
133

Real-time Problem Determination in
Distributed Systems using Active Probing

Irina Rish, Mark Brodie, Natalia Odintsova,
Sheng Ma. Genadv Grabainik
IBM EJ. Watson Research Center
19 Sb:line Drive
Hawrhorne, N Y 10532
~isli.,,ihradie.nodinrs.shengrna,genadv~iis. ibm corn

Abstract
We describe algorithms and an architecture for a real-time problem determination system
that uses online selection of most-informative measurements - the approach called herein
active probing. Probes are end-to-end test transactions which gather information about
system components. Active probing allows probes to bc selected and sent on-demand, in
response to one’s belief about the state of the system. At each step the most informative
next probe is computed and sent. As probe results are received, belief about the system
state is updated using probabilistic inference. This process continues until the problem is
diagnosed. We demonstrate through both analysis and simulation that the active probing
scheme greatly reduces both the number of probes and the time needed for localizing the
problem when compared with non-active probing schemes.

Keywords
self-managing networks, real-time monitoring and problem determination, end-to-end re-
sponse time measurements, AI techniquesiprobabilistic inference. information theory

1. Introduction
Accurate diagnosis in a complex, multi-component system by making inferences based on
the results of various tests and measurements is a common practical problem. Developing
cost-effective techniques for diagnosis in such systems requires that high accuracy be
achieved with a small number of tests. In this work we present a generic approach to this
problem and apply it specifically to the area of distributed systems management.

The key component of our approach is an “active” measurement approach, calledpnb-
irig. A probe is a test transaction whose outcome depends on some ofthe system‘s com-
ponents: diagnosis is performed by appropriately selecting the probes and analyzing the
results. In the context of distributed systems, a probe is a program that executes on a
particular machine (called a probe station) by sending a command or transaction to a
server or network element and measuring the response. The ping program is probably the
most popular probing tool that can be used to detect network availability. Other probing
tools, such as IBM’s EPP tcchnology ([7]), provide more sophisticated, application-level
probes. For examplc, probes can be sent in the form of test e-mail messages, web-access
requests, and so on.

Previous work on using probing for problem determination and diagnosis focused

o - ~ ~ o ~ - x ~ 3 n - ~ 1 o ~ 1 ~ ~ o . n o 0 21~01 IEEE,

I34 Sesr&,n Three h r l i biunogemeul

mainly on pre-planned, fixed probe sets, which are scheduled to run periodically [I , 71.
However. using pre-planned probe sets suffers from considerable limitations. Because the
probe set is computed off-line, it needs to be able to diagnose all possible problems which
might occur. However in practice many of these problems may in fact ever happen, and
running the complete set of preplanned probes might be quite wasteful. Knowing which
probes can be safely omitted can usually only be determined on-line by monitoring which
problems in fact occur.

Another disadvantage of pre-planned probe sets is that because the probes run peri-
odically at regularly scheduled intervals, there may he a considerable delay in obtaining
information when a problem occurs. It is clearly desirable to detect the occurrence of a
problem as quickly as possible. Furthermore, once the occurrence of a problem has been
detected. additional information may be needed to diagnose the problem precisely. This
information may not be obtainable from the results of the pre-planned probes - additional
probes may need to be sent to obtain it. These probes should be appropriately selected
“on-demand”, based on the results of the previous probes.

Our works develops a methodology called active probing that addresses these limita-
tions. This involves probing in an interactive mode, where probe results are analyzed to
determine the most likely diagnosis. and then additional probes are selected and sent in
ordcr to gain further information. This process may repeat - once additional probe results
are obtained. the diagnosis is refined, and, if necessary, more probes are selected, and so
on. until the problem is completely determined. The idea of this approach is to “ask the
right questions at the right time”.

Active probing selects and sends probes as needed in response to problems that actu-
ally occur. It therefore avoids both the difficulty of constructing probes for all possible
problems as well as the waste inherent in using probes for problems that in fact never oc-
cur. Furthermore. because probes are selected on-line to obtain further information about
particular problems that have occurred, they need not circulate regularly throughout the
entire network; instead they can be targeted quickly and directly to the points of interest.
Thus fewer probes are needed than in a pre-planned approach, allowing for a considerable
reduction in probing costs.

