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Abstract

Logistic regression modelling of mixed binary and continuous covariates is common in practice, but
conventional estimation methods may not be feasible or appropriate for small samples. It is well known
that the usual maximum likelihood estimates (MLEs) of the log-odds-ratio parameters are biased in
#nite samples, and there is a non-zero probability that an MLE is in#nite, i.e., does not exist. In this
paper, we extend the approach proposed by Firth (Biometrika 80 (1993) 27) for bias reduction of
MLEs in exponential family models to the multinomial logistic regression model, and consider general
regression covariate types. The method is based on a suitable modi#cation of the score function that
removes #rst order bias. We apply the method in the analysis of two datasets: one is a study of
disease prognosis and the other is a disease prevention trial. In a series of simulation studies in small
samples, the modi#ed-score estimates for binomial and trinomial logistic regressions had mean bias
closer to zero and smaller mean squared error than other approaches. The modi#ed-score estimates
have properties that make them attractive for routine application in logistic regressions of binary and
continuous covariates, including the advantage that they can be obtained in samples in which the MLEs
are in#nite. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Methods for logistic regression modelling of nominal categorical responses based
on the multinomial logistic likelihood are now generally available in standard sta-
tistical packages, and have been applied in the analysis of case-control studies with
multiple case or multiple control groups, and in randomized trials and cross-sectional
surveys with categorical responses. One of the concerns of investigators is the valid
estimation of model parameters in the #nite sample sizes encountered in practice.
In #nite samples, the usual maximum likelihood estimates (MLEs) of the log odds
ratios are biased, and the bias increases as the ratio of the number of observations to
the number of parameters (n-to-p ratio) decreases (Cordeiro and McCullagh, 1991;
Bull et al., 1997). This is of particular concern when there are several response
categories and multiple covariates because the number of parameters can become
large.

We consider an alternative estimation method for small samples based on a mod-
i#cation of the score function that removes #rst order bias and is equivalent to
penalizing the likelihood by Je>reys’ prior (Firth, 1993). We extend the modi#ed
score function method to the multinomial logistic regression model with nominal re-
sponse categories, and compare the modi#ed estimates to the usual MLEs and to the
MLEs corrected by an estimate of the asymptotic bias. As the sample size increases,
the modi#ed-score estimates become equivalent to the usual MLEs. As systematic
small sample comparisons of this approach have not been reported previously for
binomial or multinomial logistic regression models, we also present a Monte Carlo
simulation study in which we compare the mean bias and mean squared error (MSE)
of the modi#ed estimates to the MLEs, and to the MLEs corrected by the estimated
asymptotic bias. Considering the same series of logistic regression models studied
previously (Bull et al., 1997), we #nd that the modi#ed-score estimates are compet-
itive and often superior to the other approaches.

2. Methods for small-sample analysis

The small-sample properties of the logistic regression MLEs can be improved by
the general approach of Cox and Snell (1968) which uses higher order terms in a
Taylor series expansion of the log-likelihood to approximate the asymptotic bias and
obtain bias-corrected MLEs (Anderson and Richardson, 1979; Schaefer, 1983; Copas,
1988; Cordeiro and McCullagh, 1991; Bull et al., 1997). When the magnitude of the
linear predictor is small, Cordeiro and McCullagh (1991) showed that the e>ect of
bias correction in generalized linear models is to shrink the MLEs toward the origin
by a factor that depends on the ratio of the number of parameters to the sample size
and on the magnitude of the underlying log-odds-ratio parameter. The asymptotic
bias correction method reduces bias and MSE (Anderson and Richardson, 1979;
Schaefer, 1983), but in small samples tends to correct beyond the true value (Bull
et al., 1997). Bias reduced estimates can also be obtained by jackknife methods, with
or without full iteration, but the fully iterated estimates, particularly, are also over
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correct (Farewell, 1978; Bull et al., 1994, 1997). Both methods reduce the bias to
order n−1, approximately, but do not remove it completely, and both methods require
that #nite MLEs can #rst be obtained.

When data are sparse or unbalanced, estimates of logistic regression parameters
from a conditional likelihood may have better properties than those from the usual
unconditional likelihood (Hauck, 1984, for example). The analysis of strati#ed 2×2
tables arises as a special case in which the strata indicators are nuisance parameters.
In this approach, the conditional likelihood for the common log-odds-ratio parame-
ter is obtained by conditioning on the suJcient statistics of the strata parameters.
However, the conditional logistic likelihood is not immune to the problems of #nite
sample bias and in#nite estimates either. Greenland et al. (2000) emphasize that
statistical bias may produce unduly large estimates when data are sparse or many
variables are controlled.

More generally when there are multiple covariates of interest, there may be no
natural nuisance parameters per se. In this case, Mehta and Patel (1995) note that
exact conditional inferences can be obtained for each parameter in turn by treat-
ing the other parameters in the regression as nuisance parameters and conditioning
jointly on their suJcient statistics. For general binomial logistic regression models,
exact methods based on the conditional likelihood are available in the software pack-
age LogXact (Cytel Software Corporation, 1992). Because this conditional likelihood
involves conditioning on the observed covariate values, a problem with overcondi-
tioning can arise when one or more of the covariates is continuous; in this case,
support for the conditional distribution of the suJcient statistic for the parameter
of interest can become extremely discrete or even degenerate (LogXact Software
Manual, Cytel Software Corporation, 1992). To avoid overconditioning, continuous
covariates can be grouped into a smaller number of levels, but this is not an ideal
solution for regressions that include several continuous covariates, and may com-
promise eJciency or the ability to control for continuous confounders (Greenland,
1995). Theory and methods have also been developed for multinomial responses with
nominal and ordinal categories (Zelen, 1991; Hirji, 1992), but are not yet generally
available in software.

