
DRAFT – Do Not Distribute

Ludics Programming I:
Interactive Proof Search

Alexis Saurin
INRIA Futurs École Polytechnique

saurin@lix.polytechnique.fr

Abstract
Proof theory and Computation are research areas which have very
strong relationships: new concepts in logic and proof theory often
apply to the theory of programming languages. The use of proofs to
model computation led to the modelling of two main programming
paradigms which are functional programming and logic program-
ming. While functional programming is based on proof normaliza-
tion, logic programming is based on proof search. This approach
has shown to be very successful by being able to capture many
programming primitives logically. Nevertheless, important parts of
real logic programming languages are still hardly understood from
the logical point of view and it has been found very difficult to give
a logical semantics to control primitives.

Girard introduced Ludics [12] as a new theory to study interac-
tion. In Ludics, everything is built on interaction or in an interactive
way.

In this paper, which is the first of a series investigating a new
computational model for logic programming based on Ludics,
namely computation as interactive proof search, we introduce the
interactive proof search procedure and study some of its properties.

Keywords Ludics, Game Semantics, Logic Programming, Proof
Search, Interaction, Proof Normalization.

1. Introduction.
Proof Theory and Computation. Recent developments in proof
theory have led to major advances in the theory of programming
languages. The modelling of computation using proofs impacted
deeply the foundational studies of programming languages as well
as many of their practical issues. Declarative programminglan-
guages have been related mainly in two ways to the mathemati-
cal theory of proofs: on the one hand, the ”computation as proof
normalization” paradigm provided a foundation to functional pro-
gramming languages through the use of the well-known Curry-
Howard isomorphism relating simply typedλ-calculus with intu-
itionistic natural deduction proofs and reductions of aλ-term with
cut-elimination in NJ. On the other hand the ”computation asproof
search” paradigm stands as a foundation for logic programming.

While functional programming found strong theoretical foun-
dations and very powerful formal analysis tools thanks to the study

[Copyright notice will appear here once ’preprint’ option is removed.]

of cut-elimination procedures in proof systems such as natural de-
duction or sequent calculus and the development of type theory
and its relationships with functional programming languages, logic
programming has been built on the paradigm of proof search where
the computation of a program is viewed as the search for a proof in
some deductive system.

Computation as proof search. The proof search paradigm was at
first founded on the resolution method: computation corresponded
to the search for a resolution for first-order Horn clauses. But this
approach was uneasy to extend to larger fragments or richer logics.
Later, the use of sequent calculus allowed to overcome this limit:
the introduction of Uniform Proofs and Abstract Logic Program-
ming Languages [16] and the discovery of the Focalization Prop-
erty [2] in Linear Logic [11] allowed to extend the proof search
paradigm to larger fragments (Hereditary Harrop formulas for in-
stance) and to richer logics (higher-order logics, linear logic, ...)
and to benefit from the geometrical properties of sequent calculus.
In the uniform proofs model for instance, computation will be mod-
elled as a search for a proof of a sequentP ⊢ G whereP represents
the logic program andG the computation goal. The computation
then proceeds as a search for a proof directed by the goalG, the
logic programP being used through backchaining when the goal
is an atomic formula.

In addition to the interest from the fundamental point of view,
this approach allowed to enrich logic programming languages with
numerous additional programming primitives while treating them
logically (higher-order programming, modules, resource manage-
ment, concurrent primitives...). Nevertheless some essentials con-
structions of logic programming languages could not be dealt with
logically, in particular when we are concerned with the control
of computation (backtracking, intelligent backtracking,cut predi-
cate). As a consequence, some parts of the languages do not have
a very well established semantics and they cannot be analyzed in
a satisfactory way using the rich logical methods that proofsearch
paradigm provides.

Recalling Kowalski’s motto ”Algorithm = Logic + Control” [15],
one can notice that with the development of real implementations
of logic programming languages, the correspondence turnedout
to become much closer to: ”Algorithm = Logic + Control + I/O +
Data Abstraction + Modules + ...” since those useful programming
primitives are needed. The extension of the proof search paradigm
to broader settings allowed to capture some of these components
in the logical component (modules, data abstraction, ...) but the
control part is still there.

One of the long-standing research directions on proof search is
to treat the extra-logical primitive in a logical way in order to get
closer to the ”ideal” correspondence: ”Algorithm = Logic”.We can
draw a useful and enlightening comparison with functional pro-
gramming: the extension of the Curry-Howard correspondence to
classical logic allowed to capture logically several control operators

Version du 17 juillet 2007. 1 2007/7/19

that were used in practice (likecall/cc) thanks to typing rules for
those operators [13] or thanks to extensions ofλ-calculus such as
λµ-calculus [17].

Why is it so difficult to have a satisfactory logical treatment of
control? There is certainly a question of point of view which
stands there. For instance, we can notice that there is a mismatch
between sequent calculus proof theory and logic programming:
while in sequent calculus, the objects we manipulate are proofs
(and the theorems which are proved deal with proofs), the process
of searching for and constructing proofs does not deal with proofs
until the computation is completed. Instead, the objects ofproof
search are partial proofs (or open proofs) which may end up not
leading to a proof at all but to a failure. Such failed proofs are
not part of the proof theory of sequent calculus. Thus, the very
dynamics of computation stands outside the theory we work with.

Moreover, while one often considers that the state of the com-
putation is represented by a sequent the essential element for proof
search does not lie in the sequents themselves but in the proof rules
which are applied to sequents: the sequent should rather be consid-
ered as a constraint on the action that can be performed to progress
towards completing the search.

Ludics and Interaction. We noticed earlier the strong relation-
ship between logic and computation. We can thus expect that new
developments in proof theory will provide new tools, new meth-
ods and maybe new paradigms on the computer science side. Such
impacts can be expected in particular when these new resultsshed
light on concepts that had not been well understood before. We
think that the recent work by Girard on Ludics [12] should be con-
sidered in this way.

Ludics is a logical theory that attempts to overcome the dis-
tinction between syntax and semantics by considering that interac-
tion comes first and by building syntax and semantics afterwards,
thanks to interaction. Ludics objects, designs, can be seenas inter-
mediate objects ”between” syntax and semantics since they are an
abstraction of linear sequent calculus proofs and a concrete version
of strategies in a game semantics model. Ludics is founded onmany
concepts of proof theory, especially of linear logic sequent calcu-
lus [11] and especially the fundamental result of Focalization [2]
that allows for synthetic connectives to be defined. Ludics has lots
of connections with game semantics [14, 1] as well since the inter-
action process in Ludics can be seen as a play [9]. Many concepts
have been inspired by proof search. We shall introduce the main
definitions of Ludics in section 3 after we provided some morein-
tuitions on Ludics concepts and technics.

