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Serotonin and Hallucinogens

 

G.K. Aghajanian, M.D. and G.J. Marek, M.D., Ph.D.

 

This brief review traces the serotonin (5-HT) hypothesis of 
the action of hallucinogenic drugs from the early 1950s to 
the present day. There is now converging evidence from 
biochemical, electrophysiological, and behavioral studies 
that the two major classes of psychedelic hallucinogens, the 
indoleamines (e.g., LSD) and the phenethylamines (e.g., 
mescaline), have a common site of action as partial agonists 

 

at 5-HT

 

2A

 

 and other 5-HT

 

2

 

 receptors in the central nervous 
system. The noradrenergic locus coeruleus and the cerebral 
cortex are among the regions where hallucinogens have 
prominent effects through their actions upon a 5-HT

 

2A

 

 
receptors. Recently, we have observed a novel effect of 

hallucinogens—a 5-HT

 

2A

 

 receptor-mediated enhancement 
of nonsynchronous, late components of glutamatergic 
excitatory postsynaptic potentials at apical dendrites of 
layer V cortical pyramidal cells. We propose that an effect of 
hallucinogens upon glutamatergic transmission in the 
cerebral cortex may be responsible for the higher-level 
cognitive, perceptual, and affective distortions produced
by these drugs. 
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The accidental discovery in 1943 of the hallucinogenic
properties of the synthetic ergoline compound LSD (d-
lysergic acid diethylamide) by the chemist Albert Hoff-
man is well known. Five years later, in 1948, serotonin
(later determined to be 5-hydroxytryptamine or 5-HT)
was found in bovine blood serum (Rapport et al. 1948).
Then, in 1953, during a routine survey of various tis-
sues, relatively high concentrations of 5-HT were found
in brain (Twarog and Page 1953). Shortly thereafter,
based on the observation that LSD could antagonize
5-HT in peripheral tissues—plus the structural similar-
ity between these two indole-containing structures (Fig-
ure 1)—it was proposed independently by Gaddum

and Hammeed (1954) and Woolley and Shaw (1954)
that the hallucinogenic effects of LSD might result from
an antagonism of 5-HT in the central nervous system.
This hypothesis was soon modified to include the possi-
bility that LSD could 

 

mimic

 

 as well as antagonize the ac-
tions of 5-HT (Shaw and Woolley 1956). The 5-HT hy-
pothesis was later extended to include such simple
indoleamine hallucinogens as psilocin, which are close
structural analogs of 5-HT (Figure 1) and the phenethy-
lamine hallucinogens, such as mescaline. Mescaline, de-
spite differences in chemical structure (Figure 1), dis-
played similar clinical effects and cross tolerance with
LSD in human studies (Balestrieri and Fontanari 1959),
suggesting that the indoleamine (including ergoline)
and phenethylamine classes of hallucinogens may
share a common mechanism of action or final common
pathway. By the end of the 1950s, three classical ques-
tions about the relationship between 5-HT and the hal-
lucinogens had been set into place. First, do the halluci-
nogens produce their effects through an action upon
the central 5-HT system? Second, are hallucinogens ag-
onists or antagonists at 5-HT receptors? Third, do in-
doleamine and phenethylamine hallucinogens share a
common site of action?
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NEURONAL ACTIONS OF
HALLUCINOGENIC DRUGS

Effects of Hallucinogens on 5-HT Neurons of the 
Raphe Nuclei

 

The identification of 5-HT as a neurotransmitter was
not achieved until the mid-1960s, when monoaminergic
neuronal pathways in the brain were discovered and
mapped by histochemical fluorescence methods (Dähl-
strom and Fuxe 1964). These maps, which revealed that
5-HT neuronal cell bodies were clustered in the raphe
nuclei of the brainstem, provided the basis for single-
cell electrophysiological recordings from identified
5-HT neurons. LSD was found to have a potent inhibi-
tory effect upon the tonically firing 5-HT neurons of the
dorsal raphe nucleus (Aghajanian et al. 1968); the local
application of LSD by microiontophoresis indicated
that the inhibition was through a direct action on the so-
matodendritic region of 5-HT neurons (Aghajanian et
al. 1972). A reduction in 5-HT cell firing rate was consis-
tent with earlier biochemical findings of reduced 5-HT