Clearly. active probing can be also combined with traditional approaches such as var-
ious event correlation techniques [l l . 12. 91. Our diagnostic engine accepts any input
events. including probes, alarms and other messages, and performs appropriate inferences
about the current system state. However, we add the ability of active measurement selec-
tion on top of such ’passive’ inference capabilities.

In this paper. for illustration purposes, we will focus on the problem of fault diagnosis,
where each component of the system is assumed to be either “ O K or “faulty” at any
given time. However. our approach can be easily extended to a broader range of diag-
nostic problems, such as determining QoS levels. Indeed, in our applications, exceeding
a threshold response time by a probe. or a particular application (component of a probe)
was considered as a “soft” failure and treated similarly to “hard” failures (such as “server
down”) during the diagnostic process. Moreover, the approach can be also extended to
handle multiple levels of a performance degradation by introducing several intermediate
states for each component.

The outline of the paper is as follows. Section 2 provides the basic framework and
notation. Section 3 summarizes our previous work on pre-planned probing [I] , where the
entire probe-set is computed before sending any probes. We show that this problem is
NP-hard. and use an information-theoretic approach to develop linear and quadratic-time
approximation algorithms. Section 4 presents an active probing approach, which selects
probes based on the results of earlier probes. These ideas were presented very briefly in
[3] - this paper extends that work by describing the system architecture and requirements
needed for active probing (see Section 5) , giving the details of our testbed implementation,
and extending our previous experimental results for simulations and practical applications
(Section 6) . Our results show that active probing can greatly reduce the number of probes
needed to diagnose problems. Related work is discussed in Section 7 and then we draw
some Conclusions.

‘2. Framework and Notation
We have a set of nodes (components) N = { N I }, each of which can be either
“up”. functioning correctly, or “down”, not functioning correctly. In a distributed system,
the nodes may be physical entities such as routers, servers, and links, or logical entities
such as software components, database tables, etc. The state of the system is denoted by
a vector X = (XI. ... : X.,) of Boolean variables, where X, represents the state of node
(component) IV,. Lower-case letters denote the values of the corresponding variables, e.g.
x = (.cl: ...: x,,) denotes a particular assignment of node values. In general, there are 2”
different system states; however, in practice it can often be assumed that only k faults can
occur simultaneously - indeed the case k = 1 is often sufficient.

Aprnbe is a method of obtaining information about the system components. The set
of components tested by a probe p (i.e. the components p depends on) is denoted N (p) g
{!VI: Nr,} . A probe either succeeds or fails: if it succeeds, then every component it
tests is up: it fails if any of the components it tests are down.

Fault localization attempts to determine the state ofthe system from the probe results.
It is useful to introduce the notion of a dependency matrix to capture the relationships
between system states and probes. Given any set of nodes N = {NI, N z ; ...: N,,} and
probes P = { p 1 ; p 2 : ... : I J ~ } , the dependency matrix Dp.,” is given by:
D p . . ~ (i : j) = 1 i fN, E N (p i) # 6

Dp..” is an r-by-n matrix, where each row represents a probe and each column represents
a node.

Figure la shows an example of a simple benchmark used in our proof-of-concept demo
described in the subsequent sections. The benchmark contains a probing station, which
sends various probes through a common ronter to a Web Server (WS), Application Server
(AS) . and Database Server (D E S) . Note that U’S, AS and DBS represent the OKinot
OK state of the corresponding applications running on these machines, while HII’S,
HAS and H D B S denote ”hardware” problems with WS, AS, and DBS, respectively (in
OUT case, HLVS is OK if WS can be reached by ping command; however, the web server
application may not be running, and thus LVS is not OK). Also, R will denote the state of

= Oothenvise.

136

Dependency matrix

'Ay WS AS DBS R HWS HAS HDBS NF

ows 1 1 1 1 1 1 1 0
web server xNer Database sewer

S!
Router iR! /

...i,,
Station ., ..,;

0 1 1
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

1

0
0
0

0
0

1
0
0
0

0

1
1
0
0
0
1 0

Figure 1: (a) A simple benchmark distributed system with one probe station and 7
probes: (b) dependency matrix for the system in fa).

the router. while N F corresponds to no-failure situation. The dependency matrix shown
in Figure 1 b incliidcs the following probes:
"main" probe called pII;S. attempts to open a web page on WS, which also runs an
application on AS. which in its tnrn sends a query to a database on D B S . The outcome
of this probe depends on the state (i.e., OWnot OK) of all components, i.e. M'S, H I V S .
AS. HAS, D B S ; and H D B S , as well as on the state of the router R. Thus, the row of
the probe pU'S contains ones in all columns (i.e., fails if any of these components fail).
- probe pA.5 calls an application on A S which sends a query to the database on D B S ;
thus the probe depends on the states of AS_ HAS. D B S , H D B S , R.
- probe p D B S sends a query to the database on D B S , and thus depends on D B S .
H D B S and R.
- probes pingR. pingll'S, pingAS and pingDBS are simply pinq commands to the
router and the corresponding servers.