Computation as Interaction. In recent years, interaction has be-
come a crucial concept of the theory of computation. The introduc-
tion of linear logic [11] surely is partly responsible for this but game
theoretical interpretations of logic and computation havebeen stud-
ied prior to linear logic. One can for instance refer to Curien’s work
on Concrete Data Structure, abstract and environment machines
and more recently Abstract Böhm Trees [3, 5, 6, 4]. Ludics cer-
tainly goes further in this direction.

We think that Ludics provides lots of tools that should be use-
ful for logic programming especially in order to develop a study
of logic programming that would benefit from the concepts and
tools from interactive theories, such as an explicit treatment of the
computational environment which is uniform to the computational
objects [7].

This paper is the first of a series of works [19, 20, 21] in which
we investigate the use of Ludics as a foundation for proof search
and logic programming by means of a model of interactive proof
search. The present paper is concerned with the very milestone of
this project, that is defining what would be an interactive proof
search procedure in Ludics. In order to do so, we first draw the

general picture of this paradigm of ”computation as interaction” (or
more precisely ”computation as interactive proof search”), give an
informal account of Ludics together with intuitions and motivations
and illustrate it with examples from MALL sequent calculus in
Section 2. To set the stage to the definitions of Interactive Proof
Search in section 4, we then introduce the reader to the basic
definition of Ludics in Section 3.

The heart of the paper is Section 4 where we present an algo-
rithm for IPS through the definition of an abstract machine, the
SLAM, that is obtained by modifying Faggian’s Loci AbstractMa-
chine [8]. After running the interactive search process on an exam-
ple, we define the SLAM firstly in a restricted case and later inthe
general setting and we establish several properties of the IPS re-
lated with correctness of this algorithm and then we illustrate our
method on a toy program for paths in a graph. We finally conclude
in Section 5 by outlining future works and relating our results with
other works.

2. Logic programming, interactivity and Ludics
The aim of this section is to draw the general picture for Interactive
Proof Search and to give an informal description of Ludics.

2.1 Computation as Interaction

We described Computation as Proof Search in the previous section
as the search for a proof ofP ⊢ G in sequent calculus. The proof
is required to satisfy certain conditions.

While the whole dynamics of proof search is concerned with
partial proofs, sequent calculus proof theory is a theory ofcomplete
proofs. Thus it is very difficult to speak about failures, backtrack or
changes in the search strategy (such as what is done by thecut
predicate) in this setting.

We propose to consider another approach which considers proof
search interactively.

Searching for proofs interactively The sequentP ⊢ G is the
state of the computation but it is also a way to constrain the future
of the computation. In the same way, restrictions on the logical
rules that are allowed (like in linear logic) or proof strategies also
impose constraints on proof search. But all this is implicitand not
done explicitly. In particular, it is fairly difficult to analyze these
constraints in proof theory itself. In some sense, the computation
environment cannot really be dealt with explicitly.

This is sad because some important programming primitives
precisely deal with these constraints, adding some of them,strength-
ening others, etc...

The interactive approach to proof search we are investigating
precisely makes explicit the constraints on proof search. Instead of
building a proof depending on a given sequent, we shall consider
building a proof that shall pass some tests, that shall be opposed to
attempts to refute it. The tests will have the form of (para)proofs
and thus will be built in the same system as the one in which we
are searching for proofs.

We propose a computational setting which would roughly corre-
spond to the following (the terms will be made clear later on):

• We are willing to search for a proofD of ⊢ A.

• Formula A is actually given as a set of tests: the tests that
shall be successfully passed by the proof we are constructing:
E1, . . . , En.

• The proof construction shall proceed by consensus with the
tests:D can be extended with ruleR only if the extended object
interacts well with the tests.

• After some interaction, we may have an object that cannot
be extended any more. Either the construction is terminated

Version du 17 juillet 2007. 2 2007/7/19

becauseD cannot pass every test or because all the test are
satisfied and no more constraint applies toD so that there is
no need to extend it further. In the first case, we have a failure
while in the later case we have a win.

• The interesting point with this interactive approach lies in the
fact that the setting if symmetrical:D is tested byEi but it is
also a test for theEis. In particular, even failures are interesting
and useful objects.

• if a failure Dz has been reached, we may be willing to try
another search. Indeed, maybe at some point we chose a wrong
way to extendD and that caused the failure. There is a standard
way to backtrack, that is erase some part ofDz and try some
other construction. But since we are in an interactive setting,
there is another option: we can try to useDz in order to provide
new tests:EDz

i that will constrain the search to look for a proof
that shall be different from the failureDz .

• the use of previous computations in order to enrich the com-
putational behaviour has actually no reason to be restricted to
failures...

Basically, this is the research program we are willing to inves-
tigate. The present paper will only be concerned with defining the
interactive search. The treatment of past computations will be post-
pone to a future paper.

2.2 Motivations and intuitions for Ludics

Ludics has recently been introduced by Girard [12] as an interac-
tive theory that aims at overcoming the traditional distinction be-
tween syntax and semantics by saying that neither syntax norse-
mantics should come first as a foundational stone for logic: inter-
action should come first and logic shall be reconstructed from this
interactive approach.

The whole theory of Ludics is built on the notion of interaction
of designs which are intermediate objects between syntax and se-
mantics (they can be viewed as an abstraction of MALL sequent
proofs or as a concrete presentation of game semantics strategies).

Thus in Ludics, things are not built from syntactic objects to
which is assigned a semantic interpretation, they do not come
from a semantic space for which we need an adequate language.
There are objects interacting with each other and their properties
are defined interactively. Even Ludics’ behaviours which are the
analogous of types or formulas will be defined interactively.

Of course, Ludics in not built by forgetting every thing that
exists. On the contrary one can argue that Ludics comes from a
careful analysis of logic and from a clever synthesis in order to
obtain the right notion of interaction. In particular, Ludics has been
inspired by many fundamental properties from proof theory that
we are going to present in order to provide the reader with intuition
before exposing the formal definitions of Ludics.

We now introduce informally and discuss some key notions of
Ludics in a way that we hope will emphasize connections towards
logic programming and proof search.

Focalization. Andréoli showed a fundamental property of linear
logic proofs which has great impact on proof search. Focalization
is also very important because it is the root of a polarized approach
to logic and polarization is the first step towards a game theoretic
interpretation of proofs. Indeed polarization tells you whose turn it
is to play.

Probably the most important outcome of Focalization is the
possibility of defining synthetic connectives and synthetic rules in
MALL and a hypersequentialized calculus (that is, a calculus us-
ing the synthetic rules). MALL connectives can be decomposed
in two sets: the positive connectives (⊗,⊕,1, 0) and the nega-

tive connectives (O, N,⊥,⊤). When searching for a proof, one al-
ternates between two phases, a synchronous phase and an asyn-
chronous phase. During the asynchronous phase, we are certain
not to lose provability, while during the synchronous phasewe can
make the wrong choice and end up not finding a proof even if the
sequent we started with was provable. Thus there is clearly an ac-
tive phase (positive, synchronous) and a passive phase (negative,
asynchronous) and the two phases alternate. This is the firststep
towards a game theoretic interpretation of sequent proofs:

• the negative phase is the opponent’s turns to play (and the
asynchronous rule gather all information that is needed to react
to this move)

• the positive phase is the player’s turn: after a move of the
opponent, the player decides what she will play following what
her strategy (that is her proof rules) tells her to play.