 

turnover in brain after LSD (Freedman 1961). Simple in-
doleamine hallucinogens such as DMT (N,N-dimethyl-
tryptamine) and psilocin were also shown to inhibit
5-HT neurons in the raphe nuclei (Aghajanian and
Haigler 1975). However, although systemically admin-
istered mescaline and various other substituted phen-
ethylamine hallucinogens were able to suppress the fir-
ing of a subset of 5-HT neurons (Aghajanian et al. 1970),
they were unlike the indoleamines in that they worked
through an indirect mechanism rather than through a
direct inhibition raphe neurons (Haigler and Aghajan-
ian 1973). Thus, a direct, postsynaptic inhibition of
5-HT neurons did not seem to represent a unitary cellu-
lar mechanism for the action of indoleamine and phen-
ethylamine hallucinogens.

In subsequent years, the delineation of multiple 5-HT
receptor subtypes by radiolabeled ligand binding and
molecular methods (see Hoyer et al. 1994) provided a
basis for explaining the difference between the effects of
the indoleamine and phenethylamine hallucinogens on
5-HT neurons. Serotonergic raphe neurons have a high
density of 5-HT

 

1A

 

 but not other subtypes of 5-HT recep-
tors. LSD is a potent agonist at 5-HT

 

1A

 

 somatodendritic
autoreceptors, thus accounting for its direct inhibitory
effect on raphe neurons (see Aghajanian 1995). On the
other hand, mescaline and other phenethylamines have
negligible affinity for 5-HT

 

1A

 

 receptors, explaining their
inability to inhibit directly 5-HT raphe neurons. The ac-
tion of LSD at 5-HT

 

1A

 

 autoreceptors is shared by a num-
ber of selective 5-HT

 

1A

 

 agonists, such as buspirone,
which are known from clinical studies to have anxi-
olytic rather than hallucinogenic effects. Thus, no corre-
lation exists between the activity of various drugs at
5-HT

 

1A

 

 receptors and the presence or absence of halluci-
nogenic properties.

 

Affinity for 5-HT

 

2

 

 Receptors Correlates with 
Hallucinogenic Potency

 

Glennon, Titeler, and their colleagues showed that
there is an excellent correlation between the affinity of
both indoleamine and phenethylamine hallucinogens
for 5-HT

 

2

 

 receptors and hallucinogenic potency in hu-
mans (Glennon et al. 1984; Titeler et al. 1988). Indeed,
among all the known 5-HT receptor subtypes, affinity
for 5-HT

 

2

 

 receptors is the only one shared by these two
major classes of hallucinogens (Table 1). Based on this
seminal work, subsequent research on hallucinogens
has focused on interactions with 5-HT

 

2

 

 receptors, par-
ticularly the 5-HT

 

2A

 

 receptor. Unlike 5-HT

 

1A

 

 receptors,
5-HT

 

2A

 

 receptors are not located presynaptically on
5-HT cell bodies but rather are found upon subpopula-
tions of neurons in postsynaptic regions. Although
quantitative autoradiographic studies show the pres-
ence of 5-HT

 

2A

 

 receptors in multiple regions of the
brain, including the olfactory bulb, claustrum, nucleus
accumbens, olfactory tubercle, facial nucleus, and the

Figure 1. Structural formulae for serotinin (5-HT), LSD,
mescaline, and the simple indoleamine hallucinogen psilo-
cin. The chemical structures are drawn in relation to the A, B,
C, and D rings of LSD to emphasize common structural fea-
tures such as the indolethylamine nucleus of 5–HT and
psilocin and the phenethylamine nucleus shared by LSD and
mescaline.
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n. tractus solitarius, the preponderance of these recep-
tors are located in the cerebral cortex (Lopez-Gimenez
et al. 1997; Pazos and Palacios 1985); a high density of
5-HT

 

2A

 

 receptor mRNA has been demonstrated by in
situ hybridization in similar locations (Mengod et al.
1990). Recent immunocytochemical studies have dem-
onstrated a particularly high density of 5-HT

 

2A

 

 recep-
tors in the apical dendrites of cortical pyramidal cells
(Jakab and Goldman-Rakic 1998; Willins et al. 1997).