Several authors have evaluated alternative estimation methods for conditional and
unconditional logistic regression motivated by Bayesian inference, and have examined
normal, uniform, or Je>reys priors (Rubin and Schenker, 1987; Du>y and Santner,
1989; Santner and Du>y, 1989; see Section 5:4A; Ibrahim and Laud, 1991; Firth,
1992a,b, 1993; Greenland et al., 2000; Greenland, 2000). Use of these prior distri-
butions tends to shrink the estimates toward the origin, and thereby reduces bias and
mean squared error. In the context of a matched pair study of a dichotomous ex-
posure, Greenland (2000) found that the expected bias and squared error of several
Bayes odds-ratio estimators were smaller than for the uncorrected and bias-corrected
conditional MLEs. Rubin and Schenker (1987), Greenland et al. (2000), and Firth
(1993) note the equivalence between the well-known Haldane correction, which adds
1
2 to each cell, and a Bayesian estimator based on Je>reys’ prior. In exponential
family models with canonical parameterization, Firth shows that modifying the score
function to remove #rst order bias is equivalent to penalizing the likelihood by the
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Je>reys prior and removes the order n−1 bias of the MLEs. In an extension of this
idea in which the likelihood score for right censored data having an exponential dis-
tribution is modi#ed similarly, Pettitt et al. (1998) found that the modi#ed estimates
have smaller bias and variance than the MLEs and good bias properties irrespective
of the existence or otherwise of the MLEs. In the next section, we generalize this
Bayesian-motivated approach to multinomial logistic regression with general covari-
ate types.

3. Estimation and computation

3.1. Usual maximum likelihood estimation with bias correction

We consider a multicategory outcome y that is a multinomial variable with J + 1
categories. For each category j (j= 1; : : : ; J ), there is a regression function in which
the log odds of response in category j, relative to category 0, is a linear function
of regression parameters and a vector x of p covariates (including a constant):
log{prob(y= j |x)=prob(y= 0 |x)}= �T

j x. We let yi be a J ×1 vector of indicators
for the observed response category for observation i, with the corresponding J ×
1 vector of probabilities �i = (�i1; : : : ; �iJ )T. We estimate the vector of uncorrected
MLEs, B̂= vec[(�̂1 : : : �̂J )

T], from observations (yi; xi); i= 1; : : : ; n, by solving the
score equations of the log-likelihood l(B).

The score function is U (B) =X T(Y−�), with X T =X T
D⊗IJ , X T

D = (x1 |x2| : : : |xn);
Y = (y1|y2| : : : |yn), and �= (�1 | �2| : : : |�n); ⊗ is the Kronecker product matrix oper-
ator. The pJ ×pJ Fisher information matrix is A= (X TMX ), and M is an nJ × nJ
block diagonal matrix with n J × J blocks Mi = {mijk}; mijj = �ij (1− �ij) for j= k
and mijk = − �ij�ik otherwise. Using t to denote the iteration number, the iterative
updating equation used to obtain the MLEs is

B(t+1) =B(t) + A−1
(t) U (B(t)) (3.1)

with U (B(t)) =X T (Y −� (t)), and �(t) and A(t) evaluated at B(t).
Asymptotically, the MLEs are normally distributed around the true parameter with

variance given by the inverse of the Fisher information matrix. Standard errors
are conventionally obtained by evaluating A−1 at the MLEs. In #nite samples, the
quadratic approximation to the log likelihood may not apply, and Wald test statistics
and con#dence intervals based on the large sample standard errors may have poor
properties when the parameter is far from zero (Hauck and Donner, 1977; Jennings,
1986). When the normality of the MLE is in doubt, con#dence intervals based on
likelihood ratio tests or on score tests have better properties (Alho, 1992 and refer-
ences therein).

The leading term in the asymptotic bias of the MLEs:

b(B) = − 1
2
A−1{X TQ(X ⊗ X ) vec (A−1)} (3.2)

is obtained from the Taylor series expansion of the log likelihood of B; X TQ (X ⊗
X ) is the matrix of third derivatives with respect to B (Bull et al., 1997). The
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nJ × (nJ )2 matrix Q has a n × n2 block structure, with J × J 2 submatrices Qi
such that Q=

∑
i Ei Qi (Ei ⊗ Ei)T, where Ei = ei ⊗ IJ ; ei is a unit vector of length

n, with 1 in position i and 0’s elsewhere. The elements of the submatrix Qi de-
pend on the probabilities �ij, j= 1; 2; : : : ; J with Qi =

∑
jkl qijklij(ik ⊗ il)T; where

qijkl = �ij(1 − �ij) (1 − 2�ij) for j= k = l; 2�ij�ik�il for j �= k �= l; −�ij (1 − 2�ij) �il
for j= k �= l, and −�ij�ik (1 − 2�il) for j �= k and l= j or l= k; ij is a unit vec-
tor of length J , with 1 in position j and 0’s elsewhere. As originally described by
Cox and Snell (1968), the bias corrected estimates (BCMLE) from the asymptotic
expansion are

BBC = B̂− b(B̂) (3.3)

with A and Q evaluated at the uncorrected MLEs.
In #nite samples, there is a non-zero probability that an MLE is in#nite, i.e.,

does not exist. Existence problems can occur when the data are sparse or when
there are large covariate e>ects. This situation is characterized by separation in the
sample space among the groups that correspond to the categories of the outcome
variable, and failure of one or more of the elements of B to converge. Albert and
Anderson (1984), Santner and Du>y (1986), and Lesa>re and Albert (1989) dis-
cuss the de#nition and identi#cation of in#nite estimates for multiple covariates.
It is not unusual for separation to occur in small and moderate-sized datasets, es-
pecially in multinomial logistic regression. To detect separations, we applied the
same general algorithm that we adapted from others and used in previous stud-
ies (Albert and Harris, 1984; Lesa>re and Albert, 1989; Bull et al., 1997). When
the estimate of a parameter is in#nite, the corresponding bias correction cannot be
calculated.