In this example we are interested in single node failures and the case ofno failure any-
where in the network. In general, multiple simultaneous failures can be handled by adding
columns to the dependency matrix. each additional column representing a simultaneous
failure of multiplc nodes. Unfortunately, this approach requires at least the number of
probes that is exponential in the number of possible faults; an alternative approach is to
introduce, if possible. more probes that test each node directly. Optimal probe selection
for multi-fault diagnosis is very similar to the group testing problem [6] , extensively stud-
ied in the literature. The objective of group testing is to find all 'active' items (e.g., sick
patients) in a given set of items by using a sequence of disjunctive tests (where the test
outcome is the disjunction of the inputs). However, the presence of constraints such as

Distributed s y s t e m D e p e n d e n c y Matrix

N3 Nz Na N. N s Ns NP
1 1 0 0 1 0 - 7
0 1 1 1 0 0 0

Pmbea=P3sl 1 0 1 0 0 1 0

Bayes ian Network
States Of nodes (unobserved

1 if Ni isOK.
0 Otherwise

Probe 0 ~ 1 c o r n e ~ (observed)

xi= {

1 if Probej is OK,
0 Otherwise

Figure 2: A mapping from dependency matrix to a Bayesian network.
network topology makes probe selection a more complicated problem than the uncon-
strained group testing. We leave thc treatment of optimal multi-fault probe selection out
of scope of this paper.

While the dependcncy matrix is a common representation, we can also use a proba-
bilistic model which describes a joint distribution over the system states. For example,
the dependency matrix can be easily mapped to a two-layer Bayesian network [141 where
the components X, correspond to upper-level variables. the probes Pj correspond to the
lower-layer variables. and subsets N(P,) are the set of pwenrs of variable Pj in the
Bayesian network (see Figure 2). Then the joint probability distribution can be written
as

,=1 j=1

assuming that the state variables Xi ' s are marginally independent, and that each probe
outcome depends only on the components tested by this probe. Pr(xt) specifies the prior
probabilities of the system states, while the conditional probabilities distributions (CPDs)
P r (p , I?I(&)) describe the dependency of probe outcomes on the components tested.

In the absence of noise in the probe outcomes, all CPDs are deterministic functions.
Since a probe succeeds if and only if all its components are OK, a probe ontcomc is a
logical-AND functionofitscomponents, i.e. P, = X,, A...AX;,, where A denotes logical
AND. and X,, ~. ..: X,, are all the nodes probe P, goes through. In practice, however. this
relationship may be disturbed by noise in the measurements. For example, a probe can fail
even though all the nodes it goes through are OK (e.g., due to packet loss). Conversely,
there is a chance that a probe succeeds even if a node on its path has failed (e.g., dynamic
routing may result in the probe following a different path). Such uncertainties yield a so-
called noisi'-AND model; sec [151 for more detail on noisy-AND Bayesian network model
for problem diagnosis.

Bayesian network can be used for probabilistic in/er.ence[l4], such as belief updating,
i.e. finding Pr(ZIY = y) . the posterior probability of set of variables Z given observa-

138 Se,cio,r T h e Furrlf A ~ m ~ ~ p ~ w n f

tions of some other variables Pr(Y = y). For example, we may want to update the fault
probability o f every single node given the probe outcomes, or we may want to find a single
most-likely state of the systems (combination of faults). We will use belief updating as a
part of active-probing-based diagnosis. See [151 for more details on problem diagnosis in
distributed systems using Bayesian networks.

3. Pre-Planned Probing
We now give an ovewiew of pre-planned probing algorithms proposed earlier in [I]. We
reformulate them in a unified information-theoretic framework that also naturally extends
to thc online. active version.