An interesting invariant with proofs in the hypersequentialized
calculus for MALL is that there is at most one negative formula
in a sequent.

Proof Normalization. The cut elimination process reflects this
game interpretation: a conversion step corresponds to the selection,
by the positive rule, of a continuation for the normalization (for the
play): think of the selection of aN-premise by a⊕-rule.

But there is still a problem for an interactive interpretation: there
are not enough proofs! If the system is consistent, we cannotever
find both a proof forA and a proof forA⊥. Notice that if there
cannot be proofs for both a formula and its negation, it is perfectly
legal to attempt to prove bothA andA⊥. The only thing is that at
most one of the two formulas can be proved (and maybe none...).
However, if the proof search fails, the partial object that we have
obtained can be used in an interaction with proof attempts ofthe
negation... except for the point where the failure was encountered
(here normalization is undefined... for the moment).

A failed (or interrupted) attempt to proveA is a proof tree where
some branches are still open. Let us add a new rule to mark the
fact that the search for a proof has been stopped, that we gaveup:

⊢ Γ
z

. What is this sequent⊢ Γ where we stopped? It would be
unfair to stop if⊢ Γ contains a negative formula since decomposing
this formula costs nothing (remember: it is asynchronous).Thus
we restrict the application ofz to sequents that are made only of
positive formulas (positive sequents). We thus have paraproofs for

any sequents, even for the empty one⊢
z

.

Winning and loosing. The normalization between two para-
proofs is clearly a process through which they test each other. The
one that is caught usingz is considered as the loser of the play and
since he lost, the play ends there. Notice that this normalization
process is an exploration of the two paraproofs: the cut visits some
parts of the paraproofs. In the case the normalization ends with z

the paraproofs are said to be orthogonal.

Locations. Whereas in functional programming it is important to
know if the types of a function and its argument are identical, it
is not relevant for proof search to know the complete structure of
the proof from the beginning. We only need to know enough to
choose a rule to apply. This idea is reflected in Ludics by the use
of addresses or locations (or loci). A formula is only manipulated
through its addressξ. When we apply a rule onξ we come to
know whereits subformulas are (notwhat they are...):ξi, ξj, . . .
the subaddresses ofξ.

Let us say a word about proof normalization: what happens if
we cutA N B with A⊥ ⊕ C⊥? Clearly, things may go wrong if
the⊕ R rule is applied toA⊥ ⊕ C⊥. But on the other hand if⊕ L
is applied, the normalization goes perfectly well... the problem we

Version du 17 juillet 2007. 3 2007/7/19

noticed in case of the⊕ R should be compared to the case of a
player that did not anticipated the fact that its opponent could play
some move and thus has nothing ready to play in response (except
if she can give up with az!).

Behaviours. A provable formula can be considered as the set
of its proofs... since any formula is paraprovable in Ludics, it
is perfect! Actually things are even more drastic in Ludics:the
formula is defined interactively depending on the way the tests go.
They will be defined by a standard technique of biorthogonality
closure.

Incarnation. Given a paraproofΠ in A and a paraproofΠ′ in A⊥,
a part ofΠ can be explored byΠ′ thanks to normalization. Under
very special circumstances, it may happen thatΠ is entirely visited
by Π′. The usual situation is actually that there are parts ofΠ that
cannot be explored, whateverΠ′ ∈ A⊥ you choose. However, a
class of para-proofs which is highly interesting from our interactive
perspective is the class of paraproofs that can be completely visited
during normalization against elements ofA⊥. They are said to be
incarnated or material. They are the most interesting elements inA
since they can be completely characterized interactively.

2.3 Searching for proof interactively? Interactive proof
search in MALL.

In this section, we give some concrete logical example wherethe
construction of a proof of a MALL sequent is led by a context made
of ”counter-proofs” (they are proofs with weakening and daimon –
z).

2.3.1 Adding more proofs

If we want to search for proofs by interaction, we need to have
object to interact with, but we never have a proof forA andA⊥ at
the same time, that means we need to extend a little bit the logic...
and introduce the daimon for instance as described in the previous
section.

2.3.2 An example of IPS in MALLz

Consider the two following paraproofs of sequent1
⊥
0 ⊕ (1⊥

1 ⊕
1
⊥
2)⊥ ⊢:

Di =

⊢ 10
⊢ 1

⊢
z

1i ⊢
1 ⊢

⊢ 1
⊥
1 ⊕ 1

⊥
2

⊢⊕i

1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥ ⊢

⊕⊢

i is 1 or 2.
We can look for a paraproofD of sequent⊢ 1

⊥
0 ⊕ (1⊥

1 ⊕
1
⊥
2)⊥ such that the paraproofΠi (i ∈ {1, 2}) built by relatingD

to any of theDis using a cut can normalize, that is reduce the cut
up to finding simply the empty sequent proved thanks to thez rule
which is the only rule that can prove any positive sequent.

Di

1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥ ⊢

D

⊢ 1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥

⊢
cut

Performing the cut reduction will impose constraints onD and
we can use this as a guide to search for a paraproof on⊢ 1

⊥
0 ⊕

(1⊥
1 ⊕ 1

⊥
2)⊥

Finally, we end up with:

D =

⋆1

⊢ 11
⊢ 1

⋆2

⊢ 12
⊢ 1

1
⊥
1 ⊕ 1

⊥
2 ⊢

⊕⊢

⊢ 1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥

⊢⊕2

The branch ending at⋆1 has been built by interacting withD1

while the branch ending at⋆2 has been built by interacting withD2

When normalizingD with Di, thez used byDi that means that
the paraproofD was able to find an error inDi, without lettingDi

discover its potential logical leakage.
One could have added to theDis a third paraproof:

D3 =

⊢ 10
z

⊢ 1
⊥
1 ⊕ 1

⊥
2

z

1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥ ⊢

⊕⊢

And in this case, one could have interactively builtD′:

D′ =

⊢
z

10 ⊢
⊕⊢

⊢ 1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥

⊢⊕1

During the normalization betweenD and D3, D3 launches
the z, but during the normalization betweenD and anyDi the
z would have been caused byD: D loses the dispute withDi,
i ∈ {1, 2}, but wins the dispute withD3.

Finally, one could even have imagined adding the following (a
bit peculiar) paraproof:

D4 =

⊢ 10
z

1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥ ⊢

⊕⊢ |1

If D4 is in the normalization environment thenD is forced to
use⊢⊕1 as a first rule.

