
Dow
Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in

Engineering Conference
September 24-28, 2005, Long Beach, California, USA

DETC2005-84617

PRODUCT STRUCTURE MODELLING FOR THE MADE-TO-ORDER ENVIRONMENT

Qianfu Ni
Queensland University of Technology

2 George Street, Brisbane, Q4001,
Australia

q2.ni@qut.edu.au

Prasad KDV Yarlaggada
Queensland University of Technology

2 George Street, Brisbane, Q4001
Australia

y.prasad@qut.edu.au

Wen Feng Lu
Singapore-MIT Alliance Fellow

Manufacturing Technology
71 Nanyang Drive, Singapore
wflu@SIMTech.a-star.edu.sg

Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference
September 24-28, 2005, Long Beach, California USA

DETC2005-84617

ABSTRACT

Product structure is the key information widely used by
various business activities performed at different departments
and different stages. In the made-to-order environment,
product structure representation becomes more complicated
because each product can have many variants with slightly
different constitutions to fulfill different customer
requirements. In such a context, product structure management
comes to two interrelated functions: family structure
management and variant structure management. At the same
time, these two functions need to be seamlessly integrated to
ensure the consistency of a family structure and its variant
structure. From the business process perspective, throughout
the entire product lifecycle, different business activities look at
product structure with different purposes. Some activities are
carried out based on variants and deem individual variants as
different products and some need to be performed based on an
entire family. As such, it is imperative to develop a product
structure model that is capable of flexibly representing product
families and product variants to serve up different processes in
a product lifecycle. In this paper, a product structure model
based on a master-variant pattern is proposed. The model can
explicitly represent common characteristics of a family and
particular characteristics of individual variants. Moreover, the
variant structure representation is built on the top of the family
structure representation. As a result, it provides an effective
means to synchronize two types of structures. It also makes
product family and variant concepts transparent to various
business processes so that effective support can be provided to
processes integration in the made-to-order environment.

INTRODUCTION
To provide customers with tailored products faster, better

and cheaper, manufacturers have shifted their production
mode to mass customization to take advantage of mass
production for small batch-size production and start to
organize the business operations from the process viewpoint to
improve the enterprise-wide performance [1]. In the context of

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us
mass customization, a product initially consists of a common
base and modularized functional subsystems to form a
customization platform. The common base and commonly
demanded functional subsystems can be made in the volume
production for product configuration and other subsystems are
made based on customer orders. As such, after the initial
stage, the design activities are minimized to the determination
of a configuration and design some special features for
individual customers [2]. The fashion in which the
manufacture is operated is called made-to-order.

As product is becoming one of the most significant assets
in current enterprises to pursue competitive advantages, the
effective management of product throughout the entire product
lifecycle is becoming much more important than ever before.
Product structure is a hierarchical tree representing the
classification of parts that compose a product and the
interrelationships of the parts. It is critical and widely used by
various business processes [3]. At present, research in the area
of product structure, namely product modeling, generally
attends to structure and represent detailed data that is related
to a single product, and many product structure models and
associated management systems are specifically developed for
the purpose of the design management. At present, models
considering product family and capable of supporting the
entire product lifecycle rarely exists [4]. However, it is
obvious that mass customization has far-reaching influence on
many organizational functions, such as sales and marketing,
product engineering, and manufacturing [5]. Moreover,
different functional departments in an enterprise may have
different requirements to the product representation for
different purposes. Some business activities should be carried
out based on a family while others may only be applicable to
individual variants. Therefore, a product structure model for
such an environment is different from traditional product
models in that product data has to be related to both a family
of products and a particular product variant in a single context
without data redundancy. For the integration purpose, various
needs from the upstream and downstream of the product
1 Copyright © 2005 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Dow
lifecycle also have to be considered and supported. This paper
presents a product structure model that integrates the family
representation and variant representation to support different
business processes in the product lifecycle

Nowadays, customization is the only method of tailoring
an enterprise system for a particular company. Therefore,
deployment cycle could be long and implementation cost
could be very high. As enterprise systems are complex in
nature, the failure rate of the implementation of enterprise
systems is also quite high. These are the great barriers for
enterprises, intending to adopt an enterprise system, to take
action for deployment of the system. It is essential to offer
enterprise systems with high flexibility and configurability so
that rapid deployment can be achieved. To address this need,
we focus our research on studying enterprise system flexibility
and configurability and developing semantic model-driven
enterprise system architecture. In this research, a system for
business process integration in the made-to-order environment
is developed to verify and demonstrate the efficiency of
semantic model-driven method and architecture. The
presented product structure model is one of key models
embedded in the prototype system and plays a critical role of
enabling the integration of business processes.

