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Abstract—In this paper, we consider the problem of spatial
prediction based on sparse representations. Several algorithms
dealing with this problem can be found in the literature. We
propose a novel method involving a mixture of sparse rep-
resentations. We first place this approach into a probabilistic
framework and then derive a practical procedure to solve
it. Comparisons of the rate-distortion performance show the
superiority of the proposed algorithm with regard to other state-
of-the-art algorithms.

Index Terms—Sparse representations, prediction, inpainting.

I. INTRODUCTION

Intra-prediction is an important tool in image and video

compression to deal with the spatial correlation of natural im-

ages. The idea of intra-prediction is to infer the value of some

unknown image blocks from the knowledge of those already

decoded. It is widely recognized that accurate prediction can

significantly decrease the overall coding rate and this type of

technique has thus been integrated to the latest video codec

H.264 [1].

Recently, the prediction problem (and the closely-related

“inpainting” problem) has been placed in the framework of

sparse representations. Sparse representations aim at describ-

ing a signal (e.g., an image block) as the combination of a

small number of atoms chosen from an overcomplete dictio-

nary. For a proper choice of the dictionary, it has been shown

that such decompositions can offer very good performance in

prediction or inpainting problems, see e.g., [2], [3], [4], [5],

[6], [7].

In [2] and [3], Guleryuz considers an overcomplete dictio-

nary made up of orthonormal bases and proposes an iterative

implementation of the sparse representation problem applied

to inpainting. Another approach is presented by Elad et al.

in [4]. The proposed implementation involves a different type

of dictionary, made up of atoms capturing either “cartoon”

or “texture” areas. Elad et al. add also a total variation (TV)

penalty term to the standard sparse representation problem.

Finally, in [5], Fadili et al. introduce an implementation based

on the expectation-maximization (EM) algorithm.

Several contributions also consider the problem of pre-

diction based on sparse representations in the context of

image/video coding, see e.g., [6], [7]. These contributions

mainly distinguish by the choice of the dictionary used to

“sparsely” represent the signal and the choice of the data

used for the prediction. In [6], Martin et al. consider an

overcomplete dictionary made up of discrete real Fourier and

cosine functions, while Türkan et al. [7] construct a dictionary

from image patches taken in a large causal area and consider

seven possible causal neighborhoods.

The common features of the prediction methods mentioned

above is the use of one single dictionary1 in the sparse repre-

sentation problem. In contrast, this paper considers the option

of using a mixture of dictionaries: the vector is assumed to

arise from a “multi-source” process where each source defines

sparse signals over a particular dictionary. We will emphasize

that prediction based on this model leads to estimates which

are a weighted mixture of sparse representations in each of

the considered dictionaries.

II. SPARSE REPRESENTATION AND STANDARD PREDICTION

Sparse representations aim at describing a signal as the

combination of a small number of atoms chosen from an

overcomplete dictionary. Formally, this problem can be formu-

lated as follows. Let D∈R
N×M be a dictionary with N≤M

and y∈R
N an observed signal. We want to find the vector

x∈R
M such that:

min
x

‖y − Dx‖2

2
subject to ‖x‖0 ≤ L, (1)

where ‖x‖0 denotes the l0-norm, i.e., the number of nonzero

coefficients in x and L is a given constant. Note that problem

(1) is also often expressed in its Lagrangian version:

min
x

‖y − Dx‖2

2
+ µ‖x‖0, (2)

where µ is a Lagrangian multiplier. Finding the exact solu-

tion of (2) is an intractable problem. Therefore, numerous

suboptimal (but tractable) algorithms have been devised in

the literature to address the SR problem. In particular, the

Orthogonal Matching Pursuit (OMP) algorithm (see [8]) solves

problem (1) and builds up the sparse vector x by successively

adding a nonzero coefficient. The Global Matched Filter

(GMF) algorithm also known as Basis Pursuit (BP) algorithm

(see [9] and [10]) approximates the l0-norm by the l1-norm

in (2) and can thus find an approximation of x by standard

convex optimization procedures.

The idea of prediction based on sparse representations relies

on the assumption that the missing data we want to predict

and the observed data have a sparse representation in a given

dictionary. Sparsity defines thus a prior on the signal made

up of the concatenation of the observed and the missing data.