On the contrary, it would have been possible to add:

D5 =

⊢ 1
⊥
1 ⊕ 1

⊥
2

z

1
⊥
0 ⊕ (1⊥

1 ⊕ 1
⊥
2)⊥ ⊢

⊕⊢ |2

and the result would have been to forbid the search that leadsto
a failure by forbidding the first rule⊢⊕1.

2.3.3 Beyond MALLz

This brief study shows that there are lots of possibilities to guide
(or constraint) a proof search interactively. However, it is needed to
relax some of the logical principles that usually ensure thesafety of
logic and are precisely the reasons why it is desirable to uselogic.
For instance, it is needed to add the daimonz which allows to
prove any sequent, but it is also important to admit ”partial” logical
rules (seeD4 andD4) and other principles of (linear) logic shall be
reconsidered (the weakening for instance).

This is one of the reasons why we go to Ludics which is a
clean theory with a good theory of interaction. Moreover, the level
of abstraction of Ludics is also interesting to develop thiskind of
model, even though we may go back to something more concrete
in a later phase of this program.

3. Introduction to Ludics.
In this section, we provide the definitions for most Ludics objects
that we need for interactive proof search. Most of the definitions in
this section are adapted from Girard [12] or from Faggian [8].

3.1 Actions and Designs

DEFINITION 1 (Bias, Locus and Ramification).A bias is a natu-
ral number (writteni, j, k, . . .). A locus(or address) is a finite se-
quence of biases (writtenξ, σ, τ, . . .). σ is a sublocusof τ if τ is
a prefix ofσ (written τ ⊑ σ). σ andτ are disjoint if none of them
is sublocus of the other. The empty sequence is a locus and is writ-
ten 〈〉 or ǫ. Concatenation is writtenξ ⋆ σ or ξσ when it is not
ambiguous andξ ⋆ 〈i〉 is writtenξi and is said to be theimmedi-
ate sublocusof ξ. A ramification is a finite set of biases (written

Version du 17 juillet 2007. 4 2007/7/19

I, J, K, . . .). Given a ramificationI and a locusξ, we writeξI for
the set of lociξi for all i ∈ I .

DEFINITION 2 (Base and Prebase).A prebaseis a set of polarized
loci (ξ+ or ξ−). A baseis a finite prebase of pairwise disjoint loci
with at most one negative locus. A base is said to benegative
if it contains exactly one negative locus, it ispositive otherwise.
We writeξ ⊢ Λ for negative bases,⊢ Λ for positive bases and
sometimesξǫ1

1 , . . . , ξǫn

n for arbitrary bases. When a base is a
singleton it is said to beatomic and is writtenξ ⊢ or ⊢ ξ. We
simply write ⊢ for theempty base.

DEFINITION 3 (Proper Action).A proper action is a pair of a lo-
cus and a ramification together with a polarity: positive proper ac-
tions are written(+, ξ, I) or (ξ, I)+ while negative proper actions
are written(−, ξ, I) or (ξ, I)−. We say that(ǫ, ξ, I) has focus ξ
and that it creates sublociξi for i ∈ I .

We shall sometimes consider pairs of a locus and a ramification
without a polarity, say(ξ, I), that we will refer to asneutral
actions. Given κ a proper action, we writeκν for the neutral
action associated toκ. andκ+ andκ− for the positive and negative
actions with same focus and ramification asκ.

DEFINITION 4 (Action). Anaction is either a proper action or the
daimon written z. z has positive polarity; it has no focus and
creates no sublocus.

We say that actionκ justifies actionκ′ if:

• they have opposite polarity;
• the focus ofκ′ is one of the loci created byκ.

Notice that only proper actions can justify an action and that the
daimon cannot be justified (it has no focus).

Designs (the ludics counter-part of proofs or strategies) will
be defined as trees of actions satisfying certain properties. We
introduce these conditions by defining chronicles first.

DEFINITION 5 (Chronicle).Achronicleχ on a baseβ = ξǫ1
1 , . . . , ξǫk

k

is a sequence of actions(κ0, . . . , κn) such that:

• Polarity. The polarities of the actions alternate and the first
action has the same polarity as the base;

• Daimon. For i < n, κi is a proper action;
• Justification. For 0 ≤ i ≤ n then either (i)κi is z or (ii)

it is (ǫ, ξ, I) and ξǫ ∈ β or (iii) it is justified by an actionκj

occurring earlier inχ (j ≤ i). Moreover, ifκi+1 is negative, it
shall be justified byκi;

• Linearity. Each focus only appears once inχ.

Thepolarity of a chronicle is the polarity of its last action,κn.

All actions except the daimon and the actions using a focus of
the base shall be justified. The daimon can only appear as the last
action inχ. The first action of the chronicle is eitherz (in that case
n = 0) or its focus is an element of the base. The loci cannot be
reused in the chronicle.

When writing chronicles (and later designs and slices) we adopt
the Faggian’s drawing convention: the positive actions arecircled
with the ramification written outside the circle while the negative
actions are not circled. We give in figure 1 three examples of
chronicles,χ1, χ2, χ3, which are respectively on bases⊢ ξ, ξ ⊢ σ
andξ ⊢.

DEFINITION 6 (Design).A designon a baseβ = ξǫ1
1 , . . . , ξ

ǫk

k is
a (possibly infinite) forest of actions such that:

• Chronicles.The branches of the design are chronicles onβ;
• Positivity. The leaves are positive actions;

χ1 = ξ {0,1,2}

ξ1,{1}

z

χ2 =
ξ,{1,2}

σ {1}

σ1,{1}

χ3 =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

ξ2 {1}

ξ21,I21

z

Figure 1. Examples of chronicles

• Positive branching.The tree only branches on positive actions:
two incomparable chronicles first differ on negative actions;

• Additive sharing. If κ0 and κ1 are two different actions with
the same focus then the chronicles leading toκ0 and κ1 first
differ on negative actionsκ′

0 andκ′
1 that have the same focus:

κ0 = (−, ξ, I) andκ1 = (−, ξ, J);
• Totality. If the base is positive, then the design is non-empty.

A design is said to be positive or negative according to his base.

In figure 1,χ1 andχ3 are sequences of actions that satisfy the
conditions for designs: they are chronicles which are also designs
(actually, any non-empty positive chronicle is a design). On the
contrary,χ2 is not a design.

An essential design is the daimon, which is the positive design
reduced to an actionz. There is a daimon for any positive base.
Other designs are shown in figure 2 and 3.

It can sometimes be useful to see a design as a set of chronicles
with adequate conditions (prefixed-closed, maximal chronicles are
positive, etc...).

We now introduce slices which are a particularly important class
of designs:

DEFINITION 7 (Slice).A slice is a design where the focus of any
action is distinct of all other focus, that is in a slice everylocus
appears at most once.

A slice of a designD is any slice included inD when considered
as sets of chronicles.

In particular, a negative slice is a tree.

A design can be seen as the superimposition of slices in the
same way as done with additive proof nets. We give in figure 2
two examples of slices on⊢ ξ and an example of a design on⊢ ξ.
Notice thatD is the superimposition ofS1 andS2.