3.2. Estimation using a modi<ed score function

The modi#ed score function proposed by Firth for the binomial logistic model
extends directly to the multinomial model as U ∗(B) =U (B)−Ab(B), where A is the
Fisher information for the MLEs and b(B) is their asymptotic bias de#ned in (3.2)
above. The introduction of bias into the score function removes the leading term
in the asymptotic bias of the MLE. As described by Firth (1993), the solution of
U ∗ = 0 locates a stationary point of l∗(B) = l(B) + 1

2 log|A| which is equivalent to
the penalized likelihood function L∗(B) =L(B)|A|1=2 with the Je>reys’ invariant prior
as the penalty function. Use of the Je>reys’ prior shrinks estimates toward the point
�ij = 1=(J + 1) that maximizes the determinant, and corresponds to �j = 0. Taking
the derivative of the log-likelihood penalty with respect to B yields the modi#cation
to the score function. The resulting estimate BMS agrees with BBC to second order.
The arguments for the existence of estimates in the binomial model given by Firth
extend to the multinomial model as follows. Provided XD is of full rank, log|A| is
strictly concave and unbounded below as B goes to in#nity in any direction. Then,
combined with the condition that the log likelihood l(B) is strictly concave and
bounded above, the maximum penalized likelihood estimates (MPLEs) exist in any
#nite sample and are unique.
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The penalty function can be applied using iterative adjustments; the modi#ed it-
erative updating equations are

B∗(t+1) =B∗(t) + A−1
(t) U

∗(B∗(t))

=B∗(t) + A−1
(t) {X T(Y −�(t)) +

1
2
X TQ(t)(X ⊗ X ) vec(A−1

(t) )} (3.4)

with �(t); A(t) and Q(t) evaluated at B∗(t). This can be rewritten as

B∗(t+1) =B∗(t) − b(B∗(t)) + A−1
(t) U (B∗(t)): (3.5)

Thus, the modi#cation operates by applying the asymptotic bias corrections at each
step in the iterative process; this prevents the estimates from going o> to in#nity
and failing to converge when there is separation in the data. In contrast, the conven-
tional asymptotic method applies the bias correction at the end, after the process has
converged to the MLEs, and thus it is not possible to apply bias corrections when
separation occurs.

Firth (1992a,b, 1993) discusses practical aspects of this approach for the binomial
logistic model, including implementation in a reweighted least squares framework and
speci#cation of starting values, and demonstrates that the modi#ed procedure con-
verges at a linear rate. In the multinomial model, however, a reweighted least squares
approach is less easily implemented because the weight matrix M is block diagonal
rather than simply diagonal. We implemented a modi#ed Fisher scoring algorithm
based on (3.5) using the matrix programming language GAUSS (Aptech Systems,
1990). This is not a true scoring or Newton-type algorithm because it updates with
the inverse of A, the Fisher information for the MLE’s, rather than the information
for the MPLEs, A∗, which includes an additional term corresponding to the sec-
ond derivatives of the penalty 1

2 log|A|. As a result, convergence using the modi#ed
scoring algorithm for the MPLEs is slower than for a scoring algorithm based on
A∗, which converges at a quadratic rate. For well behaved and larger datasets, this
usually meant no more than 2 or 3 steps beyond that required for the MLEs. We
found starting values of �j = 0 to be generally satisfactory. For smaller datasets, i.e.,
less than 50 observations, and especially datasets in which there were in#nite MLEs,
convergence was slower and could take up to 35 or 40 iterations. In datasets with
separations, starting values other than 0 could lead to divergence of the process.

The standard error estimates of the MPLEs obtained from the Fisher information
matrix evaluated at the MPLEs, which can be referred to as plug-in estimates, are
smaller than those for the MLEs because the MPLEs are generally smaller than the
MLEs and the standard errors tend to be proportional to the magnitude of the regres-
sion estimates. Although, as Firth (1993) notes, the #rst order asymptotic covariance
matrix of the MPLEs is the same as that of the MLEs, construction of symmetric
con#dence intervals based on the MPLEs and the plug-in standard errors may be ill
advised because the small sample situations in which MPLEs are needed will also
be those in which the quadratic approximation of the log likelihood does not apply
(Jennings, 1986). In their application of modi#ed-score estimates, Pettitt et al. (1998)
suggest a parametric bootstrap method for determination of standard errors and con-
#dence intervals. We prefer to construct asymmetric con#dence intervals based on
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the pro#le likelihood using methods analogous to those implemented in SAS PROC
LOGISTIC for the MLEs (Venzon and Moolgavkar, 1988; SAS/STAT, 1996).

