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Scope and Purpose - Many engineering problems require the optimal solution of

nonlinear programming problems of a complex nature, and the practitioner must choose an

optimization algorithm which is appropriate for his or her specific problem.  There is a

large body of literature in which numerous methods have been suggested and tested for the

solution of machining economics problems, in which the optimal cutting parameters (feed

rate, speed, depth of cut, etc.) are to be determined.  Duffuaa, Shuaib, and Alam, in a

paper published in this journal [1], compared the performance of several algorithms in

solving problems of this type, and concluded that the Generalized Reduced Gradient

(GRG) algorithm performed better than others which were included in the study.  Among

the algorithms which they evaluated was a Geometric Programming (GP) algorithm, which

fared badly in the comparison.  However, the GP algorithm which was evaluated was not

representative of the "state-of-the-art".  In this paper, we demonstrate that, applied to the

five problems used in Duffuaa et al. [1], a GP algorithm is competitive with the GRG

algorithm.

Abstract -  Machining economics problems usually contain highly nonlinear equations

which may present difficulties for some nonlinear programming algorithms.  An earlier

article by Duffuaa et al. [1] compared the performance of several nonlinear programming

algorithms, including a geometric programming algorithm, applied to five machining

economics problems.  Those authors concluded that the Generalized Reduced Gradient

(GRG) algorithm is the most suitable method for solving such problems.  In this paper, we

point out shortcomings in that conclusion and demonstrate the effectiveness of the

Geometric Programming technique in such problems compared with the results of GRG

which were presented.
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1.  INTRODUCTION

In machining economics problems, the primary objective in general is to determine the

optimal cutting parameters which minimize production cost while satisfying certain design

conditions.  This is usually achieved by developing a mathematical programming model

which puts restrictions on the choice of cutting parameters.  Because of the complexity of

many of these constraints, these models need efficient and robust methods for their

solution.

A large number of methods or techniques have been suggested and evaluated for

solving these problems.  Duffuaa et al. [1] tested six methods to identify the most suitable

method(s) for optimizing a set of machining economics models from the literature.  The

Generalized Reduced Gradient (GRG) algorithm, as implemented in Generalized Interactive

Nonlinear Optimizer (GINO), emerged as the best method and, therefore, was

recommended for use in solving this class of problems.  However, the authors of that

study dismissed too easily the usefulness of Geometric Programming (GP) techniques,

which have often been utilized in solving such problems [2,3,4,5,6,7].

GP was originally developed by Duffin et al. [8] as a modeling method which would

allow a more intimate analysis of all design variables and their relative importance to the

overall design.  A number of algorithms for optimizing GP models have been developed

and improved (cf.[9,10]).  The GP algorithm evaluated by Duffuaa et al. [1], namely the

Gomtry algorithm of Blau, was judged to be not sufficiently robust to solve machining

economics problems.  The generalization that all GP algorithms lack robustness is,

however, without justification.  Our purpose in this present paper is to correct this

misperception.

2. THE GEOMETRIC PROGRAMMING PROBLEM

The general primal problem of GP is to
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Minimize y0(x) = σ0t  c0t  xn
a0tn∏

n=1

N

∑
t=1

T0
(1)

subject to ym(x) = σmt cmt xn
amtn∏

n=1

N

∑
t=1

Tm

 ≤ σm, m=1, ,M
(2)

xn > 0, n=1,...,N

where σmt = ± 1,     t=1, ,Tm ,  m=0, ,M

σm = ± 1,      m=0, ,M

The exponents  amtn   are arbitrary real numbers, but the coefficients cmt  are assumed to be

positive constants and the design variables  xn  are required to be strictly positive.  If the

objective function and constraints of GP have only positive coefficients, i.e., σmt  and σm

are all +1, then the GP problem is referred to as a posynomial GP problem.  The

corresponding posynomial GP dual problem is to

Maximize v(δ,λ) = cmtλm

δmt

δmt
∏
t=1

Tm

∏
m=0

M (3)

subject to         amtnδmt∑
t=1

Tm

∑
m=0

M
 = 0, n=1, , N

(4)