3.2 Normalization and Interaction

Interaction of designs is built with cut-nets normalization which
reflects linear logic cut-normalization. In Ludics, there is no cut-
rule in designs: a cut is the coincidence of a locus with opposite
polarity in the base of two designs.

DEFINITION 8 (Cut-Net).A cut-net R = (Di)i∈I is a non-empty
finite set of designs on bases(βi)i∈I such that:

1. the loci in the bases are either equal or disjoint;
2. a locusξ appears in at most two bases (in that case, it occurs

once with positive polarity, once with negative polarity and it is
called acut in R);

Version du 17 juillet 2007. 5 2007/7/19

S1 = ξ {0,1,2}

ξ0,{1}

ξ01 ∅

ξ1,{2}

z

S2 = ξ {0,1,2}

ξ0,{2}

ξ02 ∅

ξ2,{2}

z

D = ξ {0,1,2}

ξ0,{1}

ξ01 ∅

ξ0,{2}

ξ02 ∅

ξ1,{2}

z

ξ2,{2}

z

Figure 2. Two slices and a design

Dai⊢Λ : z Dai
−
ξ⊢Λ : . . .

ξ,I

z

. . . (I ∈ Pf (ω))

Faxξ⊢ξ′ : . . .
ξ,I

ξ′ I

· · · Faxξ′i⊢ξi i ∈ I

. . . (I ∈ Pf (ω))

Figure 3. Some important designs

3. the cuts define a binary relation over the designs which shall be
connected and acyclic.

Thebaseof R is the set of polarized loci of the(βi)i∈I which are
not cuts. A net is said to beclosedwhen its base is empty. An action
in R is visible if it is z or if its focus is sublocus of a locus of the
base of the net, it is hidden otherwise. In any cut-net, thereis a
main designwhich is the only positive design of the net if such a
design exists or the only negative design of baseξ ⊢ Λ such thatξ
is not a cut.

Whereas the linearity condition ensures that in a slice all the
actions are distinct, a design may contain several times thesame
action. Thus, describing an action by providing only its focus and
ramification is ambiguous: we need an additional information on
the positionof the action in the design. The chronicle leading to
the action we consider is surely a good description since it shows
the path in the design that shall be followed to reach the action.
The following definition for views will provide a way to find the
chronicle for an action provided we know a certain path in the
designs of a cut-net leading to this action.

DEFINITION 9 (Positive and Negative Views).Letχ be a sequence
of neutral actions. We define the positive and negative viewsfor χ
by induction:

• pǫq+ = ǫ;
• pǫq− = ǫ;
• ps · (ξ, I)q+ = psq− · (+, ξ, I);
• ps · (ξ, I)q− = ptq+ · (−, ξ, I) if s = tu andu is the longest

suffix of s such that no (neutral) action inu createsξ (see
definition 3).

Notice that in the last case of the definition, eithert is empty or
its last neutral action is(σ, J) with ξ = σj for somej ∈ J .

Moreover, one can trivially extend positive views to sequences
ending with thez (even thoughz is not a neutral action).

Given anyχ, both pχq
+ and pχq

− are sequences of actions
with alternating polarity and such that the negative actions are
either the first action of the sequence or are justified by the previous
action in the sequence. That is not enough to ensurepχq

+ and
pχq

− are chronicles.
However, when the path will be the path of an interaction, then

the view will be a chronicle and will actually be a chronicle in the
interacting designs. Moreover, the next definition and proposition
will tell more: from any visit path one can reconstruct the chronicle
of an action.

DEFINITION 10 (Visit path).LetS be a slice. A pathp in S (that
is a sequence of actions inS) is a visit path if it is:

• of alternating polarities;
• made only of proper actions;
• downward closed: given a prefixp′ of p with last actionκ, all

the actions belowκ in S are inp′.

The polarity ofp is the polarity of its last action.
Given a pathp, we writepν for the sequence of neutral actions

canonically associated withp.

Notice that a visit path cannot necessarily be realized by inter-
action.

PROPOSITION1. If S is asliceon an atomic baseβ andp is a visit
path inS of polarity ǫ thenppνq

ǫ is the chronicle ofS leading to
the last action ofp. If this last action isκ we note the chronicle
Ch(κ)

Proof Let us first notice a property of the visit paths: when a visit
pathp in a sliceS ends with a negative action then there is at most
one positive action inS that can extendp in a path which is still a
visit path (if pκκ′ is prefix of a visit path onS with κ a negative
action thenκ′ is immediately aboveκ in S).

We prove the proposition by induction on the length n ofp and
by case on the polarity ofp in S.

• if p is the empty path, then the result is trivial.

• if p is of length 1, then the result is also immediate.

• if p = p′κ with p′ non-empty. All strict prefixesp′′ of p of
polarity ǫ are paths satisfying the conditions of the proposition
and thuspp′′

νq
ǫ is a chronicle inS.

negative path: we haveppνq
− = ptq+ · κ− with p = tu

andu is the longest suffix ofs such that no (neutral) action
in u creates the focus ofκ. Since the base is atomic andS
is a slice, thenptq+ is not the empty sequence, induction
hypothesis ensures it is a chronicle. Letκ0 be the last action
of ptq+. by definition ofptq+, κ0 justifiesκ. Sinceκ is a
negative action inS it is placed right above its justification,
that is the chronicle forκ is Ch(κ0) · κ = ptq+ · κ− =
ppνq

−

positive path: we haveppq
+ = pp′

q
−
·κ+ = s·κ+ with s a

negative chronicle. By induction hypothesis, we know that
pp′

q
− is a chronicle inS. Moreover, sinceκ is positive,

the previous action inp (that is, the last action inp′) is the
negative action which is immediately belowκ in S. Let κ1

be this action. By induction hypothesis,pp′
q
−

= Ch(κ1)

and finallyCh(κ) = Ch(κ1) · κ = pp′
q
−
· κ = ppq

+

�

In the following definition, we introduce the LAM [8], an ab-
stract machine that computes the interaction of a cut-netR. The
interaction is described as tokens travelling on the cut-net.

Version du 17 juillet 2007. 6 2007/7/19

DEFINITION 11 (Loci Abstract Machine and Normalization).Let
R be a cut-net on a baseβ. A token is a pair (s, κ) of a neutral
sequence of actionss and an actionκ. It represents the position of
the token inR: s records the path that the token has followed from
the initial state up toκ.

LetTR be the set of of all positions reached by the tokens during
normalization.