Actions at 5-HT

 

2C

 

 receptors, which have been associ-
ated with anxiogenic responses (Kennett et al. 1997),
could also contribute to the effects of hallucinogens.
However, for purposes of illustration, the focus of this
review is on two brain regions, the locus coeruleus and
the cerebral cortex, where the physiological actions of
both LSD and the phenethylamine hallucinogens have
been shown to be mediated primarily by 5-HT

 

2A

 

 re-
ceptors.

 

Hallucinogens Enhance Sensory Responses in the 
Locus Coeruleus via 5-HT

 

2A

 

 Receptors

 

The locus coeruleus (LC) consists of two dense clus-
ters of noradrenergic neurons located bilaterally in the
upper pons at the lateral border of the 4th ventricle. The
LC, which projects diffusely to virtually all regions of
the neuraxis, receives an extraordinary convergence of
somatic, visceral, and other sensory inputs from all re-
gions of the body, has been likened to a novelty detec-
tor for salient external stimuli (Aston-Jones and Bloom
1981; Cedarbaum and Aghajanian 1978). In this context,
it is of interest that the systemic administration of LSD,
mescaline, or other psychedelic hallucinogens in anes-
thetized rats, although decreasing spontaneous activity,
produces a paradoxical facilitation of the activation of
LC neurons by sensory stimuli (Aghajanian 1980; Ras-
mussen and Aghajanian 1986); this effect is not through
a direct action on LC cell bodies, because it cannot be
mimicked by the local, microiontophoretic application
of the drugs. The effects of hallucinogens on LC neu-
rons can be reversed by low intravenous doses of selec-
tive 5-HT

 

2

 

 antagonists, such as ritanserin (Rasmussen
and Aghajanian 1986). Antipsychotic drugs are also
able to reverse the actions of hallucinogens in the locus

coeruleus at doses correlating with their affinity for
5-HT

 

2A

 

 but not dopamine and adrenergic receptors
(Rasmussen and Aghajanian 1988). Studies on the
mechanism by which hallucinogens produce their ef-
fects on LC neurons have shown that the decrease in
spontaneous firing caused by the 5-HT

 

2

 

 agonist DOI (1-
{2,5-dimethoxy-4-iodophenyl}-2-aminopropane) is via
activation of inhibitory inputs acting upon GABA

 

A

 

 re-
ceptors; whereas, the enhancement of phasic sensory
responses is via activation of excitatory inputs acting
upon NMDA (N-methyl-D-aspartate) receptors (Chiang
and Aston-Jones 1993).

Because the effects of systemically administered hal-
lucinogens are through an activation of afferent inputs
rather than through a direct action upon LC cell bodies,
the LC itself cannot be used as a model for studying the
direct cellular actions of hallucinogens. Nevertheless,
the effects of the hallucinogens upon the LC are of inter-
est, because this nucleus receives such an extraordinar-
ily widespread convergence of sensory information,
both somatosensory and visceral, relaying this informa-
tion to virtually all other parts of the neuraxis, includ-
ing the cerebral cortex.

 

5-HT

 

2A

 

 Receptors Enhance Glutamate Release
in Neocortex

 

The ubiquitous effects of hallucinogens on such com-
plex processes as cognition, perception, and mood sug-
gest the involvement of the cerebral cortex. The direct,
postsynaptic effect of 5-HT in the cortex are variable:
depolarization, hyperpolarization, or no change, de-
pending upon whether the effects of excitatory 5-HT

 

2

 

receptors or inhibitory 5-HT

 

1A

 

 receptors are predomi-
nant in any given layer V pyramidal cell (Aghajanian
and Marek 1997; Araneda and Andrade 1991; Tanaka
and North 1993). However, the most striking effect of
5-HT in cortical regions is to increase postsynaptic po-
tentials (PSPs). In earlier studies, we had found that
5-HT, via 5-HT

 

2A

 

 receptors, induces inhibitory postsyn-
aptic potentials (IPSPs) in layer II pyramidal cells of rat
piriform cortex (a paleocortical region) through the di-
rect excitation of a subset of GABAergic interneurons
(Gellman and Aghajanian 1993; Sheldon and Aghajan-
ian 1990); hallucinogens, acting as potent partial 5-HT

 

2A

 

agonists, have similar effects (Marek and Aghajanian
1996a). In contrast, we have found recently that synap-
tic potentials induced by 5-HT receptor activation in
layer V pyramidal cells of the neocortex are predomi-
nantly excitatory rather than inhibitory (Aghajanian
and Marek 1997), a finding that was surprising in view
of the earlier work in piriform cortex. Thus, only 

 

z

 

15%
of 5-HT-induced synaptic potentials in neocortex are
blocked by the GABA

 

A

 

 antagonist bicuculline; whereas,
most synaptic potentials are blocked by the AMPA
glutamatergic receptor antagonist LY293558, indicating

 

Table 1.