RELATED WORK REVIEW
Due to the importance and complexity, the design process

management has received much attention in manufacturing
companies. In the past decade, different Product Data
Management (PDM) systems have been adopted by many
large companies to manage the product design process [6] and,
currently, the popularity of PDM systems is still steadily
increasing [7]. One of the typical functions offered by PDM
systems is to manage the product structure [8]. However, few
available PDM systems are powerful enough to manage the
product structure for mass customization because of the
weakness of the product structure model at the representation
of product family [9]. Apart from this, as the PDM framework
is particularly defined for the design management, product
structure models underneath the PDM systems lack of the
capability to support the integration with other business
processes, such as customer order management, planning and
production, purchasing and inventory management [10, 11].

Some researches are reported on modeling the product
structure to represent product family. Sudarsan [12] presented
a product information modeling framework based on three
models: Open Assembly Model (OAM), Design-Analysis
Integration model (DAIM) and Product Family Evolution
Model (PFEM). The PFEM model consists of three sub-
models: family, evolution, and evolution rationale. Overall,
the framework is developed with intention to: (1) capture
product, design rationale, assembly, and tolerance information
from the earliest conceptual design stage—where designers
deal with the function and performance of products—to the
full lifecycle; (2) facilitate the semantic interoperability of
next-generation CAD/CAE/CAM systems; and (3) capture the
evolution of products and product families. The main purpose
of the PFEM model is for the evaluation of product families. It
does not stress the effective representations of common
characteristics of a family and particular characteristics of a
variant. Jiao [5] reported a product structure model to
represent product family in the mass customization context.

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of U
The model consists of three views: functional view, technical
view and structural view. The functional view focuses on the
classification of diverse functional features of product
portfolio for customer recognition. The technical view attends
to represent building blocks to leverage the organization of the
design repository. The structural view is to represent the
topological structure of building blocks and configuration
rules to guide the end product configuration. Our
understanding is that the model are helpful for companies to
shift from the individual product development to family based
design by providing a systematic method for establishing
building block repository and configuration rules. It lacks of
the capability to support the design process management in the
made-to-order-environment. Fujita [13] proposed a product
structure representation by decomposing a product into
different subsystems. By employing entity relationships to
represent the topological structure of subsystems and attributes
to represent the association possibilities of subsystems, the
model puts its focus on maximizing product varieties using
minimum building blocks to achieve optimized a
customization platform. Zhang [2] presented a general data
model to effectively represent the product structure by
considering product families, and a behavior model to
represent functional requirements of product structure. The
model attends to maximize information sharing among
different stakeholders, such as customers and supplier. The
model aggregates family representation and variant
representation together. Therefore, the model can not
effectively support process integration because business
activities and relationship between product and other
information entities need to clearly differentiate families and
variants. Janitza [9] also proposed a product model for mass
customization by incorporating product decomposition and
part specification into one model. This model focuses on
providing a highly flexible product model specification for the
product designer and simpler configuration for the customer.
The family representation and variant representation has not
received enough attention and the synchronization of two
representations is not addressed.

This paper develops a product structure model that offers
a clear boundary between family representation and variant
representation. At the same time, the model is capable of
effectively synchronize a family structure and its variant
structures. The model also considers the needs of process
integration.

REQUIREMENTS ANALYSIS
In a made-to-order environment, the product must be

customizable [14]. Ultimately, product variants are realized by
part variants that can be achieved in different ways, such as
parameter variant, material variant and connection mechanism
variant [2]. From the structural viewpoint, a product variant
can be customized by:

• Add-in subsystems. Additional features are embedded
into a standalone subsystem. The subsystems can be
added into the initial product when required by
customers [15]. For example, the anti-lock braking
function is often provided by an independent subsystem
that can be installed into cars for individual customers.

• Alternative subsystems. A function can be provided by
different optional subsystems with different features
2 Copyright © 2005 by ASME

se: http://www.asme.org/about-asme/terms-of-use

D

[2]. For instance, the audio functions can be provided
by a cassette player with a built-in radio receiver by
default. The default audio subsystem can be replaced
by a CD player or a video player with a radio receiving
function if requested by customers;

• Removable subsystems, a functional subsystem can be
removed from common configuration for customers
with limited budget or other rquirements. For example,
a camera is usually sold with a lens. However, if
requested, customers can only buy a camera body,
especially in the professional camera market.

A product model for product families should be capable
of representing product family structures, variant structures
and constituent components, including part variants and
subassembly variants. At the same time, the family structure
should be able to serve as a template to constrain the definition
of variant structures so that the consistency of a family
structure and its variant structure can be synchronized.