λm = δmt∑
t=1

Tm

, m=0, 1, ,M
(5)

λ0 = 1
(6)

δmt ≥ 0, t=1, ,Tm,  m=0, 1, ,M (7)

This dual problem offers several computational advantages, primarily the fact that the

constraints are linear.  If an optimal dual solution (δ*
,λ*

) is known, then the following

relationships may be used to compute a primal solution x* in nonpathological cases:

δmt
*

 ym(x*) = λm
*

 cmt xn*
amtn∏

n=1

N

 , t=1, Tm, m=0, 1, M
(8)
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where y0(x*)=v(δ*
,λ*

) and, for m>0,  ym(x*)=1 if λm≠0.

Note that, from these relationships, one may obtain a system of equations linear in the

logarithms of the optimal values of the primal variables:

amtn  ln xn∑
n=1

N

 = ln 
δmt

*
ym(x*)

λm
*

cmt

 ,  ∀ m=0, ,M    such that λm
* ≠0 and t=1, Tm

(9)

If one or more terms of the GP model have negative coefficients, then it is referred to

as a signomial, or generalized, GP model.  Signomial GP problems are best solved by a

method analogous to sequential quadratic programming (SQP), but using a posynomial

approximation to each of the signomial functions.  This is accomplished by the

condensation technique, first suggested by Duffin and Peterson [11], which approximates a

posynomial function by a monomial, i.e., a single term.  Each signomial function ym(x)

may be expressed as the difference of two posynomial functions  ym+ (x) - ym- (x).  Thus, the

signomial constraint  ym(x) ≤ σm  may be written, depending upon whether  σm is positive

or negative, as

ym+ (x)
1+ym- (x)

 ≤ 1

or
1+ym+ (x)

ym- (x)
 ≤ 1

respectively.  By approximating the denominator by a monomial, the signomial constraint

may then be approximated by a posynomial constraint.  If the objective function y0(x) is

not posynomial, then minimizing a new variable x0 subject to a (signomial) constraint

x0
-1 y0(x) ≤ 1,  yields a GP problem with posynomial objective function.  Hence, a

signomial GP problem may be approximated by a posynomial GP problem.
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3. COMPUTATIONAL  RESULTS

Five machining economics problems were used by Duffuaa et al.[1] and may be

found there, together with references to their sources.  (Note, however, the typographical

error in the first problem which was corrected in [ 14,15].)  These five problems have been

again solved with a GP algorithm in order to compare the results with those of the GRG

algorithm. The first problem, namely, that of Iwata et al., has an exponential function in its

objective;  this we have approximated by a posynomial function.  All the problems are

solved as posynomial GP problems,  except that of Hati and Rao, which is a signomial GP

and solved by the sequential posynomial GP method described above.  The algorithm used

to solve the posynomial GP problems is that of Bricker and Rajgopal [12], which is

comparable to the well-known GGP algorithm of Dembo [13].  Both yield dual feasible

solutions and employ as a stopping criterion the maximum permissible relative

infeasibilities in the primal constraints and the duality gap in the objective.

Each problem was solved using each of the four initial points in [1].  For the

purposes of comparison, Table 1 includes both the results from [1] for the GRG algorithm

and the results of the current test for the GP algorithm.  With the exception of the second

problem, the results yielded by the GP algorithm are identical to those reported for GRG.

(It is suspected that the objective function value 152.96 given by Duffuaa and Shuaib in

[15] is in error, since the cutting parameters found by both methods appear identical.)

Finally, a comparison of problem 2 as given in [1] (and its correction in [15]) with

the original problem as given by Hati and Rao [16] indicates a discrepancy in the exponent

of the depth of cut d (treated as a constant, 2.5).  Hati and Rao stated the objective function

as

n 3.14159 × 103 V-1 f-1 + 2.87979 × 10-8 V4 f0.75 d0.75 + 10
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Table 2 shows the results yielded by the GP algorithm for this original version of the

problem.  The optimal cutting parameters remain unchanged compared to the version of the

problem used by Duffuaa et al., although the optimal cost has increased.