In pre-planned probing, we want to compute the smallest probe-set such that each sys-
tem state will produce a different set of probe outcomes, allowing the state to be uniquely
determined. Since columns can be added to represent the case of no failure or multiple
siniultaneous failures. this can he formulated as finding the smallest probe set such that
every column of the dependency matrix is unique, sincz in that case exactly which state
has occurred can be determined from the outcomes of all the probes.

Probe-set selection: Find P’ which minimizes IP’l, where P‘ 2 P is such that every
column in DP,.N is unique.

Proposition 1 Pmbe-set selection is NP-hard.
Proof. Probe-set selection can be shown to be NP-hard via a reduction from 3-
Dimensional Matching (defined in [SI). We omit the details due to space considerations;
see [2] for details.

We now present two approximation algorithms for probe-set selection - greedy search
and subtractive search. “Greedy” search starts with the empty set and adds at each step
the “best” of the remaining probes. The “hest” probe is the one which maximizes the
information gained about the system state, in the sense defined precisely below. “Subtrac-
tive” search starts with the complete set of available probes, considels each one in turn.
and discards it if it is not needed. Neither algorithm is optimal in general - experimental
results comparing their performance with the true minimum probe set size are given in
Section 6.

The greed!’ search approach chooses the next probe by maximizing the information
gained ahout the system state X, given the previous probes. Formally. we are looking for
a probe

Y’ = arg max r(xI YIP’) ; (2)
Y€P\P’

where I (X ; YIP‘) is the conditional mutual information of X and probe Y , given the
previously selected probes P‘. Since I (X : YIP’) = H(XIP’) - H (X / Y . P’), where
H (X / Y) is the conditional entropy of X given Y (see [4]), the most-informative probe
1” minimizes the conditional entropy of X, i.e. the amount of uncertainty about the
system state.

The algorithm is shown in Figure 3a. If the initial set of available probes P is of size
T. O(r2) conditional entropy calculations are required. since at each step the information

Probe-Set Selection: Greedy Search

Input: A ret of available probes P and a prioi
distribution over system states Pr(X).
Output: A subset P' C P ofprobes.
Initialize: P'.= 0
dol. select most-informative next probe:

Y' = tugmaxy,p,p. r (x ; Y l P ')
2. update probe set: P' = P' U { Y }

nhile3Y E P\P'suchthatI(X;YIP') > D
Return P'.

Probe-Set Selection: Subtractive Search

Input: A set of available probes P and a prioi
distribution over system states Pr(X).
Output: A subset P' 2 P of probes.
Initialize: P' = P = {p,. pJ. ,... p ? } ,
fori = 1 to I.

remove probe if it is not needed, i.e.
ifI(X;pJP'\{p,}) = 0.
then P' = P'\{pi}

Return P'.

Figure 3: (a) Greedy Search for Probe-Set Selection. (b) Subtractive Search for Probe-Set Selec-
tion.

gain obtained by each of the remaining probes must be computed. Note that

H(X1Y.P) = - (3)

so computing the information gain can be quite costly in the general case, as it requires
summation over all non-zero-probability states and outcomes of the current probe set and
the next probe.

However in the case of only one component failing at a time and with equal prior prob-
abilities of failure (including the case of no failure at all), the computation can be con-
siderably simplified. A probe set cannot distinguish failures in nodes whose columns in
the dependency matrix are identical. Since this is an equivalence relation between nodes,
it induces a decomposition of the nodes into an exhaustive collection of disjoint subsets,
and it is easy to show that:

k

H(XIY. P) = 3 logn, n
1=1

(4)

where n is the total number of nodes and n, is the nurnher of nodes in the i'th subset of
the decomposition induced by P.

This expression has a natural interpretation. Since there are ni states in the i'th subset
and each probe has two possible outcomes, at least logn; additional probes are needed to
fiuther decompose the i'th subset into singletons, thereby enabling any single node failure
to be diagnosed. Since the true failure lies in the i'th subset with probability nJn, the
conditional entropy is simply the expected minimal number of additional probes needed
to localize the failure.

The greedy algorithm can of course be generalized by adding the best subset o f t of
the remaining probes at each step, requiring O(rt+') conditional entropy calculations.