In addition to design process, other business processes
throughout the product lifecycle also utilize the product
structure [3, 8]. In different processes, people with different
concerns may look at the product structure from different
prospective. For example, customers need information about
optional configurations and corresponding prices. Internally,
designers need to overview the family spectrum to configure
products based on customer requirements or to enhance the
customizability while process planners need variant structures
to work out process plans. Therefore, the product model
should provide the flexibility to transparently represent the
product family and variants in different ways.

For the process integration purpose, differentiation of
product family and variant representations are critical.
Throughout the product lifecycle, instances of different
product families, part families, product variants and part
variants are accumulatively created, manipulated and
associated by various business activities to support or drive
continuous activities [16]. Product structure model and other
business class models act as a blueprint for managing data
consistency as well as integrity, and governing the evolution
of associations between business objects. To achieve the
success of process integration, it is essential to provide an
explicit family and variant representations because activities in
business processes may only be eligible to families or variants.
The associations between product and other business objects
may only be able to be established based on families or
variants. Different stakeholders with different purposes are
only interested in families or variants.

An effective product structure model should be able to
leverage the existing industrial practice. For example, in
general, all variants in a family share a unique family id and
name and each variant may also have a secondary unique
identity and name. Apart from id and name, values of some
attributes also can keep constant for all variants to represent
family features while other attribute values can be different
from variant to variant. Therefore, a mechanism is needed to
easily maintain the consistency of common attributes and
enable uncommon attributes to have different values to
characterize individual variants.

ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
MASTER-VARIANT PATTERN
To make the model capable of effectively representing the

common features of a family and special features of different
variants, a master-variant pattern, as shown in Figure 1, is
adopted as a fundamental technique for establishing the
product structure model. In the model, the interfaces IMaster
and IVariant are modeled to represent common properties and
behaviors that all families and variants should have
respectively. The interface IMVLink defines common
properties and behaviors of associations between masters and
variants. The classes Master, Variant, and MVLink are default
implementations of the three interfaces respectively. The
classes that inherit the class Master or directly implement the
interface IMaster are enforced to comply with the principles
defined by the master-variant pattern. The cardinalities of the
association between IMaster and IVariant imply that one
master can have one or unlimited variants and a variant should
have and only can have one master. In other words, a master
and its variants exist interdependently. Though it can have
multiple variants, a master can not exist without a variant. In
turn, a variant also can not exist without a master. It has to be
pointed out that attributes common to all variants should be
defined in master classes, which are the classes that directly or
indirectly implement the interface IMaster. Uncommon
attributes should be modeled in variant classes, referred to as
the classes which directly or indirectly implement the interface
IVariant. In this pattern, IMaster is an abstract for grouping
variants of a family and represents the common characteristics
while IVariant represents the special characteristics of
individual variants.

 In the model, the attribute handle in each class is defined
for a system to internally manage associations and references.
The attributes id and name are defined to uniquely identify
individual families. The attribute version is used to
differentiate variants in a family. The model implies that all
variants can share the same id and name. Meanwhile, it also
allows each variant to have a special name by defining the
attribute variantName in the class Variant. The attribute
version in the class Variant enables to manage each variant as
a version, which is the typical practice in the made-to-order
environment.

The master-variant pattern offers three main advantages:
1) it provides a clear boundary between the family
representation and the variant representation. At the same
time, it offers the capability to maintain the data integrity; 2) it
is capable of representing common characteristics of families
and specific characteristics of individual variants; and 3) it can
flexibly meet different requirements of different business
processes. Masters or variants can be explicitly used as inputs
to a business process. Associated entities can be explicitly
linked to masters or variants. For example, process plans
should be linked to variants while assembly specifications of a
functional subsystem applicable to all variants of a family
should be attached to the master.

PRODUCT STRUCTURE MODEL
Based on n the master-variant pattern, the product

structure model shown in Figure 2 is developed. In addition to
an essential function of representing product composition and
interrelationships among parts and subassemblies, the model is
3 Copyright © 2005 by ASME