 

Interaction of LSD and Phenethylamine 
Hallucinogens with 5-HT Receptor Subtypes (Glennon 1990; 
Marek and Aghajanian 1996a)

 

Receptor Subtype LSD Phenethylamines

 

5-HT

 

1A

 

1 2

 

5-HT

 

1D

 

1 2

 

5-HT

 

2A/2C

 

1 1

 

5-HT

 

3

 

2 2

 

5-HT

 

4

 

2

 

?
5-HT

 

5

 

1 2

 

5-HT

 

6/7

 

1 2
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that they represent largely excitatory postsynaptic po-
tentials (EPSPs) rather than IPSPs. Nevertheless, as with
IPSPs in the piriform cortex, the EPSCs induced by
5-HT in neocortex are mediated by 5-HT

 

2A

 

 receptors as
they are blocked by low concentrations of the highly se-
lective 5-HT

 

2A

 

 antagonist MDL100,907 (Aghajanian and
Marek 1997). Although we have observed that 5-HT in-
creases EPSCs throughout the neocortex, this effect is
most pronounced in the medial prefrontal cortex,
where there is an increased density of 5-HT

 

2A

 

 receptors
as compared to more posterior regions. NE also in-
creases glutamatergic excitatory postsynaptic potentials
in layer V pyramidal cells (Marek and Aghajanian
1996b), but to a much lesser extent than 5-HT. Never-
theless, because of the phasic quality of LC neuronal re-
sponses to sensory stimuli, sudden NE-induced in-
creases in glutamate release could contribute to some of
the distinctive effects of hallucinogenic drugs such as
synesthesias.

Whole-cell patch clamp recordings have demon-
strated that 5-HT induces a small, but significant, in-
crease in the 

 

amplitude

 

 of spontaneous EPSCs, an effect
that may involve a postsynaptic amplification mecha-
nism (Aghajanian and Marek 1997). Such a postsynap-
tic effect is consistent with the finding of a high density
of 5-HT

 

2A

 

 receptor immunoreactivity in the apical den-
drites of cortical pyramidal cells (Jakab and Goldman-
Rakic 1998; Willins et al. 1997). However, the most pro-
nounced effect of 5-HT in neocortex is to increase the

 

frequency

 

 of EPSCs (Aghajanian and Marek 1997). Clas-
sically, changes in the frequency of synaptic currents or
potentials are considered presumptive evidence for
modulation of presynaptic function. Consistent with
this model, activation of 

 

m

 

-opiate receptors (Marek and
Aghajanian 1998a) and group II/III metabotropic
glutamate receptors (Marek and Aghajanian 1998b)
both suppress 5-HT-induced EPSCs through a presyn-
aptic rather than postsynaptic action upon layer V pyra-
midal cells. In general, these findings suggest that acti-
vation of 5-HT

 

2A

 

 receptors increases the release of
glutamate onto layer V pyramidal cells through a pre-
synaptic mechanism.

 

A Focal Mechanism for 5-HT

 

2A

 

-Induced
Glutamate Release onto Apical Dendrites
of Layer V Pyramidal Cells

 

A novel mechanism, independent of impulse flow,
seems to be involved in the increase in glutamate re-
lease induced by 5-HT

 

2A

 

 receptor activation. Blockade
of 5-HT-induced EPSCs by bath application of the fast
sodium channel blocker tetrodotoxin (TTX) or perfu-
sion of the slice with a solution containing no added cal-
cium (“0” calcium) would generally suggest that 5-HT
had activated glutamatergic cells in the slice, leading to
an impulse—flow-dependent release of glutamate. Sev-
eral lines of evidence argue against this conventional

 

interpretation. First, we rarely found any neurons in-
duced to fire by bath application of 5-HT (unlike our ex-
perience in the piriform cortex, where we readily found
GABAergic interneurons excited by 5-HT). Second,
none of the pyramidal cells (a potential source of intrac-
ortical excitatory inputs) in our sample were depolar-
ized by 5-HT sufficiently to reach threshold for firing.
Third, EPSCs could be induced by the microionto-
phoresis of 5-HT onto the apical dendrites of layer V
pyramidal cells, but no cell firing was detected while re-
cording extracellularly through the 

 

microiontophoretic
electrode

 

 (Aghajanian and Marek 1997). Together, these
experiments suggest that 5-HT-induces EPSCs in neo-
cortical cells via a focal mechanism that does not re-
quire impulse flow.