4. Applications of small-sample estimation

The #rst application is a study of clinical factors that relate to the presence or
absence of nodal involvement in patients with prostate cancer; 20 of the 53 patients
have nodal involvement (Brown, 1980; Cox and Snell, 1989). Table 1 presents the
estimates for a logistic regression model with six covariates: four binary indicators
(X-ray, stage, grade, interaction of stage and grade) and two continuous variables
(acid, age). In this dataset, the ratio of the number of observations to the number
of parameters is less than 10, and previous studies indicate that the MLEs are likely
to be inRated in magnitude, especially for the covariates with strong e>ects (Bull
et al., 1997). The bias reduced estimates are 18–24 percent smaller in magnitude
than the MLEs, with the MPLEs approximately 20 percent smaller and the BCM-
LEs 23 percent smaller. As expected, the corresponding standard errors, obtained by
evaluating the Fisher information matrix at the bias reduced estimate values, are also
smaller than those for the MLEs. Thus, although the MLEs all exist, the magnitude
of the prognostic covariate e>ects are likely being overstated as a result of #nite
sample bias in the MLEs. This sample size is smaller than desirable for a de#nitive
prognostic study, but use of these MLEs to design a larger study would likely yield
an underestimate of the true sample size requirements.

A second application is from a multicentre trial of a population intervention to pre-
vent post-transfusion hepatitis (PTH), which was classi#ed into two types: hepatitis
C and non-A non-B non-C hepatitis (Blajchman et al., 1995). The preventive inter-
vention (Treatment factor) under evaluation was the screening of donor units for two
surrogate markers of non-A non-B hepatitis infection. Blood transfusion recipients
were randomized to receive units from one of two sources: from the general blood
supply or from a supply that had excluded units that were positive for the surrogate

Table 1
Nodal involvement in prostate cancer (two response categories, six covariates, n= 53). Maximum
likelihood and alternative estimates with asymptotic standard errors

Covariate MLEa (se) BCMLEb (se) MPLEc (se)

Intercept −10:95 (6.65) −8:62 (5.95) −8:93 (6.07)
X-ray 2.61 (0.99) 2.02 (0.85) 2.12 (0.87)
Stage 3.65 (1.29) 2.78 (1.08) 2.99 (1.11)
Grade 4.04 (1.55) 3.07 (1.33) 3.24 (1.36)
Stage ∗ Grade −4:93 (1.96) −3:73 (1.70) −3:94 (1.74)
Log (Acid) 3.02 (1.35) 2.35 (1.19) 2.45 (1.21)
Age −0:09 (0.07) −0:07 (0.06) −0:07 (0.06)

aMLE: maximum likelihood estimate.
bBCMLE: asymptotic bias corrected estimate.
cMPLE: modi#ed score function estimate based on penalized likelihood.
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Table 2
Hepatitis prevention trial data

Hepatitis outcome:

C Non-ABC No disease

Time 1
Treated 0 2 400
Untreated 5 3 389

Time 2
Treated 3 10 1896
Untreated 5 11 1864

Table 3
Hepatitis prevention trial (three response categories, three covariates, n= 4588). Maximum likelihood
and alternative estimates with 95% con#dence intervals

Outcome:
Covariate MLEa (95% CI)b MPLEc (95% CI)b CMLEd (95% CI)

Hepatitis C
Treatment —e (−∞;−0:78) −2:43 (−7:30;−0:24) −1:93 (−∞; 0:07)
Time −1:57 (−2:85;−0:28) −1:57 (−2:79;−0:34) −1:57 (−3:04;−0:09)
Treatment × Time — (−0:15;+∞) 1.96 (−0:70; 6:95) 1.10 (−1:32;+∞)

Non-ABC Hepatitis
Treatment −0:43 (−2:46; 1:37) −0:36 (−2:16; 1:28) −0:43 (−2:92; 1:74)
Time −0:27 (−1:44; 1:22) −0:38 (−1:49; 0:99) −0:27 (−1:56; 1:46)
Treatment × Time 0.32 (−1:67; 2:50) 0.26 (−1:58; 2:22) 0.31 (−2:07; 2:98)
aMLE: maximum likelihood estimate in trinomial regression.
bBased on pro#le likelihood (SAS Proc Logistic).
cMPLE: modi#ed score function estimate in trinomial regression.
dCMLE: conditional maximum likelihood estimate in two binomial regressions (LogXact).
eIn#nite parameter estimate.

markers. In addition, while the trial was on-going there was a change in national
blood screening policy whereby a new test was introduced to screen all units for
hepatitis C antibodies (time factor). This had the e>ect of decreasing the incidence
of hepatitis C. Thus to evaluate whether the intervention was equally e>ective before
and after the change in screening policy, a test for interaction between the treatment
and time factors would be of interest.

The disease outcomes are rare, producing empty cells in some subgroups (Table 2).
As a result, in the model with an interaction between time and treatment, the usual
logistic regression MLEs are in#nite for two of the parameters, and corresponding
BCMLEs cannot be obtained. The MPLEs, however, can be obtained for all param-
eters (Table 3). In this simple case of two 2 × 3 tables, the MPLEs correspond to
calculating the usual MLEs after adding 1

2 to all the cells in the tables, a strategy
originally suggested for sparse tables by Haldane (1956). When the covariate has
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a balanced distribution, as in the randomized treatment assignment, the MPLEs and
their standard errors are smaller than the unconditional logistic regression MLEs.
However, when the covariate is unbalanced, as in the time factor, the MPLEs can be
larger in magnitude than the MLEs, although their standard errors are smaller. The
pro#le likelihood con#dence intervals for the in#nite MLEs have one in#nite limit,
indicating that !=±∞ cannot be ruled out. This corresponds to the possibility that
a person with a given covariate value can be a>ected or una>ected with certainty,
which is implausible in most cases, and in this study more likely reRects the low
frequency of the hepatitis C outcome. In contrast, the pro#le likelihood con#dence
intervals for the MPLEs have #nite limits.