In summary, this computational test demonstrates that a geometric programming

algorithm can yield results equally as good as the GRG algorithm, with the same reliability

and insensitivity to starting point which was experienced by Duffuaa et al.
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Table 1.  Computational  Results

Input vector Optimal solution
Problem Method Speed Feed Speed Feed Cost Depth Passes

190.0 0.230 216.08 0.388 108.03 2.0 1
200.0 0.230 216.08 0.388 108.03 2.0 1

GRG 190.0 0.320 216.08 0.388 108.03 2.0 1
200.0 0.320 216.08 0.388 108.03 2.0 1

Iwata
190.0 0.230 216.0 0.389 108.03 2.0 1

GP 200.0 0.230 216.0 0.389 108.03 2.0 1
190.0 0.320 216.0 0.389 108.03 2.0 1
200.0 0.320 216.0 0.389 108.03 2.0 1

146.0 0.375 148.22 0.3618 152.96 2.5 2
196.0 0.375 148.22 0.3618 152.96 2.5 2

GRG 146.0 0.575 148.22 0.3618 152.96 2.5 2
196.0 0.575 148.22 0.3618 152.96 2.5 2

Hati
& Rao 146.0 0.375 148.22 0.3618 149.85 2.5 2

196.0 0.375 148.22 0.3618 149.85 2.5 2
GP 146.0 0.575 148.22 0.3618 149.85 2.5 2

196.0 0.575 148.22 0.3618 149.85 2.5 2

185.0 0.150 174.38 0.232 12.10 3.0 1
215.0 0.150 174.38 0.232 12.10 3.0 1

GRG 185.0 0.200 174.38 0.232 12.10 3.0 1
215.0 0.200 174.38 0.232 12.10 3.0 1

Petropo
-ulos 185.0 0.150 174.39 0.232 12.10 3.0 1

215.0 0.150 174.39 0.232 12.10 3.0 1
GP 185.0 0.200 174.39 0.232 12.10 3.0 1

215.0 0.200 174.39 0.232 12.10 3.0 1

135.0 0.0011 143.90 0.0014 6.26 0.2 1
170.0 0.0011 143.90 0.0014 6.26 0.2 1

GRG 135.0 0.0035 143.90 0.0014 6.26 0.2 1
170.0 0.0035 143.90 0.0014 6.26 0.2 1

Ermer
135.0 0.0011 143.90 0.0014 6.26 0.2 1

GP 170.0 0.0011 143.90 0.0014 6.26 0.2 1
135.0 0.0035 143.90 0.0014 6.26 0.2 1
170.0 0.0035 143.90 0.0014 6.26 0.2 1

320.0 0.0018 433.60 0.0038 1.553 0.2 1
440.0 0.0018 433.60 0.0038 1.553 0.2 1

GRG 320.0 0.0039 433.60 0.0038 1.553 0.2 1
Ermer & 440.0 0.0039 433.60 0.0038 1.553 0.2 1
Kromod
-ihardjo 320.0 0.0018 433.60 0.0038 1.553 0.2 1

440.0 0.0018 433.60 0.0038 1.553 0.2 1
GP 320.0 0.0039 433.60 0.0038 1.553 0.2 1

440.0 0.0039 433.60 0.0038 1.553 0.2 1
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Table 2.  Hati & Rao's original problem

Input vector Optimal solution
Speed Feed Speed Feed Cost Depth Passes

146.0 0.375 148.22 0.3618 162.95 2.5 2
196.0 0.375 148.22 0.3618 162.95 2.5 2
146.0 0.575 148.22 0.3618 162.95 2.5 2
196.0 0.575 148.22 0.3618 162.95 2.5 2
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