This can be formalized as follows. Let y = [yT
o ,yT

m]T be the

1Although the dictionary can be chosen from a set of dictionaries or made
of atoms of different nature (e.g. DCT, wavelets, curvelets, etc.).
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Given σ2
o , calculate:

1. ∀i ∈ {1, . . . , P},

x⋆

i
= arg min

xi

{

1

2σ2
o

‖yo − Di

oxi‖
2

2 + λi‖xi‖0

}

, (5)

2. y⋆

m =
P

∑

i=1

w⋆

i
Di

mx⋆

i
, (6)

with w⋆

i
, p(c = i|yo, x⋆),

∝ exp(−
1

2σ2
o

‖yo − Di

ox
⋆

i
‖2

2 − λi‖x
⋆

i
‖0) p(c = i). (7)

Table I
MAIN EQUATIONS OF THE PROPOSED ALGORITHM

concatenation of yo ∈ R
No , observed data, and ym ∈ R

Nm ,

missing data. y is assumed to have a sparse representation in

dictionary D. The missing data ym is thus estimated as:

y⋆
m = Dmx⋆, (3)

where the sparse representation x⋆ is calculated from the

observed data as

x⋆ = arg min
x

‖yo − Dox‖
2

2
+ µ‖x‖0, (4)

Do ∈ R
No×M (resp. Dm ∈ R

Nm×M ) is the dictionary whose

rows correspond to the elements in yo (resp. ym).

III. INPAINTING USING A SET OF DICTIONARIES

In this section, we derive a prediction method in which

the sought vector is assumed to have a sparse representation

in one out of P dictionaries. We first expose a probabilistic

framework suited to the modelization of such situations.

We then propose a practical algorithm for prediction which

exploits this framework.

A. A probabilistic framework

We consider a set of P dictionaries D = {Di}P
i=1

with

Di ∈ R
N×Mi ∀i. Let moreover x denote the set of represen-

tation vectors of y in each dictionary Di, i.e.,

x = {xi}
P
i=1

. (8)

Based on these definitions, we consider the following model

for y:

p(y) =

P
∑

i=1

∫

RMi

p(y|x, c = i) p(x|c = i) p(c = i) dxi, (9)

with

p(y|x, c = i) = N (Dixi,Σ), (10)

p(x|c = i) ∝ exp{−λi‖xi‖0}, (11)

where λi > 0 and ∝ denotes equality up to a normalization

factor 2. N (µ,Γ) denotes a Gaussian distribution with mean

2Note that (11) is actually improper since the normalization factor is equal
to ∞. This technical problem does however not lead to any particular issue
in the rest of the paper.

µ and covariance Γ. Hereafter, we consider that Σ is a diagonal

matrix3 with:

Σjj =

{

σ2

o if element (j) is in yo,

σ2

m if element (j) is in ym,
(12)

The model (9)-(11) can be interpreted as follows: y is

assumed to be a noisy combination of vectors from one

(among P ) dictionary; the choice of the dictionary is indexed

by c. Sparsity is encouraged via prior (11) which penalizes xi’s

with many nonzero elements. p(y) can therefore be understood

as a mixture of Gaussians N (Dixi,Σ) where each element is

weighted by a factor depending on the sparsity of xi and the

prior probability p(c = i).

B. MMSE Prediction from a Mixture of Dictionaries

We now propose a practical method to infer the value of

ym from the observation of yo. We look for the solution

of the following minimum mean-square estimation (MMSE)

problem:

y⋆
m =

∫

ym

ym p(ym|x = x⋆,yo) dym. (13)

where

x⋆ = arg max
x

log p(yo, x). (14)

Given the knowledge of x, (13) is therefore the optimal

estimator in terms of mean-square reconstruction error.

The goal function in (14) can be rewritten as

p(yo, x) =
∑

c

∫

ym

p(y, x, c) dym. (15)

Taking model (9)-(11) into account, the ith term of the

summation over c only depends on xi. Therefore, the joint

optimization problem (14) over x reduces to P individual op-

timization problems over xi. The solution of (14) is expressed

as x⋆ = {x⋆
i }

P
i=1

with:

x⋆
i =arg min

xi

{

1

2σ2
o

‖yo − Di
oxi‖

2

2
+ λi‖xi‖0

}

∀i, (16)

where Di
o ∈ R

No×Mi denotes the restriction of Di to rows

corresponding to elements in yo.