• Initialization. If κ is at the root of the main design inR the
(ǫ, κ) ∈ TR ;

• Transitions. Let (s, κ) ∈ TR . There are three cases:
Visible. If κ is a visible action of polarityǫ, then for each
κ′ such thatpsκq

ǫκ′ ∈ R, (sκ, κ′) ∈ TR (noticepsκq
ǫ is

the chronicle leading toκ)
Up. If κ is a hidden negative action, then letκ′ be the suc-
cessor of the extremal action ofpsκq

−, we have(sκ, κ′) ∈
TR

Jump. If κ is a hidden positive action, then letκ′ be the
same action asκ but for polarity. If psκq

− ∈ R then
(s, κ′) ∈ TR . If psκq

− 6∈ R then normalization fails.

DEFINITION 12 (Normal form of a cut-net).Let R be a cut-net
and letTR be the positions reached by the tokens during normal-
ization. Anormalization path is the sequence of actions which are
visited during the normalization ofR: Path(R) is defined to be
the set{s · κν/(s, κ) ∈ TRsuch that s is maximal}. We also de-
finehide(p) to be the sequence resulting from removing all hidden
actions inp andHide(R) to be the set{hide(p), p ∈ Path(R)}.

Moreover, given a sequence of neutral actionss, we definesǫ to
be:

• ǫ+ = ǫ− = ǫ;
• (s · κ)+ = s− · κ+;
• (s · κ)− = s+ · κ−

Thenormal form of a cut-netR is the design defined to be:
[[R]] = {χ/χis a prefix ofp+ with p ∈ Hide(R)}.

DEFINITION 13 (Dispute).If R is a closed cut-net, we calldis-
pute the normalization path ofR.

If the net is{D, E}, we write[D ⇋ E] for the dispute.

Property:

• Given{D, E} a closed cut-net,[D ⇋ E] is always contained
in a single slice ofD andE;

• If R is a closed cut-net, its base is⊢. The only design on this
base is the daimon:Dai⊢. If normalization of a closed cut-net
terminates, its output can only bez, otherwise normalization
fails.

3.3 Orthogonality and Behaviours

Orthogonality describes those normalizations that were successful.

DEFINITION 14 (Orthogonality).Two designsD, E are orthogo-
nal if they form a cut-net and [[D, E]] = z.

If D andE are orthogonal, we write:D⊥E
In general ifD is a design of baseξǫ1

1 , . . . , ξǫn

n and(Eξi
)1≤i≤n

are designs on atomic baseξ−ǫi

i (polarity inverse from the one in
β), (D, Eξ1 , . . . , Eξn

) forms a closed cut-net.
If [[D, Eξ1 , . . . , Eξn

]] = z we writeD⊥(Eξi
)1≤i≤n

DEFINITION 15 (Orthogonal of a design, of a set of designs).The
orthogonal of a designD with an atomic base is:

D
⊥ = {E/D⊥E}

If E is a set of designs on the same atomic base (anethic), its
orthogonal is:

E
⊥ = {D/∀E ∈ E, D⊥E}

Property: Given two ethicsE andE
′, the following properties

hold:

• if E ⊆ E
′ thenE

′⊥ ⊆ E
⊥;

• E ⊆ E
⊥⊥;

• E
⊥ = E

⊥⊥⊥.

DEFINITION 16 (≺). Given D and D′, we defineD ≺ D′ if
D⊥ ⊆ D′⊥.

The preorder≺ relation is actually a partial order.

DEFINITION 17 (Behaviours).A behaviour G is an ethic which
is equal to its bi-orthogonal:G = G

⊥⊥.

Property: The orthogonal of an ethic is a behaviour.

DEFINITION 18 (Principal behaviour).Let D be a design. The
principal behaviour of D is {D}⊥⊥. It is a smallest behaviour
containingD.

DEFINITION 19 (Incarnation).If E ∈ G, there exists a smallest
designD ⊂ E such thatD ∈ G it is the incarnation of E in G

written |E|G

4. Interactive proof search algorithm.

E =
ξ,{0,1,2}

ξ0 {1}

ξ01,I01

ξ1 {1}

ξ11,I11

ξ2 {1}

ξ21,I21

zIn this section, we present an algorithm for
Interactive Proof Search. We give a machine
based on Faggian’s Loci Abstract Machine,
the Searching LAM (SLAM) which allows
us to interactively build material designs in
a behaviour generated by orthogonality to a
set of tests.

4.1 The Idea of the algorithm

Before going to the formal definitions of IPS
procedure, we sketch how IPS works on a
simple example in order to show the main
structure of the search: consider the Interac-
tive Proof Search driven by one very sim-
ple design we already considered in figure 1.
Let us proceed with an IPS with environment
{E} in order to build a designD.

0. To begin with,D0 is empty and we have visited no path by
normalization:Path0 = ǫ;

1. E is a negative design so that it is a forest: it may begin with
several negative actions on focusξ, one of which shall be
followed during a normalization process. Its initial actions are
in InitE = {(ξ, {0, 1, 2})−}. We choose some actionκ−

1 in
InitE and addκ1ν to the normalization path andκ+

1 as the first
action ofD:

Path1 = 〈(ξ, {0, 1, 2})〉 = 〈κ1ν〉 D1 = κ+
1

2. DesignD in construction could have several negative actions
aboveκ+

1 but at this point, normalization would follow only
one action which corresponds to the positive action afterκ−

1 in

Version du 17 juillet 2007. 7 2007/7/19

E. This action isκ+
2 = (ξ0, {1})+ and thus:

Path2 = 〈κ1ν , κ2ν〉 D2 = κ+
1

κ−
2

3. In E, κ+
2 is followed by the actions in set{(ξ01, I01)

−}, we
choose an action in this set, sayκ−

3 , and we extendPath2 with
κ3ν and extendD with κ+

3 :

Path3 = 〈κ1ν , κ2ν , κ3ν 〉 D3 = κ+
1

κ−
2

κ+
3

4. In E, κ−
3 is followed by the only actionκ+

4 = (ξ1, {1})+ and
thus, Path3 shall be extend withκ4ν . D4 must containκ−

4

in order to interact properly, but this negative action shall be
placed right after the positive action justifying it. The chronicle
leading toκ−

4 in D is given by: pκ1ν , κ2ν , κ3ν , κ4νq
− =

κ+
1 , κ−

4 and thus:

Path4 = 〈κ1ν , κ2ν , κ3ν , κ4ν 〉 D4 = κ+
1

κ−
2

κ+
3

κ−
4

We then skip several steps to go directly to the last two stepsof
the IPS:

7. In E, Succ(κ+
6) = {(ξ21, I21)

−}. We choose one of these ac-
tions, sayκ−

7 , to extend the dispute:Path7 = 〈κ1ν , . . . , κ7ν 〉
and we addκ+

7 where the viewpPath7q
+ of the dispute re-

quires it to be placed:

Path7 = 〈κ1ν , . . . , κ7ν〉 D7 = κ+
1

κ−
2

κ+
3

κ−
4

κ+
5

κ−
6

κ+
7

8. In E, κ−
7 is followed by a unique action,κ+

8 = z. Since the
dispute leads to this action, the normalization ends withE using
az and the final dispute is[D ⇋ E] = 〈κ1ν , . . . , κ7ν , z〉

After the IPS process, we have got a designD on base⊢ ξ such
that [[D, E]] = z with the daimon caused byE.