: http://www.asme.org/about-asme/terms-of-use

Down
different from a traditional one in that the family concept is
incorporated. As shown in the model, product, part and
subassembly are represented by three groups of classes
respectively: Product, ProductVariant, and ProductMVLink,
Part, PartVariant, and PartMVLink as well as Subassembly,

loaded From: https://proceedings.
IMVLink

getHandle() : long
getMasterHandle() : long
getVariantHandle() : long

<<Interface>>

IVariant

getHandle() : long
getVerson() : String
getVariantName() : String

<<Interface>>
IMaster

getHandle() : long
getId() : String
getName() : String

<<Interface>>

1..*1

+variant

1..*

+f amily

1

MVLink

masterIdentity : long
variantIdentity : long

Variant

handle : long
version : String
variantName : String

Master

handle : long
id : String
name : String 1..*1 1..*1

Figure 1: Master-Variant Pattern
SubassemblyVariant and SubassemblyMVLink. The model
introduces the family concept to product, part and
subassembly because product, part and subassembly are
represented based on the master-variant pattern. The classes
Product, Part and Subassembly represents product families,
part families and subassembly families respectively while the
classes ProductVariant, PartVariant and SubassemblyVariant
represent product variants, part variants and subassembly
variants. A special case where a master only has one variant
linked indicates that the product, part or subassembly is a
normal product, part or subassembly.

Family Structure
For clarity, the family structure model is taken out from

Figure 2 and shown in Figure 3. In the model, aggregation
associations between Product and Part, Subassembly as well
as StandardPart imply that a product can consist of non-
standard parts, subassemblies and standard parts. Besides,
Subassembly has aggregation associations with itself, Part and
StandardPart. These associations indicate that a subassembly
can constitute other subassemblies, non standard parts and
standard parts. Therefore, in a whole, a product can constitute
parts and subassemblies that are organized a hierarchical tree
structure. As shown in Figure 2, Part and Subassembly are
master classes as they implement the interface IMaster.
According to the master-variant pattern, a master class
represents a family rather than a concrete product. Hence, the
model shown in Figure 3 only reflects what part families,
subassembly families and standard parts are involved in a
product family and where the part families, subassembly
families and standard parts are positioned in the hierarchical
structure. It does not manage concrete information about
which variants in part families and subassembly families are
asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
involved in a product variant. However, based on the master-
variant link, all part variants and subassembly variants are
clearly reflected. Therefore, the family model provides an
overall view of a product family about product variants and all
optional part variants and subassembly variants. The overview
:
is named a product family spectrum [10].
Figure 4 shows the sample spectrum view of a simplified

car family based on the developed model. The family structure
shows that a car family, represented by Car:Product (Car:
Product is a UML notation denoting that the object named Car
is an instance of the class Product), can consist of an audio
subsystem, represented by Audio:Subassembly, and an engine,
represented by Engine:Part (assume that a engine is a
component). Further, a audio subassembly consists of a radio
subsystem, represented by Radio:StandardPart, and a media
player, represented by MediaPlayer:Subassembly. Based on
the master-variant link, the spectrum can provide information
about what variants that the audio family, engine family and
media player family have respectively. It indicates that three
types of engines with different rated powers and three types of
audio subsystems, which are cassette player, CD player and
video player, are available for selection.

The spectrum can effectively assist designers to configure
products for customers, amend design to reorganize existing
functions into configurable subsystems, design new alternative
subsystems, or innovate new functional subsystems to enhance
customizability of a family. It also provides helpful
information for customers to configure products during the
preparation of orders.

Variant Structure
In addition to the family structure management, the

variant structure management is a basic requirement to a
product structure model for mass customization as well. A
variant structure clearly reflects what part variants and
subassembly variants are used to form a particular product
variant. At the same time, the model should be capable of
enforcing the consistency of the family structure and variant
4 Copyright © 2005 by ASME

http://www.asme.org/about-asme/terms-of-use

Downloaded
PSVersionLink

version : String
quantity : int

SSVersionLink

version : String
quantity : int

PPVersionLink

version : String
quantity : int

IPurchasable
<<Interface>>

IStockable

isStocked()

<<Interface>>

ProductMVLink

SubassemblyMVLink

PartMVLink

IOutsourcable
<<Interface>>

IStockable

isStocked()

<<Interface>>

IStockable

isStocked()

