLUSION

In this paper, a general description of the bistatic SAR-
signals for a three-dimensional geometry was given. Several
archetypes of processors were sketched pointing out the com-
monness and discrepancies to the monostatic case. Clearly,
for practical applications the integral formulations have to be
transferred to the discrete Fourier transformations with care.
For the range migration processor - which is proposed often as
the most appealing approach for the monostatic case - a rather
general framework was outlined for the bistatic situation which
still has to be filled with concrete applications.
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