In the corresponding conditional logistic model, we obtained the conditional MLEs
from LogXact-Turbo (Cytel Software Corporation, 1992) by #tting two separate bi-
nomial logistic models, one that compared the recipients with hepatitis C to those
without disease and another that compared those with non-ABC hepatitis to those
with no disease. Because the model with an interaction is saturated, the exact bino-
mial results are equal to the exact multinomial results, but this will not be true in
general. If other covariates were to be modelled, an implementation of exact multi-
nomial regression would be required. Here we see that the CMLEs are similar to the
unconditional MLEs when the latter exist, but the con#dence intervals are somewhat
larger (Table 3). For the parameters in the hepatitis C regression that have in#nite
MLEs, however, the CMLEs are smaller in magnitude than the MPLEs, and the
con#dence intervals have one in#nite limit. Furthermore, if we wanted to include
a continuous covariate related to the risk of PTH, such as age, without having to
group it into a smaller number of levels, then the conditional approach might be
complicated by over-conditioning.

5. A small sample Monte Carlo simulation study

5.1. Design

The Monte Carlo study evaluated the MPLEs with respect to mean bias and MSE
and compared them to the usual MLEs and the BCMLEs in multiple logistic regres-
sions that included both binary and continuous covariates. We also calculated the
mean bias and MSE for the MPLEs in all datasets, including those in which one
or more of the MLEs did not exist. As in our previous study, we conducted three
series of simulations to investigate the e>ects of sample size (200; 100; 75; 50), type
of covariates (binary and normal), number of parameters (three or six), parameter
values, and correlation among the covariates (uncorrelated or correlated). We chose
regression parameter values to facilitate comparisons of mean bias for speci#c values
of the slope parameters, and to examine the e>ects of n and �j for #xed J and p,
and the e>ects of J and p for #xed n and �j.

We programmed the simulations in the matrix language GAUSS, using the random
number generators provided therein. To generate a vector of mixed binary and nor-
mal covariates for each observation in a dataset, we #rst generated variates from a
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multivariate normal distribution with zero means, unit variances, and a speci#ed cor-
relation matrix, followed by dichotomization at zero to produce one or more binary
covariates. We estimated the binary covariate correlations induced by dichotomiza-
tion from the simulated covariate vectors. We generated the response category by
comparing the probabilities calculated from the linear predictor(s), �T

j xi, to a uni-
form random number. To obtain datasets and results directly comparable to those of
a previous study of jackknife bias reduction (Bull et al., 1997), we used the same
random number seeds as earlier.

One series of simulations evaluated regressions of binomial responses on two
covariates, one binary and one normally distributed, yielding one regression equation
with three parameters, corresponding to an intercept and the two covariates. The
expected response probability ranged from 20 to 75 percent yielding a minimum
response category frequency of 10 events expected in a sample of 50 observations.
A second series evaluated a binomial response in a regression with three binary and
two normal covariates, with estimation of six parameters. The expected response
probability ranged from 65 to 75 percent yielding a minimum response frequency
of 12 events expected in 50 observations. The third series evaluated regressions on
one binary and one normal covariate, but in this series the response was trinomial
and therefore there were two regression equations, each with three parameters. The
smaller of the two expected response probabilities ranged from 13 to 42 percent
and the larger from 22 to 63 percent producing a minimum response frequency of
7 events expected in 50 observations. Within the bounds of 500–4000, we selected
the number of datasets simulated for each combination of parameters such that the
standard error of the mean bias of the uncorrected MLE was less than 1% of the
largest slope parameter value.

Initially, we excluded datasets with complete, partial or quasi-separations (as de-
#ned in our previous paper), and when we detected a separation in the maximum
likelihood estimation, we did not calculate bias reduced estimates by any method.
The number of datasets with separations (i.e., with in#nite estimates) was lowest in
the binomial response models with two covariates, ranging between 0 and 12 percent
in a sample size of 50. We therefore also conducted an additional set of simulations
in a sample size of 25, allowing a maximum of 5000 datasets. In the trinomial models
with a sample size of 50, 20–30 percent of datasets for three of the parameter combi-
nations were initially excluded, but most had less than 10 percent exclusions. In the
smaller sample sizes, the exclusion of datasets with in#nite estimates tended to re-
duce the absolute value of the mean bias in the uncorrected MLEs. These summaries
are interpreted therefore as conditional on the existence of all the uncorrected MLEs.

The complete set of simulations was repeated a second time, including those in
which there were in#nite MLEs, to evaluate the MPLEs over the entire sample space.
We examined the distributions of the MPLEs in both separated and unseparated
datasets using histograms and calculated the mean bias and MSE for the MPLEs.

We present tabled results for the simulations with correlated covariates in the
smallest sample size evaluated in each of the three series of simulations. A complete
set of tables that give mean bias and relative MSE results for all samples sizes and
for both correlated and uncorrelated covariates is available upon request.



S.B. Bull et al. / Computational Statistics & Data Analysis 39 (2002) 57–74 67

5.2. Results

As reported in previous studies, the MLEs have #nite sample bias that is pro-
portional to the true parameter value and increases in magnitude as the sample size
decreases. Using an estimate of the asymptotic bias to correct the MLEs, however,
appeared to correct beyond the true parameter value (Tables 4–6). In all cases
studied, the BCMLEs had smaller MSE than the MLEs, but with severe overcorrec-
tion the MSE advantage of the BCMLEs begins to attenuate.