This example was intended to illustrate the basic mechanisms
that we shall encounter while doing IPS. We now introduce formal
definitions that are needed to give a precise definition of theIPS
process.

4.2 Definitions

DEFINITION 20 (IPS Design).An IPS designis given by a design
D together with a setIP of visit paths onD, theinteraction paths.

If p ∈ IP leads to a leaf ofD, then this leaf is said to beopen.
We will sometimes refer to an open actionκ asκop.

DEFINITION 21 (bipartite Cut-net).A bipartite Cut-net is a pair
of two sets of designsE andF such that:

• E ∪ F is a cut net;

• the cut relation induces abipartitegraph between the elements
of E and the elements ofF. That is, ifD1 and D2 have base
that share a cut, then one shall be inE and the other inF.

Note that since the cut relation is acyclic, one can always present
a cut-net as a bipartite cut-net.

DEFINITION 22 (IPS Cut-net).An IPS Cut-net is a closed bipar-
tite cut-net(EIPS,EENV) whereEIPS is a set of IPS designs and
such that all the visit paths given by the IPS designs can be realized
by the normalization inEIPS ∪ EENV .

The designs inEIPS are the designs to be built interactively
while the elements ofEENV are the designs of the environment
that will guide the interactive search. The constraint on bipartite
graphs ensures that designs inEENV only interact with designs in
EENV .

DEFINITION 23 (initial IPS Cut-net).An IPS Cut-net is said to
be initial when the first componentEIPS is such that a positive
design inEIPS shall be the daimon and a negative design shall be
empty.

4.3 SLAM-1

Let R = (EIPS ,EENV) be an initial IPS Cut net and letEIPS =
{D1, . . . , Dn} andEENV = {E1, . . . , Em}. In the algorithm, the
setsEPIS andEENV are viewed as sets of chronicles.

Initialization.

• if the main design ofR is in EENV with let its first action be
κ+ thenP0 = (ǫ, κ+);

• if the main designD of R is in EIPS , then consider all designs
of EENV that share a cut withD: (Ej)j∈J . Those designs
Ej are negative. letInit = ∪j∈JInit(Ej) with Init(Ej)
the set of initial actions forEj . Chooseκ− ∈ Init and set:
P0 = (ǫ, κ+);

Progression.

1. If (s, σ+) ∈ Pn with psσq
+ ∈ EENV , then addpsσq

− in
EIPS and extend the corresponding interaction path withsσ:
(s, σ−) ∈ Pn+1;

2. If (s, σ−) ∈ Pn with psσq
− ∈ EENV , then let κ+ be

aboveσ− in EENV (such an action exists and is unique), then
(sσ, κ+) ∈ Pn+1;

3. If (s, σ+) ∈ Pn with psσq
+ ∈ EIPS , then(s, σ−) ∈ Pn+1;

4. If (s, σ−) ∈ Pn with psσq
− ∈ EIPS , then letSucc(psσq

+) =
{κ−/psσq

+κ− ∈ EENV }. We choose aκ− ∈ Succ(psσq
+)

and we addpsσ−κ+
q
+

in EIPS and(sσ, κ+) ∈ Pn+1.
If Succ(psσq

+) = ∅ then addpsσ−
q
−

z in EIPS

4.3.1 Properties of the SLAM-1

We state some essential properties of SLAM-1 when executed with
an atomic environment on baseξǫ.

The algorithm is non-deterministic but one can easily builda
deterministic version of the algorithm. We postpone this toa future
paper which will be dedicated to the study of backtrack and the
treatment of control in Ludics Programming.

At any steps of the computation, we can consider the chronicles
which are elements of the object under construction. If there is a
maximal chronicle which is negative, we can extend it with az.
By doing so, we get a designDz

n at step n.

PROPOSITION2. If we execute SLAM-1 with an environment made
of only one atomic designE, then at every stepDz

n ⊥E.

Version du 17 juillet 2007. 8 2007/7/19

PROPOSITION3. AnyDz that is built during the SLAM-1 execu-
tion is material in{E}⊥⊥.

PROPOSITION4. If i ≤ j thenDz
j ≺ Dz

i .

We have actually:{E}⊥⊥ ⊆ {Dz
j }⊥ ⊆ {Dz

i }⊥ for i ≤ j.
We can also phrase is as:{Dz

i }⊥⊥ ⊆ {Dz
j }⊥⊥ ⊆ {E}⊥ for

i ≤ j.

Thus theDz
i are more and more precise.

4.4 SLAM-n

The IPS procedure described by the SLAM-1 only produces slices.
We extend SLAM-1 to n-Environments and n-IPS Cut nets in order
to do interactive proof search with more than on set of designs and
thus to enrich the search behaviour.

4.4.1 Definitions for SLAM-n

DEFINITION 24 (Base orthogonality).Given bases{β1, . . . , βn},
{β′

1, . . . , β
′
m} is said to beorthogonal to{β1, . . . , βn} if there is a

bipartite cut-net made of designs on{β1, . . . , βn} on the one hand
and of designs on{β′

1, . . . , β
′
m} on the other hand.

DEFINITION 25 (n-Environment).Given designs{D1, . . . , Dn}
on bases{β1, . . . , βn}, a n-Environment is a family of sets of
designs(Envi)i∈I = ({Ei

1, . . . , E
i
mi

})i∈I such that for alli ∈ I ,
the bases ofEnvi are orthogonal to the bases of{D1, . . . , Dn}.

DEFINITION 26 (n-IPS Cut net).A n-IPS Cut net is given by:

• a set of designs{D1, . . . , Dn};
• a family(IPi)i∈I of paths such that theDi are IPS-designs;
• a n-environment(Envi)i∈I for {D1, . . . , Dn}

such that for alli ∈ I , {D1, . . . , Dn}, IPi together withEnvi

form an IPS Cut net.
An n-IPS Cut net is initial if for alli ∈ I , {D1, . . . , Dn}, IPi

Envi form an initial IPS Cut net.

4.4.2 SLAM-n

Let R an initial n-IPS Cut net and let(Ri)i∈I the IPS Cut nets
associated (the IPS part is shared).

Initialization. The main designs are either inEi
IPS for all i ∈ I

or in E
i
ENV for all i ∈ I .

• if the main designs ofR are ENV, let(κ+i)i∈I be the first
action of the main designs. then(ǫ, κ+i, i) ∈ P0 for all i ∈ I .

• if the main designs ofR are IPS, then it is the same design for
all the cut-nets. Giveni ∈ I , let Initi = ∪j∈Ji

Init(Ei
j) for

Ei
j interacting withD. Let Init = ∩i∈IIniti.

If Init = ∅, then the IPS is finished andD = z;

If Init 6= ∅, let κ− ∈ Init and∀i ∈ I, (ǫ, κ+, i) ∈ P0

Progression.