 

5-HT

 

2A

 

 Receptors and Asynchronous Transmission 
in the Cerebral Cortex

 

Because the microiontophoretic experiments indicate
that 5-HT-induced EPSCs do not result from an increase
in impulse flow in excitatory afferents, we were
prompted to explore alternative mechanisms of trans-
mitter release. Classically, two major types of vesicular
neurotransmitter release have been characterized in ex-
periments analyzing electrically evoked synaptic poten-
tials (Goda and Stevens 1994). The first type of neu-
rotransmitter release, termed 

 

synchronous

 

 release, is
closely coupled in an almost immediate fashion to the
action potential invasion of the nerve terminals with a
subsequent flooding of Ca

 

2

 

1

 

 into the terminal through
voltage-gated Ca

 

2

 

1

 

 channels. This is the form of neu-
rotransmitter release that we typically envision. How-
ever, analysis of “synaptic noise” shows that there is
also a slow, 

 

asynchronous

 

 phase of transmitter release,
characterized by the presence of small EPSCs with a
slightly longer latency (

 

z

 

50 ms) than the synchronous
EPSC, which can persist for 

 

z

 

500–1,000 ms following
the evoked synchronous EPSC. This form of release is
sustained by low levels of residual Ca

 

2

 

1

 

 remaining
within the terminal following the initial wave of Ca

 

2

 

1

 

influx.
One of several distinguishing characteristics for this

alternative mechanism of transmitter release is that Sr

 

2

 

1

 

is able to substitute for Ca

 

2

 

1

 

 for asynchronous, but not
synchronous release (Goda and Stevens 1994). This fea-
ture seems to be a result of two different isoforms of
synaptotagmin being differentially involved in the two
alternative release mechanisms (Li et al. 1995). We are
now investigating the possibility that the 5-HT-induced
EPSCs result from an activation of the asynchronous re-
lease pathway. Consistent with this idea, in preliminary
experiments, we have found that Sr

 

2

 

1

 

 is highly effec-
tive in enabling 5-HT to induce EPSCs in the absence
of Ca

 

2

 

1

 

 (Aghajanian and Marek 1998).
Recently, we have found that LSD (Figure 2) and

other hallucinogenic drugs, acting as partial agonists at
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5-HT

 

2A

 

 receptors, also promote a late component of
electrically evoked EPSPs (Aghajanian and Marek
1998). We hypothesize that this late component, rather
that representing conventional polysynaptic transmis-
sion, is mediated through the mechanism of asynchro-
nous transmitter release, possibly involving a release of
intraterminal Ca

 

2

 

1

 

 stores via the phospholipase C, inos-
itol trisphosphate (IP

 

3

 

) pathway. An enhancement of
asynchronous evoked EPSPs via 5-HT

 

2A

 

-receptors
would provide a possible synaptic mechanism for the
hallucinogenic effects of these drugs. In contrast, 5-HT
itself does not promote the late component of 

 

electrically
evoked

 

 release except during the washout phase, pre-
sumably because of opposing actions at 5-HT

 

1

 

 or other
non-5-HT

 

2A

 

 receptors (Aghajanian and Marek 1998).
The opposition by non-5-HT

 

2A

 

 receptors of 5-HT

 

2A

 