The siihfracfive search algorithm starts with the complete set of available probes, con-
siders each one in turn, and discards it if it is not needed, i.e. if removing i< does not
result in any loss of information about the system state. The algorithm is shown in Figure

1 Active Probing

Input: A set of available probes P and a prior
distribution ovei system states P r (X) .
Output A set P , of probes and their outcomes:
posterior distribution Brlir f (X) , its suppon S .
Initialize: 0 d i ~ J (X) = P r (X) , P, = 0,

do
s = suppon of P r (X) .

I . select cwent most-informative probe:
Y = argmaxyep\p. I (X : YIP.)

2. execute Y: it returns Y = y (0 or I)
3. update P, = Pa U {I' = U}
4. update B r l i r f (X) = Pr(X1P.)

rrhile3)'EPsuchthatI(X:YIP,) > O
Return P,, B r / i r f (X) ,
S =ruppon of B r / i r J (X) . Probe path length

(b)

Figure 4: (a1 Active Probing algorithm far probabilistic diagnosis with most-informative probe
selection: (b l RAIL system architecture. (bl Information gain as a function of probe's 'effective'
length (the number of nodes on the probe's path having non-zero fault probability) for various
probabilities p of a single fault occurring in a system that containr 50 components.

3b. Each probe is considered only once, so O(T) conditional entropy computations are
required.

4. Active Probing
Here we extend the probing paradigm to allow for active probing. where the selection of
later probes depends on the results of earlier probes. Probe-stations issue probes which
traverse different parts of the network. The results ofthe probes are analyzed to infer what
problems might be occurring. If additional information is needed in order to locate the
problem, the most useful probes to send next are determined and sent. When additional
probe results are received further inferences are made and the process repeats until the
fault is localized.

Thc advantage of this approach is that fewer probes can he used than if the entire
probe set has to be pre-planned. However additional inferential machinery is required.
We describe an algorithm for active probing and then present experimental results that
show that active probing can greatly reduce the number ofprobes needed to perform fault
localization.

An active probing algorithm is described in Figure 4a. It takes as input a set ofprobes P
available for selection, and a prior distribution P r (X) over system states. The approach
is very similar to the greedy probe-set selection algorithm presented above, except that
each selected probe is sent, the result obtained_ and the probability distribution over the
system state is updated. The algorithm maintains the current beliefabout the system state.

Bo/ief(X) = Pr(XjP,) where P. is the current set of probes and their outcomes. The
prior distribution is used to initialize B e l i e f (X) .

The active-probing diagnosis algorithm works as follows. It selects the next probe to
nm (step I) and waits for the results (step 2). then it updates both the set of active probes
executed (step 3) and the current belief about the system’s state (step 4). Steps 1-4 are
repeated until no more information can be obtained about the system state, and thus the
diagnosis cannot be improved. The algorithm outputs a set of active probes Pa that were
actually used during diagnosis (which often turns out to be significantly smaller than
the original set P) , the posterior distribution over components after receiving the probe
outcomes, Pr(XIP,). and the support of the distribution (the components with non-zero-
probability).

In case of single fault in a system. the support contains no more than n nodes and thus
P r (X) can be represented in O (n) space. Once again simple expressions can he obtained
for certain priors - for example a 1 ~ p probability of no-fault, and uniformly distributed
probability mass p among single component failures, PT (Xi = 0; Xi = 1V:j # i) = p/n .
Figure 4b plots the information gain of a probe as a function of its effective length k
(qffective length of a probe is the number of nodes on probe’s path that currently have
non-zero fault probability). for n = 50 nodes and for various fault priors. We scethat it is
more beneficial 10 send probes with larger effective length if the probability of fault p is
small. However. once a fault is detected OJ = 1)_ the most informative probe (i.e. a probe
attaining the maximum information gain) is one whose effective length is closest to half
the number of nodes that are possibly faulty.

The active probing algorithm can he also applied to a generic multiple-fault case; how-
ever, its complexity increases with an increasing number of simultaneous faults and de-
pends on the efficiency of representing the joint probability P r (X) and the efficiency of
probabilistic inference and information-gain computation required for active probe sclec-
tion.

5.
The algorithms described above were uscd as a basis for building a system a system for
probe set selection and dependency matrix analysis, called DMA (Dependency Matrir
Andis i s tool). and a system for real-time diagnosis called RAIL (Real-Time Aciive Infer-
e t re and Learning).