<<Interface>>

SPVersionLink

AbstractPart

id : String
name : String
category : String

<<Abstract>>

ProductVariant

version : String
weight : double
stock : boolean

FSSLink

FPSLink

FPPLink

FSPLink

MaterialStock

SubassemblyVariant

identity : String
version : String
weight : double
stock : boolean

1

0..*

1

0..*

1

0..*

1

0..*

PartVariant

identity : String
verion : String
weight : double
stock : boolean
shape : String

0..*

1

0..*

1

1

0..*

1

0..*

1
1
1
1

Subassemby

id : String
name : String

0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

IMaster
<<Interface>>

Variant

Variant

IMaster
<<Interface>>

MVLink

Variant

Master

MVLink

MVLink

StandardPart

0..*

0..*

0..*

0..*

Product

id : String
name : String

0..*

0..*

0..*

0..*

1..*

1

1..*

1

0..*
0..*

0..*
0..*

Part
1

0..*

1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 2: Product structure model
structures. To achieve this goal, the variant structure model is
built on the top of the family structure model. As shown in
Figure 2, FPPLink and FPSLink respectively represent
associations of a product family with a part family and a
subassembly family, and FSSLink represents association of a
subassembly family with other subassembly families. To
further represent variant structures, three association classes,
i.e. PPVersionLink, PSVersionLink and SSVersionLink, are
defined to associate FPPLink with PartVaraint, FPSLink with
SubassemblyVariant and FSSLink with SubassemblyVariant.
PPVersionLink, PSVersionLink and SSVersionLink are called
version links. A key attribute in the version links is version.
The value of this attribute indicates which product variant or
subassembly variant the associated variant is used for.

To explain the variant structure model, the relationships
between a car variant and engine variants are taken as an
example. As shown in Figure 5, the car family has three
variants, i.e. CarA, CarB and CarC, and the engine family also
has three variants, which are Engine1.8, Engine2.0 and
Engine2.2. Based on the family structure model discussed
above, Car and Engine is associated through CarEngineLink,
which is an instance of FPPLink (the association class of the
product family and the part family). As mentioned above, this
association is not capable of providing information about
 From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of
which engine variant is used for CarA, CarB and CarC
respectively. Based on the family structure model, to reflect
the associations between the engine variants and the car
variants, three version link instances are introduced, i.e.
EngineVersionLink1, EngineVersionLink2 and
EngineVersionLink3 to associate Engine1.8, Engine2.0 and
Engine2.2 with CarEngineLink respectively. The attribute
version in the version link classes plays the role of defining
which car variant each associated engine variant is used for. It
can be seen from Figure 5 that Engine1.8 is used for CarA as
the value of the attribute version of EngineVersionLink1 is
CAR.A, which is same as that of the attribute version of CarA.
In addition, multiple associations between CarEngineLink and
an engine variant imply that the engine variant is used by
multiple car variants.

Compared to the variant structure model that directly
associates variants of different part families and subassembly
family with product variants, a significant advantage of this
model is that the family structure model and the variant
structure model are integrated. As a result, product variant
structures can be well controlled by the corresponding product
family structure. For example, in Figure 4, if the engine family
was not associated with the car family, CarEngineLink will
5 Copyright © 2005 by ASME

Use: http://www.asme.org/about-asme/terms-of-use

Downlo
not exist. Consequently, no engine variants could be
associated with any product variants. Therefore, this model is
capable of synchronizing the family structure and the variant
structures. This feature is very significant in case that multiple
families are managed in one company and there exist multiple
subsystems that provide same functions and are not
exchangeable to the families. For instance, two engine
families are maintained for the two car families respectively

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of U
without exchangeability. During the product configuration,
this model can effectively prevent from selecting incompatible
variants based on the family structure. Another advantage of
the model is that product variants and part variants can have
their own version naming conventions. It is capable of
managing the part families shared by multiple product
families.
ProductVariant

version : String
weight : double
stock : boolean

FSSLink

FPSLink

FPPLink

FSPLink

SubassemblyVariant

identity : String
version : String
weight : double
stock : boolean

PartVariant

identity : String
verion : String
weight : double
stock : boolean
shape : String

Subassemby

id : String
name : String

StandardPart

Product

id : String
name : String

Part

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*

0..*0..*

0..*1..*

1

1..*

1

0..* 0..*0..* 0..*

1

0..*

1

0..*

0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..*

 Figure 3: Family structure model

Family Structure

handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product
Audio Family

handle : long = 0011
version : String = AUIDO.CD
variantName : String = CD based audio

CDAudio : SubassemblyVariant

handle : long = 0010
version : String = AUIDO.CASSETTE
variantName : String = Cassette based audio

CassetteAudio : SubassemblyVariant

handle : long = 0012
version : String = AUDIO.VEDIO
variantName : String = Video based audio

VideoAudio : SubassemblyVariant

Car Family

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

Meidal Player Family

handle : long = 0016
version : String = MP.Cassette
variantName : String = Cassette player

CassettePlayer : PartVariant

handle : long = 0017
version : String = MP.CD
variantName : String = CD player

CDPlayer : PartVariant

handle : long = 0018
version : String = MP.VIDEO
variantName : String = Video player