It is interesting to note that (16) has the form of a standard

sparse representation problem (2). More particularly, x⋆
i can

be regarded as the sparse representation of yo in dictionary

Di
o.

On the other hand, taking model (9)-(11) into account, it is

easy to see that p(ym|x = x⋆,yo) is a mixture of Gaussians:

p(ym|x = x⋆,yo) =
P

∑

i=1

p(c = i|yo, x
⋆)N (Di

mx⋆
i , σ

2

mI),

3For a sake of simplicity, we consider in this paper a unique Σ for all
dictionaries, but the general case where the noise variance depends on the
dictionary is straightforward.
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(a) (b)

Figure 1. Spatial prediction result for “Cameraman” with the standard method based on sparse representations 1(a) and the proposed method 1(b)

where Di
m ∈ R

Nm×Mi denotes the restriction of Di to rows

which correspond to elements in ym. Therefore, (13) writes

y⋆
m =

P
∑

i=1

p(c = i|yo, x
⋆) Di

mx⋆
i . (17)

According to equations (3)-(4), Di
mx⋆

i is the estimate of ym

if one single dictionary Di is considered. Hence, y⋆
m can be

interpreted as a weighted combination of estimates in different

dictionaries. The weighting coefficients, p(c = i|yo, x
⋆), give

the probability that the observed vector yo has been generated

as a sparse combination of atoms from the ith dictionary.

These a posteriori probabilities can be computed as:

p(c|yo, x
⋆) ∝ exp(−

1

2σ2
o

‖yo − Dc
ox

⋆
c‖

2

2
− λc‖x

⋆
c‖0) p(c).

(18)

The implementation of (13)-(14) is summarized in Table I.

The complexity of the proposed algorithm is dominated by

the P operations (16). This complexity is the same as that of

solving the standard sparse representation problem (2) with a

dictionary made up of the concatenation of the P considered

dictionaries.

Note that if we make the assumption P = 1, then the

equivalence between (3)-(4) and (13)-(14) is straightforward

by taking model (9)-(11) into account. We thus recognize the

standard formulation of the inpainting problem based on sparse

representations as a particular case of the method proposed in

this paper.

IV. IMPLEMENTATION AND RESULTS

yo

ym

Figure 2. Illustration of an image block prediction: block to predict ym and
the causal neighborhood considered, yo.

In this section, we apply the proposed algorithm to the

problem of image intra-prediction. We consider the spatial

prediction context illustrated in Fig. 2: prediction is performed

on each 8×8 pixel block (white block in Fig. 2) from the 4
nearest causal 8×8 pixel blocks (grey blocks in Fig. 2). We

compare the performance of the proposed approach with two

other prediction algorithms: a H.264-like predictive scheme

and the standard prediction based on sparse representations

(3)-(4).

In the rest of this section, we first detail the choice of model

parameters and the encoding scheme in section IV-A and IV-B,

respectively. Performance of the predictive schemes is then

illustrated in section IV-C.

A. Model parameters

The parameters characterizing model (9)-(11) are defined as

follows. We assume that the distribution of c is uniform:

∀i ∈ {1, . . . , P}, p(c = i) =
1

P
. (19)

The computation of the a posteriori probabilities (18) reduces

thus to the following expression:

p(c|yo, x
⋆) ∝ exp(−

1

2σ2
o

‖yo − Dc
ox

⋆
c‖

2

2
− λc‖x

⋆
c‖0). (20)

The dictionaries used to “sparsely” represent the data are the

directional DCTs (DDCT) introduced by Zeng and Fu in [11]

and later extended in [12] by Dremeau et al.. We generate

7 directional DCTs corresponding to the prediction modes

in H.264 (DC, vertical and horizontal modes are included

in the classical DCT). Note that the directional DCTs are

orthonormal bases.

We set λi = log N ∀i, assuming that the result established

by Donoho and Johnstone in [13] is still valid when skipping

some rows of an orthogonal dictionary.

The choice of the value of σ2

o is closely related to the

sparsity on x. On the other hand, this latter strongly impacts

the reconstruction quality on ym. Now, the “best” sparsity on

x with regard to the reconstruction of ym can be extremely
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Figure 3. PSNR versus Rate for “Cameraman” 3(a), “Roofs” 3(b) and “Barbara” 3(c)

varying from a predicted block to another. An additional

information on the “best” sparsity level has then to be trans-

mitted to the decoder. In the standard methods based on

sparse representations, the sent information corresponds to

the iteration number used in pursuit algorithms ([6], [7]).