DMA systems functions as follows. Given as an input a dependency matrix, the an-
alyzer will first check for obviously redundant probes, e.g. delete identical copies of a
probe (wc encountered such cascs in practice). DMA will also find all subsets of indis-
tinguishable nodes and group them accordingly into meta-nodes. Then, DMA applies the
following analysis to the resulting matrix:
- if exact search is not too expensive. DMA finds all optimal prohe subsets using exact
pre-planned probing:
- it finds a suboptimal probe subset using greedy search;
- it finds a probe set for problem detection only, using a greedy approach such as in active
probing. until there are no ‘uncovered’ nodes left;

Real-time Diagnosis and Probe Selection Systems

142

Figure 5: RAIL system architecture.

- DMA analyzes the effectiveness of active probing on the given dependency matrix by
simulating a single fault, as well as no-fault situation, and computing the number of active
probes required; it also computes an average number of active probes.

Next, we implemented the active probing approach within the prototype real-time di-
agnostic systemcalled RAIL. The system architecture is shown in Figure 5 . The real-time
diagnosis engine obtains the input through the Real-Time Event Manager (REM) which
is a generic component able to process not only incoming probes but various other event
types: thus the diagnostic engine is not probe-specific. In our particular application which
uses the IBM’s End-to-End Probing Platform (EPP), the input probe outcomes are ob-
tained from the EPP probe stations, processed by REM, and submitted to the diagnostic
engine which updates its bel,iefs about the system states, and requests an active probe, if
needed. using the Probe Agent Driver component, which ’talks’ to EPP. The dependency
matrix information is maintained and updated by Dependency Manager (DM), which ob-
tains the initial matrix from the DMA tool: in the future, the dependency matrix will be
constantly updated by the learning component(thus making RAIL a truly Real-time ac-
tive inference and learning tool) if dependencies change dynamically, e.g., due to dynamic
routing, additioddeletion of nodes, and other reasons.

Real-time diagnosis engine can be easily extended to handle multiple faults and repairs
sequentially, assuming a single failure at a time. Once a failed probe is obtained which
is not explained by any of the currently diagnosed failures, an active probing diagnosis is
called. It identifies a single fault (ifthe remaining probe set permits unique diagnosis), and
the corresponding node is deleted from the dependency matrix together with all probes
going through the node. The system waits for the next probe, and so on. We assume that
in case of repair of a node, an immediate message is sent to RAIL (this assumption greatly
simplifies the sequential diagnosis algorithm). The beliefs about the system state are then
updated, and sequential diagnosis continues. Note that in sequential multi-fault diagnosis,

1 ,
c, L ,U 11 II IC, / * II P I

0 - ' " "

Network size (numberoinodrs) Network si= (number a1 nodes)

(a) (b)

Figure 6 Active versus pre-planned probing results for randomly generated networks:
simulation results on (a) small-scale and (b) large-scale networks.

some of the faulty nodes can make the other nodes unreachable and thus impossible to
diagnose (e.g., in Figure 1, HAS failure makes AS unreachable). This indicates the neces-
sity of developing more informative probe sets for handling multiple faults - yet another
direction for future work.

6. Empirical Results
This section examines the empirical behavior of both pre-planned and active probing. For
pre-planned probing the approximation algorithms find a probe set which is very close to
thc true minimum set size, and can be effectively used on large networks where finding
the true minimum by exhaustive search is impractical. Active probing greatly reduces
thc number of probes needed. although at the expense of a more complex interactive
inferencing system, as described above.

6.1 Simulated Networks

For cach network size n, we generated twenty random networks with n nodes by ran-
domly connecting each node to four other nodes. The probe stations are selected ran-
domly. The probes follow the least-cost path from each probe station to each node.

The states to diagnose are any single node being down or no failure anywhere in the
network. Each node has the same prior probability of failure, and there is no noise in the
probe results. Note that in this case n probes are sufficient, because one can always use
just one probe-station and probe every single node.

Exhaustive search is performed to find the true minimum size probe set. Then linear-
time subtractive search and quadratic-time greedy search are used to find probe sets. Ac-
tive probing algorithm is evaluated as follows. For each network, we simulate all possible
fault scenarios (i.e., a fault at each node, and the no-failure situation), and compute an

I44

FTC. PIC. prc-
p h c d phMcd plilnncd Active Active SovVigsCn lid #"I prube, probo pn'b"S: Probing: Pruhhg: ilctivc n

pmk: n d c r prokr Icnco ~precdy) dcfnf) m arcrqc ~ X I C ~

01

0 2

Gi

Figure I: Active probing results on several practical problems.

average number of active probes needed for diagnosis in this network. Finally, for every
probing method. we average the results over all networks of given size and report them in
Figure 6 .