In the unseparated datasets, the mean bias of the MPLEs was smaller in magnitude
than that of the BCMLEs, i.e., they did not overcorrect as much as the BCMLEs,
particularly in the models with more parameters (Tables 5, 6). As the sample size
increased, the mean bias of the MPLEs and the BCMLEs became more similar
(data not shown). When the sample size was 200 they were indistinguishable, but
both still had smaller bias and MSE than the MLEs. The MPLEs had MSE that
was consistently less than that of the MLEs for both binary and normal covariates,
primarily as a consequence of less variance in the MPLEs. The MSE of the MPLEs
relative to the MLEs decreased as the sample size decreased and as the number of
parameters being estimated increased, i.e., as the n-to-p ratio decreased. (Table 7).

In these simulations, it was usually one of the binary covariate parameter esti-
mates that produced separation in the dataset, and apparently reasonable estimates
could be obtained for the other parameters. The distribution of the MPLEs for the bi-
nary covariates in separated datasets includes larger values than those in unseparated
datasets, whereas the distribution of the MPLEs of the normal covariates closely
resembles that for the unseparated datasets (Fig. 1). This also explains the similarity
of the mean bias of the MPLEs for the normal covariates in all datasets compared
to unseparated datasets.

When all datasets were included in the summaries the mean bias of the MPLEs
was usually closer to zero than that in the unseparated datasets, as a result of the
parameters that had in#nite-valued MLEs being given a large but #nite MPLE value
(Tables 4–6). Information from datasets in which there was a potentially strong
association between the response and the binary covariate was thus rescued by the
availability of the MPLEs in all datasets. In nearly all the simulation runs, for both
binomial and trinomial responses, the mean bias of the MPLEs for all datasets was
close to zero, and #nite sample bias was e>ectively eliminated.

In some of our very sparse data simulations in which there was a substantial pro-
portion of separated datasets (Tables 4 and 6), the mean bias of the MLEs for the
binary covariates was observed to have a sign opposite to that expected (e.g., model
15 in Table 4, model 11 in Table 6). This occurred as an artefact of having to
exclude separated datasets from the summary averages. For binary covariates with
positive e>ects, this tended to exclude values from the upper tail of the distribution
of estimates, producing a mean bias value that was shifted downward. The BCMLEs
were also a>ected by this phenomenon, yielding shifted mean bias values particu-
larly in very small samples. The minimal mean bias of the MPLEs averaged over
both separated and unseparated datasets suggests that the apparent overcorrection of
the MPLEs in the unseparated datasets (and a good part of that in the BCMLEs)
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Table 4
Selected results for binomial logistic regression with two correlateda covariates (n= 25)

Binary covariate (U1) Normal covariate (U2)

# Simulations Parameter values Mean biasc Relative MSE Mean Biasd Relative MSE
Modelb (separated) U0 U1 U2 MLEe BCMLEf MPLE (∗)g BCMLE MPLE MLE BCMLE MPLE (∗) BCMLE MPLE

13 5000 (919) −1:4 0 1 −0:50 −0:26 −0:31 (−0:03) 0.42 0.44 0.39 −0:10 −0:10 (0:01) 0.32 0.33
14 5000 (435) −1:4 1 0 0.02 −0:19 −0:15 (0:00) 0.58 0.64 0.02 0.01 0.01 (0.01) 0.49 0.56
15 5000 (949) −1:4 1 1 −0:28 −0:37 −0:34 (−0:04) 0.55 0.60 0.37 −0:08 −0:08 (0:01) 0.37 0.35
16 5000 (173) −1:4 1 −1 0.35 −0:05 0.02 (0.02) 0.45 0.52 −0:30 0.07 0.07 (0.00) 0.40 0.43
17 5000 (444) −1:4 2 0 0.20 −0:24 −0:15 (0:01) 0.47 0.54 0.00 0.00 0.00 (0.01) 0.48 0.55
18 5000 (1045) −1:4 2 1 −0:09 −0:50 −0:39 (−0:04) 0.57 0.61 0.40 −0:14 −0:14 (−0:02) 0.38 0.32

19 5000 (71) 0 0 1 −0:16 −0:04 −0:06 (−0:03) 0.53 0.59 0.33 −0:04 −0:04 (0:03) 0.39 0.41
20 5000 (122) 0 1 0 0.11 −0:09 −0:06 (−0:01) 0.59 0.65 0.01 0.00 0.00 (0.00) 0.54 0.60
21 5000 (410) 0 1 1 −0:04 −0:19 −0:15 (−0:01) 0.55 0.62 0.37 −0:08 −0:08 (0:01) 0.37 0.39
22 5000 (52) 0 1 −1 0.31 −0:05 0:02 (0:00) 0.51 0.52 −0:33 0.04 0:04 (−0:03) 0.40 0.38
23 5000 (1051) 0 2 0 0.01 −0:44 −0:34 (−0:01) 0.58 0.61 −0:02 −0:02 −0:02 (−0:02) 0.49 0.55
24 5000 (1705) 0 2 1 −0:32 −0:67 −0:58 (−0:09) 0.69 0.69 0.41 −0:14 −0:14 (−0:02) 0.28 0.31

aThe correlation between the binary and the normal covariate is 0.6.
bModels 1–12 (not shown) correspond to models with the same parameters, but with uncorrelated covariates.
cThe standard errors of the mean bias of the MLE for the binary covariate range from 0.021 to 0.029; they are smaller for BCMLE and MPLE.
dThe standard errors of the mean bias of the MLE for the normal covariate range from 0.016 to 0.026; they are smaller for BCMLE and MPLE.
eMLE: maximum likelihood estimate in unseparated datasets.
f BCMLE: asymptotic bias corrected estimate in unseparated datasets.
gMPLE: modi#ed score function estimates in unseparated datasets; mean bias in all datasets, including separated, is given in brackets.
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Table 5
Selected results for binomial logistic regression with #ve covariates—three binary and two normal covariates (n= 50). In Models 1–3, covariates are
uncorrelated; in models 4–6, covariates are correlateda