VideoPlayer : PartVariant

Engine Family

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine1.8 : PartVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

handle : long = 0008
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine2.2 : PartVariant

handle : long = 0009
id : String = AUDIO-M-001
name : String = Car audio

Audio : Subassembly

handle : long = 0013
id : String = RADIO-M-001
name : String = AM/FM Radio

Radio : StandardPart

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0015
id : String = PLAYER-M-001
name : String = Media player

MediaPlayer : Part

Figure 4: A simplified car family spectrum
6 Copyright © 2005 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Downloaded From: https://proce
handle : long = 0001
id : String = CAR-M-001
name : String = General car

Car : Product

CarEngineLink : FPPLink

handle : long = 0005
id : String = ENG-M-001
name : String = Engine

Engine : Part

handle : long = 0003
version : String = ENG.2.2
variantName : String = Engine 2.2

Engine 2.2 : PartVariant

version : String = CAR.A

EngineVersionLink1 : PPVersionLink

version : String = CAR.B

EngineVersionLink2 : PPVersionLink

version : String = CAR.C

EngineVersionLink3 : PPVersionLink

handle : long = 0006
version : String = ENG.1.8
variantName : String = Engine 1.8

Engine 1.8 : PartVariant

Car Variants

handle : long = 0002
version : String = CAR.A
variantName : String = Car A

CarA : ProductVariant

handle : long = 0003
version : String = CAR.B
variantName : String = Car B

CarB : ProductVariant

handle : long = 0004
version : String = CAR.C
variantName : String = Car C

CarC : ProductVariant

handle : long = 0007
version : String = ENG.2.0
variantName : String = Engine 2.0

Engine2.0 : PartVariant

Figure 5: A simplified car family spectrum
BUSINESS PROCESS INTEGRATION SUPPORT
As shown in Figure 2, the model differentiates standard

parts, represented by StandardPart, and non-standard parts,
represented by Part. Part implements IMaster and is further
associated with PartVariant, a subclass of Variant, according
the master-variant pattern to represent part variants. There are
two main reasons for differentiating non-standard parts and
standard parts: 1) the family concept is inapplicable to standard
parts; 2) the processes that non-standard parts go through are
different from those for standard parts. Standard parts are
purchased from the market and managed in the inventory.
However, the non-standard parts may go through various
processes, such as the production process if they are made
internally or the outsourcing process if they are made by
partners, and the inventory management process if they are
made to stock.

The interfaces IStockable, IPurchasable and IOutsourcable
are modeled to enforce the implementing classes to comply
with the processing rules of stock management, purchasing
management and outsourcing management. The
implementation of the interface IStockable by variant classes,
i.e. ProductVariant, PartVariant and SubassemblyVariant,
implies: 1) common parts, subassemblies and even products are
allowed to be made to stock; and 2) it enables made-to-order
and made-to-stock decision to be made at the variant level,
which means that, in a part or subassembly family, the variants
commonly demanded can be made to stock while the ones only
demanded by a few of customers are particularly made when
ordered. It can be seen that the model is capable of leverage the
main objective of the mass customization to take advantage of
the volume production to deliver tailored products for
customers through configuration.

Figure 6 shows the material model associated with Part.
PartMaterial is modeled to represent the chemical and physical
properties while Shape is defined to describe the shapes and
sizes according to the standards in the market. The association
edings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us

of PartMaterial and Shape represents material stocks that can
be purchased from the market and stocked in the inventory. By
associating materials to part variants, the model enables part
variants to be derived by using different materials. It also
leverages the centralized resource management and the
integration between design and the resource management.

Shape

PartMaterial

Blank

MaterialStock

PartVariant

IPurchasable
<<Interface>>

IStockable
<<Interface>>

0..*

0..*

0..*

0..*

1
1

1
1

1

1

1 11

1
1
1

Figure 6: Integration with other processes

PROTOTYPE
A prototype system, named Collaborative Business

Solution (CBS), has been developed to demonstrate the
efficiency of the developed model. The CBS attends to provide
functions for project management, product configuration
management and inventory management to support the business
activities in the made-to-order companies. Multi-tier
architecture shown in Figure 7 is developed based on the web
technology, which provides a light-weight and operating
system independent platform for users to search, browse,
retrieve and manipulate information disseminated and shared
remotely [18]. The apache web server (version 2.0.8) is adopted
as the web server and Tomcat (version 4.1) is selected as the
JSP (Java ServerPage) engine. The kernel in the architecture is
the CBS server, which is organized into two parts: system
services and application services. The system services provide
functions for security management and system administration.
7 Copyright © 2005 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downl
The applications services are further organized into three
layers: foundation layer, functional layer and domain layer.