The resuits in Figure 6a (small-scale networks) indicate that the approximation algo-
rithms for finding the smallest probe set perform well and are much closer to the true
minimum set size than to the upper bound of n probes and also demonstrate the consid-
erable improvement resulting from active probing when compared with pre-planned. or
"passivc". probing. In Figure 6b the approximation and active probing algorithms are ex-
tended to larger networks for which finding the true minimum is impractical. The active
probing dcmonstrates more than 60%, improvement over the pre-planned probing.

6.2 Practical Applications

In Figure 7. we report the results on several real probing applications. The problem C1 is
a relatively small testbed for probe analysis, while the set ofproblems 01, 0 2 and 0 3 re-
lates to several networks supporting e-business applications, which include many servers
and routers. and its performance and availability depends on a large number of software
components (such as various databases. etcj. For the purposes of high-level. overall net-
work diagnosis, only a set ofaggrcgate components is specified (e.g., a particular network
'cloud', or a firewall of a specific company are considered as diagnosable components). A
set of probes was manually selected by an expert for the case of single fault localization.
The table shows the number of nodes and the number of probes in the original network
after our initial processing of dependency matrix that eliminated repetitive probes and
merges indistinguishable nodes. The next two columns show the minimum number of
probes found in a pre-planning phase by exhaustive and by greedy search, respectively.
Then the next column shows the minimum number of probes (found in greedy way) nec-
cssary for fault detection only (i.e., simply the probes 'covering' all nodes). Finally. we
show the minimum and the maximum number of probes required by active probing to
diagnose a single fault. and the average such number over all possible faults.

Our approach was quite successful for these applications. For example, in problem 0 3
having 34 nodes and 29 probes, the probe-set selection algorithm found that the mini-
mum number of probes required for single fault localization is only 24 probes, a saving of

17% Approximation algorithms were optimal or nearly optimal: greedy search retumcd
24 probcs. whilc Subtractive search found 25 probes (we only show the results of greedy
scarch in the table since it was always superior to subtractive search). Finally, the most
impressive results were obtained by active probing. The number of probes needed never
excccded 16 probes; on average. active probing required only 7.5 probes? versus 24 probes
used by pre-planned probing, which yields savings of 69% (and of almost 74% if the ini-
tial probe set is considered). Similarly, active probing versns pre-planned one (and active
probing versus initial probe set size) saved on average 67% (77%) probes on problem 01,
72% (76%) probes on problem 0 2 . and 36% (9660) probes on problem G1.

7. Related Work
Previous work [I . 131 studied the probe selection problem for the purpose of network
management. This paper develops a more general framework for problem determination
using probes, proves the NP-hardness of the probe-set selection problem, develops the
active probing approach and demonstrates its advantages in reducing probe-set size.

Event correlation [12. 9, 111 for identifying root-causes has long been recognized as
a critical issue in the system management domain. Problem determination is performed
by analyzing alarms emitted by devices when a significant situation OCCUTS. Unlike the
probing scheme, alarms are “reactive” to a situation and this requires intensive instru-
mentation, only possible in a tightly managed environment. The probing approach uses
test transactions that can be built easily without touching the existing devices.

Nonetheless, event correlation has many similarities to OUT work. The formulation of
problem diagnosis as a “decoding” problem, where “problem events” are decoded from
”symptom events”, was first proposed by [I I] . Our approach uses an active probing ap-
proach versns a “passive” analysis of symptom events; namely [I 11 selects codebooks (a
combination of symptoms encoding parricular problems) from a specified set of symp-
toms, while we actively construct those symptoms (probes), a much more flexible ap-
proach. Another important difference is that [I I] lacks a detailed discussion o f efficient
algorithms for constructing optimal codebooks.

Bayesian network approaches to fault diagnosis in computer networks and distributed
systems were also considered previously (e.g., [IO, 151). However the active test selec-
tion approach as formulated here was not addressed in that work. Most informative test
selection for multi-fault diagnosis was considered in AI literature related to other applica-
tions [5]. however, to the hest of our knowledge, combining probabilistic inference with
online selection of most-informative probes appears to he a novel approach in the area of
distributed systems diagnosis via end-to-end probing.