-
mediated actions of 5-HT may explain why treatments
that elevate 5-HT itself (e.g., monoamine oxidase inhibi-
tors or selective serotonin uptake blockers) are not hal-
lucinogenic and may, in fact, attenuate the subjective ef-
fects of hallucinogens in humans (Bonson et al. 1996;
Resnick et al. 1964). Conversely, a reduction in seroto-
nin levels or release could enhance the effects of halluci-
nogens (Isbell and Logan 1957; Resnick et al. 1965). By

decreasing 5-HT release, a direct inhibition of 5-HT cell
firing in the raphe nuclei could contribute to the effects
of LSD and other indoleamine hallucinogens. Although
the phenethylamines suppress the firing of only a sub-
set 5-HT neurons (an effect mediated through an indi-
rect rather than direct postsynaptic mechanism, see
above), this action could also contribute to the halluci-
nogenic effects of these drugs. Despite these interesting,
but subtle, differences in mechanism, the over-all sub-
jective effects of indoleamine and phenethylamine hal-
lucinogens have been reported to be virtually identical
in side-by side comparisons in human subjects (Wol-
bach et al. 1962).

 

OVERVIEW AND FUTURE DIRECTIONS

The Classical Questions

 

Many of the original questions about the role of 5-HT in
the action of hallucinogenic drugs can now be ad-
dressed in a highly specific manner. In the present re-
view, neuronal actions 

 

shared

 

 by LSD and the phenethy-
lamine hallucinogens have been described in detail for
two brain regions, the LC and the cerebral cortex. In

Figure 2. Effects of 5-HT, 5-HT washout, and LSD on electrically evoked EPSCs (evEVSCs)in a layer V pyramidal cell of
medial prefrontal cortex. (1) shows responses to 10 consecutive stimuli (arrowheads), where only short latency synchronous
EPSCs are evoked. (2) After a 1 to 2.5 min application of 5-HT (3 mM), there is little change in amplitude of the synchronous
evoked EPSC and no increase in late components of the EPSC. (3) After a short washout of 5-HT (2.5–4 min), sustained late
or nonsynchronous EPSCs appear after 3/10 stimuli; recovery to the basal state occurred after an additional 10 min of wash-
out (not shown). (4) Subsequent perfusion with a low concentration of LSD (10 nM) resulted in a large increase in the occur-
rence of the late, nonsynchronous component of the EPSCs (7/10 sweeps) (Aghajanian and Marek 1998).
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these and other regions, there is evidence that both
classes of hallucinogens produce their electrophysiolog-
ical effects through a partial agonist action at 5-HT2

(particularly 5-HT2A) receptors. There is also evidence
from biochemical (Sanders-Bush et al. 1988) and behav-
ioral (Glennon 1990) studies that the effects of halluci-
nogens involve a partial agonist action at 5-HT2 recep-
tors. Thus, 50 years after the discovery of 5-HT, the 5-HT
hypothesis of the action of both indoleamine and phen-
ethylamine hallucinogenic drugs can be reformulated
in terms of specific 5-HT receptor subtypes, with a pri-
mary focus on 5-HT2 receptors.

Questions—1998

How do the discrete neuronal actions of hallucino-
gens, as described above, account for dramatic disrup-
tions in cortical function produced by the hallucino-
genic drugs? It is now possible to suggest regionally
and neuronally specific answers to this question. For

example, enhancement of the sensory responsivity of
LC neurons may contribute, perhaps through their
extensive cortical projections, to the characteristic inten-
sification of certain kinds of perceptual experience pro-
duced by hallucinogens. In the cerebral cortex, enhance-
ment of the prolonged, late, asynchronous component
of glutamatergic transmission by hallucinogens may
underlie some of the cognitive and perceptual distor-
tions produced by these drugs. Figure 3 depicts the en-
hancement of glutamatergic transmission by both 5-HT
inputs from the raphe nuclei and NE inputs from the
LC, acting via 5-HT2A and a1 receptors, respectively. We
hypothesize that hallucinogen-induced excesses in
glutamatergic transmission are detrimental to cortical infor-
mation processing; certain distinctive features of the ef-
fects of hallucinogens, such as distortions in perceptual
and cognitive function, could fit into this framework. We
suggest that an increase in asynchronous glutamatergic
transmission could be responsible for the hallucinogen-
induced hyperfrontal metabolic pattern that has been
found recently in human brain- imaging studies (Vol-
lenweider et al. 1997). A similar hyperfrontal pattern
has also been found in acute, but not chronic, schizo-
phrenic patients (Vollenweider et al. 1997). Ultimately,
insight into how hallucinogens alter cortical informa-
tion processing may provide clues about mechanisms
underlying naturally occurring psychotic states.
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