On the foundation layer, the entity service is responsible
for managing information entities by considering the data
integrity. According to the principle of the master-variant
pattern, a master at least has one variant associated and no
variant can exist without a master. Therefore, the service
provides the capability of ensuring the information integrity
based on the following rules:

1) When initializing a new family, the service
automatically instantiates a master and a variant, and
associates them together;

2) When adding a new variant, the service ensures that a
new variant is associated with an existing master and
prevents a redundant master from being created;

3) When removing the last variant of master, the master
is removed automatically.

The relationship service provides functions for managing entity
relationships and navigating information based on relationships.
In the relationship management, the service figures out
relationships should exist between masters or variants and
ensures appropriate entities are associated. The persistence
service acts as a gateway of accessing database. While storing
information entities, it maps information entities to
corresponding tables. While retrieving information from
database, it gathers information from database and converts the
information to appropriate objects. The three foundation
services works together and attends to make the master-variant
concept transparent to other services.

Intranet

Firewall

Apache
WEB Serve

Authentication
Service

Session
Service

Database

Entity
Service

Relationship
Service

Document
Service

Reporting
Service

Notification
Service

Persistence
Service

Project
Service

Product
Service

Resource
Service

Administration ServiceTomcat
(JSP Engine)

Authorization
Service

Inventory
Service

Ja
va

 R
M

I R
em

ot
e

Ac
ce

ss

Internet

BrowserBrowser

BrowserBrowser

CBS Server

Figure 7: Architecture of the prototype system

Built on the top of foundation layer, the functional layer

provides particular functionality for managing documents and
generating reports. The document service is responsible for
associating various documents, such as engineering drawings
and product specifications, with products and parts. The main
function of the service is to wraps documents as binary objects.
Then it requests the relationship service to associate the
document with an object – a document owner. Reports are a
special type of documents. They provide an effective way for
information exchange and analysis. This service provides a
template based method to generate various reports. In this
method, report templates are used to define the look and feels
of reports, such border, cell font and alignment. A series of
configuration files are employed to define information to be
rendered into reports and positions of each piece of

oaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us
information. A report generator gathers manipulate information
according to the configurations, and finally incorporates the
information into a report based on the template. By cooperating
with the document service, reports can be associated with other
objects, such as projects, products or parts. In the
implementation, Microsoft Spreadsheets are adopted to define
report templates and the open Java APIs from Apache for
manipulating various files based upon the Microsoft's OLE 2
Compound Document format [19] is adopted to develop the
service.

The domain services are developed to provide functions to
integrate and manage business processes based on the product
structure model developed. Functions for project management
include project initialization, project schedule and progress
tracking. In the made-to-order environment, there exist two
types of projects, i.e. internal projects and external projects.
Internal projects are initialized to manage family design and
plan the production of common parts, subassembly and
functional subsystems. External projects are created based on
customer orders to fulfill customer requirements by cooperating
with the inventory service and the resource service. In general,
internal projects are managed based on family structures while
external projects work on variant structures. The product
service provides the capability to manage product family
structures, variant structures, part families, subassembly
families and a standard part library to assist product
configuration, process planning and workshop task generation.
Figure 8 illustrates a family structure view with two families,
i.e. a car family and a truck family. Car variants and truck
variants are achieved by alternative engines and audio
subsystems. The inventory service manages stocks of common
parts and commonly demanded variants according to safety
levels. The resource service manages capacities and capabilities
of resources, such as machines, materials, designers and
operators to support design task management, process planning
and workshop task management.

Figure 7: A sample view of product spectrums

CONCLUSION
In manufacturing companies, product structure is the

output information of product design. It is critical information
for integration of business processes, such as project
management, production planning and workshop task
generation [18]. In the made-to-order environment, a product is
8 Copyright © 2005 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Dow
referred to as a family with a number of variants. In such a
context, family structure and variant structure need to be
explicitly represented to characterize common characteristics
and particular characteristics of individual variants from the
business process perspective. Moreover, two representations
should be seamlessly integrated to maintain the consistency of
the two types of structures. As such, it is a significant industrial
need to develop a product structure model that is capable of
representing the family structure and variant structures in an
effectively way. To address this need, this paper presents a
master-variant based product structure model. In the model, a
master represents common characteristics of a product family
and a variant represents particular characteristics of a product
variant. The family structure representation is realized by
associating product masters, part masters and subassembly
masters. The variant structure representation is built on the top
of family structure representation. Therefore, this model is
capable of maintaining a clear boundary between product
family structures and variant structures. At the same time, it
enables the seamless integration of the product family structure
management and the variant structure management so that the
consistency of a family structure and its variant structures can
be easily maintained.