In our case, sending the “best” value of σ2

o is very costly

since this variable is continuously-valued. We thus define the

noise variance σ2

o as follows: for a given number of nonzero

coefficients L,

∀i ∈ {1, . . . , P}, (21)

x⋆
i = arg min

xi

‖yo − Di
oxi‖

2

2
subject to ‖xi‖0 ≤ L,

σ2

o =
1

No

P
∑

i=1

1

P
‖yo − Di

ox
⋆
i ‖

2

2
, (22)

where No is the number of pixels in yo.

Hence, the definition of σ2

o reduces to the knowledge of L,

which fixes the iteration number of pursuit algorithms used to

solve (21). In order to maximize the reconstruction quality on

ym, the iteration number is then optimized under a distortion

criterion on the block to predict (Mean-Square Error between

original and predicted block). We will precise in the next

section the coding aspect of this specification.

B. Prediction and encoding scheme

To initialize the prediction, the first top row and first left

column of 8×8 pixel blocks are encoded with JPEG algorithm.

For the standard prediction based on sparse representations we

use the OMP algorithm whose iteration number varies between

1 and 8. The iteration number is optimized under a distortion

criterion on the block to predict (Mean-Square Error between

original and predicted block) and is then Huffman encoded. A

similar process is used for the definition of the noise variance

σ2

o in the proposed algorithm, as we discussed in previous

section.

The residual between the original block and its prediction

is encoded with an algorithm similar to JPEG. A uniform

quantization matrix is used with step size equal to 16. It is

weighted by a quality factor increasing from 10 to 90 with a

step size equal to 10.

C. Performance analysis

We evaluate and compare three different prediction algo-

rithms:

• “H.264” implements a spatial prediction similar the one

used in H.264 on 4×4 pixel blocks but extended to 8×8
pixel blocks (to be fair with the sparse-representation-

based algorithms, the prediction modes are also chosen

according to a distortion criterion on the block to predict),

• “Standard SR” uses the standard prediction based on

sparse representations (3)-(4) with a dictionary made up

of the concatenation of the 7 directional DCTs, i.e.,

D = [D1, . . . ,Di, . . . ,DP ],
• “Proposed algorithm” implements the prediction algo-

rithm defined in Table I.

Fig. 1 illustrates the prediction improvement brought by

the proposed algorithm compared with the standard prediction

method based on sparse representations. The gain is thus

visually perceptible on the example of “Cameraman”: we

clearly notice that the geometric structures (see e.g., the arm

or the camera stand) are particularly well recovered by the

proposed algorithm.

Fig. 3 represents the Rate-PSNR performance achieved by

the three algorithms “H.264”, “Standard SR” and “Proposed

algorithm” for images “Barbara”, “Roofs” and “Cameraman”.

As far as these three images are concerned, we can observe that

the proposed prediction algorithm outperforms the standard

approach based on sparse representations and the H.264-like

prediction. Thus the proposed algorithm leads to a gain up to

2 dB (for “Roofs”) with regard to the H.264-like prediction

and a less important but still significative gain of 0.5 dB (for

“Roofs” and “Barbara”) with regard to the standard method

based on sparse representations.

Note that all techniques aiming at adapting the support

of the prediction (causal area, in grey in Fig. 2) developed

within the framework of prediction methods based on sparse

representations (see e.g., [7]) can also be applied to the
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proposed algorithm. This can possibly lead to an additional

performance improvement.

Moreover, the chosen directional DCTs allow here a H.264-

like apprehension of the prediction problem, but other dic-

tionaries can also be considered. A set of dictionaries well-

adapted to texture content like Gabor transforms or wavelet

packets ([14]) on the one hand and to cartoon content like

curvelets ([15]) or bandelets ([16]) on the other hand could

lead to a better representation of the local image character-

istics and thus possibly to an improvement of the prediction

performance.

V. CONCLUSION

In this paper, we address the prediction problem based on

sparse representations using a set of dictionaries. This problem

is placed in a probabilistic framework by considering the data

as realizations of a mixture of Gaussians. The prediction task is

then reformulated as a MMSE estimation problem and a proce-

dure is derived to solve it. The proposed algorithm is shown to

give enhanced performance with regard to previously-proposed

algorithms.
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