8. Conclusion
In this paper. we address the problem of real-time diagnosis in distributed systems us-
ing test transactions, or probes. Our main objective is to speed up real-time diagnosis
by minimizing set of measurcments, such as probes, while maintaining high diagnostic
accuracy.

We consider two probing approaches: pre-planned and active. Finding the smallest

I46 Se.wio,z Tl!lr,e<, Fnrrlr Mmupme,zr

pre-planned probe set is NP-hard. but approximation algorithms perform well. Active
probing considerably reduces the number of probes needed but requires a more compli-
cated technology to determine which probes to send. Our work suggests the merits of a
combined approach, which uses pre-planned probes to detect when a problem occurs and
thcn invokes active probing to locate the problem precisely,

Directions for future work include real-time diagnosis with changing network state and
intermittent faults. handling dynamic routing and lack of precise knowledge of the probe
path. and adapting to non-stationary behavior of the system using on-line learning that
yields a dynamic. adaptive, probing strategy. We feel that adaptive, cost-effective tech-
niques for problem determination will become increasingly important if new-generation
IT systems are to be capable of self-management and self-repair.

References
[I] M. Brodie, 1. Rish, and S. Ma. Optimizing probe selection for fault localization. In Dis-

riihrrred Svstnns Operution und Munugement, 2001
I?] M. Brodie. I . Rish, S. Ma, A. Beygelzimer, and N. Odintsova. Strategies for Problem Deter-

mination Using Probing. Technical report, IBM T.J. Watson Research Center, 2002.
[3] M. Brodie, I. Rish, S . Ma. and N. Odintsova. Active probing strategies for problem diagnosis

in distributed systems. In Pinreedings offhe The Eighteenth lnfernurionul Joinf Conference
UII A,-r!ficinl Inrelli~ence (IJCAI-03). Acnpulco. Mexico, 2003.

[A] T.M Cover and J.A. Thomas. Elrmenfs ofinJurmufion themy. New Yorklohn Wiley & Sons,
1991.

[5] 1. de Kleer and B.C. Williams. Diagnosing Multiple Faults. Arrr/Fcial Inrelligrnce, 32(1),
1987.

[6] D-2. Du and F.K. Hwang. Comhinotoriul Coup Tesfing and Itr Al~plieotions (2nd ediriogz).
World Scientific, 2000.

[7] A. Frenkiel and H. Lee. EPP: A Framework for Measuring the End-to-End Performance
of Distributed Applications. In Pmeeedings of Pevfomonce Engineering 'Bar Pructices '
Co,f>rencu, IBM Ac0dem.v ofTeechnologv, 1999.

IS] M.R. Garey and D.S. Johnson. Computers und Intructuhilif~; A Guide to the Theor?: ofNP-
comp1rrme.n. W.H. Freeman and Ca., San Francisco. 1979.

[9] B. Gruschke. Integrated Event Management: Event Correlation Using Dependency Graphs,
In LXstrihured Svsfsrrms Operurions und Munugemenr. 1998.

[IO] IF. Huard and A.A. Lazar Fault isolation based an decision-theoretic troubleshooting, Tech-
nical Repon 442-96-08, Center for Telecommunications Research, Columbia University, New
York, W, 1996.

[I I] S . Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to event correla-
tion. In Intellipzt Network Munugemem (IM), 1997.

[I21 A. Leinwand and K. Fang-CoNoy. Netn,or.k Management; A Practical Perspective. 2nd Edi-
tion. Addison-Wesley, 1995.

[I31 H.C. Ozmutlu, N. Gautam, and R. Barton. Zone recoverymethodology for probe-subset selec-
tion in end-to-end network monitoring. In Network Operafions und Munugement Svmposiurn,
pages 151464,2002.

[I41 1. Pearl. Prohahilistie Reasoning in Intelligmr Swtems Morgan Kaufmann, 1988.
[I51 I. Rish, M. Brodie, and S. Ma. Accuracy vs. Efficiency Trade-offs in Probabilistic Diagnosis.

In P,ocredings of rhe The Eigl8teetzth National Conference on Arfi/cial Inrrlligence IAAAI-
2002). Edmonton. Alher-la. Cunndo, 2002