This model overcomes the shortages of product structure
models for representing a single product, which are commonly
employed by current PDM systems. As traditional product
models can not explicitly represent product families and
variants, many efforts are needed to customize existing PDM
systems for a made-to-order environment. From the business
process perspective, it also limits the capability of a PDM
system to support process integration. The proposed model can
flexibly provide different views of product structures for
different processes and effectively support process integrations.
A prototype system has been developed to demonstrate the
model efficiency and the capability of supporting process
integration..

REFERENCES
1. Ni, Q.F., Ming, X.G. and Lu, W.F., 2003, “Computer-

Supported Collaborative Environment for Distributed
Product Development,” Proceedings of the International
Conference on Agile Manufacturing-Advances in Agile
Manufacturing.

2. Zhang, W.J., 1999, “Information modelling for made-to-
order virtual enterprise manufacturing systems,”
Computer-Aided Design, Vol. 31, No. 10, pp.611-619.

3. He, W., Ni, Q.F., Ming, X.G. and Lu, W.F., 2004,
“Product Structure Management for Enterprise Business
Processes in Product Lifecycle,” The proceedings of 11th
ISPE International Conference on Concurrent Engineering,
July, Beijing.

4. Jiao, J.X., Tseng, Mitchell, Duftty, Vincent G. and Lin, Fu
Hua, 1998, “Product family modeling for mass
customization,” Computers ind. Engng, Vol. 35, No. 3-4,
pp.495-498.

5. Du, X.F., Jiao, J.X. and Tseng, Mitchell M., 2000,
“Architecture of Product Family for Mass Customization,”
Proceedings of the 2000 IEEE International Conference on
Management of Innovation and Technology, 2000.

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us
6. CIMdata, 1998, “Product Data Management: the
definition, an introduction to concept, Benefits, and
Terminology,” CIMdata, Inc., USA.

7. Xu, X. W. and Liu, T., 2003, “A web-enabled PDM system
in a collaborative design environment,” Robotics and
Computer Integrated Manufacturing, Vol. 19, No. 4,
pp.315-328.

8. Eynarda, B., Galleta, T., Nowaka, P. and Roucoules, L.,
2004, “UML based specifications of PDM product
structure and workflow,” Computers in Industry, Vol. 55,
No. 3, pp.301-316.

9. Janitza, D., Lacher, M., Maurer, M., Pulm, U. and Rudolf,
H., 2003, “A product model for mass-customisation
products,” Lecture Notes in Computer Science, Vol. 2774,
pp.1023-1029.

10. Hameri, A. and Nihtila, J., 1998, “Product data
management—exploratory study on state-of-the-art in one-
of-a-kind industry,” Computers in Industry, Vol. 35, No. 3,
pp.195-206.

11. He, W., Ni, Q. F. and Lee, B. H., 2003, “Enterprise
Business Information Management System based on PDM
Framework,” The proceedings of 2003 IEEE International
Conference on Systems, Man & Cybernetics, Washington,
D.C., USA.

12. Sudarsan, R., Fenves, S.J., Sriram, R.D. and Wang, F.,
2005, “A product information modeling framework for
product lifecycle management,” Computer Aided-Design,
in-press.

13. Fujita, K., 2002, “Product variety optimization under
modular architecture,” Computers in Industry, Vol. 34, No.
12, pp.953--965.

14. Da Silveira, G., Borenstein, D. and Fogliatto, F. S., 2001,
“Mass customization: literature review and research
directions,” International Journal of Production
Economics, Vol. 72, No. 1, pp.1-13.

15. Salvador, F. and Forza, C., 2004, “Configuring products to
address the customization responsiveness squeeze: A
survey of management issues and opportunities,”
International Journal of Production Economics, Vol. 91,
No. 3, pp.273-291.

16. Forza, Cipriano and Salvador, Fabrizio, 2002, “Managing
for variety in the order acquisition and fulfillment process:
The contribution of product configuration systems,” Int. J.
Production Economics, Vol. 76, No. 1, pp.87-98

17. Li, W. D., Ong, S. K., and Nee, A. Y. C., 2005, “A Web-
based process planning optimization system for distributed
design,” Computer-Aided Design, In Press.

18. Jakarta POI, “Java API to Access Microsoft Format Files,”
http://jakarta.apache.org/poi.

19. Van der Aalst, W. M. P., 1999, “On the automatic
generation of workflow processes based on product
structures,” Computers in Industry, Vol. 39, No. 2, pp.97-
111.

9 Copyright © 2005 by ASME

e: http://www.asme.org/about-asme/terms-of-use