Mean biasc Relative MSE Mean bias Relative MSE

Modelb # Simulations Model # Simulations
(separated) U MLEd BCMLEe MPLE (∗)f BCMLE MPLE (separated) U MLE BCMLE MPLE (∗) BCMLE MPLE

1 2769 (17) 1 0.30 −0:04 0.02 (0.03) 0.42 0.49 4 4000 (214) 1 0.29 −0:13 −0:02 (0:01) 0.31 0.40
2 0.59 −0:09 0.05 (0.05) 0.32 0.36 2 0.68 −0:29 −0:05 (0:03) 0.29 0.33
1 0.29 −0:05 0.01 (0.01) 0.44 0.49 1 0.30 −0:11 −0:01 (−0:01) 0.31 0.40
1 0.33 −0:04 0.03 (0.03) 0.33 0.37 1 0.39 −0:14 −0:01 (0:02) 0.30 0.36
1 0.33 −0:05 0.02 (0.02) 0.29 0.36 1 0.40 −0:12 0.00 (0.03) 0.30 0.37

2 2908 (16) 1 0.30 −0:05 0.01 (0.02) 0.39 0.47 5 3664 (309) 1 0.23 −0:05 0.01 (0.02) 0.63 0.49
2 0.61 −0:09 0.03 (0.06) 0.28 0.36 2 0.44 −0:22 −0:08 (0:04) 0.63 0.41
1 0.28 −0:06 0.00 (0.00) 0.43 0.50 1 0.18 −0:07 −0:02 (−0:04) 0.41 0.50

−1 −0:34 −0:04 −0:02 (−0:03) 0.28 0.35 −1 −0:33 0.06 −0:01 (−0:02) 0.63 0.44
1 0.34 −0:04 0.02 (0.03) 0.28 0.36 1 0.32 −0:07 0.00 (0.01) 0.94 0.44

3 3660 (93) 1 0.27 −0:13 −0:05 (−0:03) 0.36 0.44 6 4000 (485) 1 0.33 −0:16 −0:03 (0:01) 0.30 0.36
2 0.62 −0:21 −0:04 (0:01) 0.31 0.32 2 0.67 −0:51 −0:14 (0:01) 0.40 0.29
2 0.62 −0:22 −0:05 (0:01) 0.31 0.33 2 0.71 −0:45 −0:10 (0:04) 0.41 0.29
1 0.33 −0:10 −0:02 (0:00) 0.26 0.32 1 0.43 −0:23 −0:04 (0:02) 0.41 0.31
1 0.35 −0:10 0.00 (0.01) 0.33 0.32 1 0.41 −0:22 −0:04 (0:02) 0.36 0.33

aThe pairwise correlations are 0.6 for the binary covariates; 0.8 for the normal covariates; and 0.0 between the binary and the normal covariates.
bThe intercept is −1:4 in all models.
cThe standard errors of the mean bias of the MLE for the binary covariates range from 0.024 to 0.051; those for the mean bias of the MLE for the

normal covariates range from 0.014 to 0.025; they are smaller for BCMLE and MPLE.
dMLE: maximum likelihood estimate in unseparated datasets.
eBCMLE: asymptotic bias corrected estimate in unseparated datasets.
f MPLE: modi#ed score function estimates in unseparated datasets; mean bias in all datasets, including separated, is given in brackets.
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Table 6
Selected results for trinomial logistic regression with two correlateda covariates (n= 50)

Parameter values Binary (!11; !21) Normal (!12; !22)

Mean biasc Relative MSE Mean biasd Relative MSE
# Simulations !10 !11 !12

Modelb (separated) !20 !21 !22 MLEe BCMLEf MPLE (∗)g BCMLE MPLE MLE BCMLE MPLE (∗) BCMLE MPLE

8 2564 (214) −1:4 0 1 −0:21 −0:08 −0:09 (0:00) 0.56 0.62 0.22 −0:02 0.00 (0.01) 0.50 0.56
−1:4 2 0 0.17 −0:05 −0:02 (0:02) 0.72 0.75 0.01 0.00 0.00 (0.00) 0.75 0.77

9 4000 (324) −1:4 1 1 −0:06 −0:18 −0:15 (−0:02) 0.72 0.75 0.19 −0:01 0.01 (0.02) 0.61 0.64
−1:4 1 −1 0.14 0.00 0.01 (0.00) 0.70 0.73 −0:16 0.02 0.00 (0.00) 0.63 0.66

10 4000 (833) −1:4 2 1 −0:13 −0:46 −0:39 (−0:05) 0.77 0.79 0.25 0.00 −0:02 (0:02) 0.54 0.58
0 1 −1 0.13 −0:07 −0:04 (0:00) 0.70 0.74 −0:13 0.03 0.02 (0.01) 0.68 0.70

11 3681 (1005) −1:4 2 1 −0:25 −0:61 −0:53 (−0:07) 0.75 0.77 0.20 −0:01 0.01 (0.00) 0.57 0.60
0 2 1 −0:09 −0:36 −0:31 (0:05) 0.80 0.82 0.18 −0:02 0:00 (−0:01) 0.57 0.60

12 3424 (281) 0 0 1 −0:23 −0:20 −0:19 (−0:05) 0.68 0.70 0.19 0.00 0.02 (0.02) 0.63 0.66
0 2 0 0.07 −0:20 −0:16 (−0:02) 0.73 0.75 0.00 −0:01 −0:01 (0:01) 0.70 0.73

13 3557 (308) 0 1 0 0.01 −0:18 −0:15 (0:00) 0.71 0.75 −0:02 −0:01 −0:01 (−0:02) 0.72 0.74
0 2 0 0.07 −0:21 −0:17 (−0:02) 0.72 0.75 0.00 −0:01 −0:01 (−0:01) 0.72 0.74

14 4000 (1203) 0 2 1 −0:32 −0:62 −0:56 (−0:11) 0.94 0.92 0.18 −0:02 −0:02 (0:01) 0.62 0.64
0 2 1 −0:30 −0:60 −0:53 (−0:11) 0.93 0.91 0.18 −0:02 0.00 (0.00) 0.61 0.64

aThe correlation between the binary and the normal covariate is 0.6.
bModels 1–7 (not shown) correspond to models with the same parameter values as models 8–14 but uncorrelated covariates.
cThe standard errors of the mean bias of the MLE for the binary covariate range from 0.019 to 0.026; they are smaller for BCMLE and MPLE.
dThe standard errors of the mean bias of the MLE for the normal covariate range from 0.012 to 0.020; they are smaller for BCMLE and MPLE.
eMLE: maximum likelihood estimate in unseparated datasets.
f BCMLE: asymptotic bias corrected estimate in unseparated datasets.
gMPLE: modi#ed score function estimates in unseparated datasets; mean bias in all datasets, including separated, is given in brackets.
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Table 7
Range of relative mean squared error (RMSE) of the MPLE to the uncor-
rected MLE (percent)

Sample size Binomial regression Trinomial regression
Two covariates Five covariates Two covariates

200 89–96 81–92 83–95
100 78–93 61–79 75–89
75 76–90 44–71 71–87
50 62–84 27–52 55–92
25 28–69 — —

Fig. 1. Distribution of MPLEs for binomial logistic regression with one binary (x1) and one normal co-
variate (x2) in 2719 simulations of a dataset of 50 observations. The model is logit (�) = #+!1x1+!2x2
with #= 0; !1 = 2; !2 = 1. The upper panels include estimates from all datasets; datasets with at least
one in#nite MLE are denoted by the light grey histogram bars. The lower panels include only the 315
datasets with separations.

may be the result of averaging over the incomplete sample space in which the MLEs
are #nite.

6. Discussion

The applications and the Monte Carlo study demonstrate several advantages for the
modi#ed score function estimator. In the applications, it is apparent that the shrinkage
e>ect of the modi#ed score function operated more strongly when it was needed, i.e.,
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when there was a large association and the ratio of observations to parameters was
small, but was minimal for parameter estimates that did not require bias reduction.
It was e>ectively applied in both very small samples and in large samples in which
sparse data made estimation of some of the parameters diJcult. It was possible
to model multiple quantitative covariates without having to arbitrarily group values
into a smaller number of levels. In the simulation studies, the bias reduction was
equally e>ective for binomial and trinomial responses and for regressions with general
covariate types, including continuous covariates.

In previous studies of methods for bias reduction, our comparisons were limited
to datasets with no in#nite estimates and we observed that as the sample size de-
creased, exclusion of such datasets produced progressive truncation of one tail of the
distribution of the MLEs of large parameters. As a result, in some simulations the
mean bias initially increased but eventually decreased in the smallest sample size. In
this study, we were able to observe more directly the e>ects on the bias reduced esti-
mates of limiting consideration to the unseparated datasets, because the MPLEs were
calculated in both unseparated and separated datasets. Thus, some of the apparent
overcorrection observed in evaluations of the bias reduction methods that require the
existence of the MLEs was likely due to consideration of an incomplete sample space.

In the smallest sample simulations, the MPLEs were less biased and more eJcient
than the unconditional MLEs and the bias-corrected MLEs, and could be obtained in
all samples, even when there were in#nite MLEs. In moderate samples, the MPLEs
were less biased and more eJcient than the unconditional MLEs, and behaved simi-
larly to the bias-corrected MLEs. As the sample size increases, the modi#ed estimates
become equivalent to the usual MLEs, so routine application of modi#ed estimation
appears to bear only the cost of implementation and additional computation. These
results encourage us to develop and evaluate computationally eJcient algorithms
for hypothesis testing and con#dence interval methods based on the modi#ed score
function and corresponding penalized log likelihood.

A referee has noted that the score modi#cation could be generalized by using priors
stronger than Je>reys’, further reducing MSE at the cost of introducing negative bias
on the log-odds-ratio scale. Greenland (2000) demonstrates this for the conditional
logistic likelihood. The penalized log likelihood, l∗, that yields the modi#ed score,
U ∗, is the log posterior density obtained when the log prior density, 1

2 log |A|, is
the anti-derivative of the score penalty. More generally, then, a log prior density of
c log |A| with c¿ 1

2 yields a larger score penalty; for example, in tabular data, c= 1
corresponds to the Laplace estimate in which 1 instead of 1

2 is added per cell. Hauck
et al. (1982) examined alternative values of c in the context of a series of 2 × 2
tables, and further work for regression models is warranted. References Hirji et al.,
1989; SAS=STAT, 1996
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