1. If (s, σ+, i) ∈ Pn with psσq
+ ∈ E

i
ENV , then

• if psσq
− ∈ EIPS then(s, σ−, i) ∈ Pn+1;

• if psσq
− 6∈ EIPS then addpsσq

− in EIPS and extend the
corresponding interaction path withsσ: (s, σ−) ∈ Pn+1;

2. If (s, σ−, i) ∈ Pn with psσq
− ∈ E

i
ENV , then letκ+ be above

σ− in E
i
ENV , then(sσ, κ+, i) ∈ Pn+1;

3. If (s, σ+, i) ∈ Pn with psσq
+ ∈ EIPS , then

• if psσq
− ∈ E

i
ENV then(s, σ−, i) ∈ Pn+1;

• if psσq
− 6∈ E

i
ENV then FAIL!

a b c

d e

f g

h

arc(a).
arc(b). adj(a, b).
arc(c). adj(b, c).
arc(d). adj(b, d).
arc(e). adj(c, e).
arc(f). adj(c, f).
arc(g). adj(f, g).
arc(h). adj(h, g).

p(X,Y) :- adj(X,Z), adj(Z,Y).

Figure 4. Graph

4. If (s, σ−, i) ∈ Pn with psσq
− ∈ EIPS , then

• if ∃κ+ such thatpsσκq
+ ∈ EIPS then (sσ, κ+, i) ∈

Pn+1.

• if 6 ∃κ+ such thatpsσκq
+ ∈ EIPS then letSucc(psσq

+) =
{κ−/psσq

+κ− ∈ E
i
ENV }. We choose aκ− ∈ Succ(psσq

+)

and we addpsσ−κ+
q
+

in EIPS and(sσ, κ+, i) ∈ Pn+1.
If Succ(psσq

+) = ∅ then addpsσ−
q
−

z in EIPS

4.5 A concrete example: paths in a graph

Let G be the graph represented in figure 4.
We want to implement the search for paths of length 2 in this

graph thanks to interactive proof search. This correspondsto the
predicates shown in figure 4.

For instance,p(c, g) could be represented as the MALL for-
mula:

(adj(c, a) N adj(a, g))

⊕ (adj(c, c) N adj(c, g))

⊕ (adj(c, d) N adj(d, g))

⊕ (adj(c, e) N adj(e, g))

⊕ (adj(c, f) N adj(f, g))

⊕ (adj(c, g) N adj(g, g))

⊕ (adj(c, h) N adj(h, g))

One wants to search for a designD by interacting with a set of
counter-design specifying the graph and the path relationp.

Let supposea, b, . . . , g, h are integer codes representing nodes
of the graph in the obvious way.

The counter-design environnement would be made of two de-
signsE1 andE2:

We are in a case of a 2-environment.
We have 8 choices for the first action in constructing designD,

but this leads then to the following designs (8 possible computa-
tions) depending on the choice of the first action (only one being a
win):

Version du 17 juillet 2007. 9 2007/7/19

E1 =
p,{a}

pa
{1}

p,{b}

pb {1}

. . .
p,{e}

pe
{1}

pe1,∅

z

p,{f}

pf {1}

pf1,∅

z

p,{g}

pg
{1}

p,{h}

ph {1}

E2 =
p,{a}

pa
{2}

p,{b}

pb {2}

. . .
p,{e}

pe
{2}

p,{f}

pf {2}

pf2,∅

z

p,{g}

pg
{2}

p,{h}

ph {2}

ph2,∅

z

Figure 5. DesignsE1 andE2.

Dx = p
{x}

px,{1}

z

px,{2}

z

If x ∈ {a, b, c, d, g}.

De = p
{e}

pe,{1}

pe1 ∅

pe,{2}

z

Df = p
{f}

pf,{1}

pf1 ∅

pf,{2}

pf2 ∅

Dh = p
{h}

ph,{1}

z

ph,{2}

ph2 ∅

Short explanation of the dialog:

• action(+, p, {x}) corresponds to asserting that there is a path
from c to g via x;

• the bunch of actions{(−, p, {x})}x∈{a,b,c,...,g,h} corresponds
to the possible arguments the designsE1 andE2 are ready to
answer;

• action (+, px, {1}) (or (+, px, {2})) corresponds to a chal-
lenge by theEis toD meaning: isx adjacent toc (resp.g);

• action(−, px, {1}) (or (−, px, {2})) corresponds to the possi-
ble attacks by theEis the designD is able to answer;

• action(+, px1, ∅) means: ”yes! x is adjacent toc” (resp. with
index 2 andg). Thez appearing instead of the previous positive
action means that the error in the argument ofD is there.

• action(−, px1, ∅) is the preparation byE1 to get this argument
by D... and the followingz means that in this case, designE1

just gives up (but maybe another design in the environment will
continue asking informations/evidences toD causing the design
to be more precise.

5. Conclusion.
The aim of this paper which is the first of a series in which we
investigate Ludics as a foundation for Logic programming was to
motivate our approach and explain its general picture, to define the
Ludics objects that are necessary and to define an Iinteractive Proof
Search procedure in Ludics.

The point of IPS, or Ludics Programming, is to consider that
the search for a proof in not guided by a sequent as in standard
proof search, but that the search is constrained by a constext, an
environment, which is made of object of the same kind that theone
we are building during the computation.

We introduced IPS thanks to an abstract machine, the SLAM,
which is adapted from Faggian’s Loci Abstract Machine [8]. We
illustrated our approach on three kinds of examples: informal IPS
for MALL z derivations in Section 2, SLAM execution on a simple
design in the introduction of Section 4 and finally a more concrete
example related with the Prolog program for finding paths in a
graph.

We presented the first elemnts for analyzing properties of the
SLAM but most has still to be done, in particulier with respect
to backtracking and enlarging the environment based on previous
computations. This is left for future works.

Related works In [8], Faggian introduced the Loci Abstract Ma-
chine and studied some properties which are related with some as-
pects of the LAM. In particular, from a counter-design and anin-
teraction path, she can reconstruct a design realizing thispath.

Pym and Ritter [18] give a semantics for proof search which is
related with game semantics. We shall investigate the connections
with our work.

Future Works Most is still to be done in order to have a compu-
tation model based on interactive proof search:

• first, we have to introduce the backtracking and the logic within
our mechanism for IPS [20];

• then, we shall try to extend Ludics in two directions: first-order
and recursive definitions. Ludics is a teory without first order

Version du 17 juillet 2007. 10 2007/7/19

and that may be painful when one wants to program using
Ludics, however Fleury and Quatrini [10] studied first-order
in Lducis. On the other hand, Ludics is based on MALL and
there is no exponentials in Ludics. To enlarge the setting one
may be interesting in considering at least recursive definitions
or fixpoints. We are currently working on such an extension of
Ludics with definitions or fixpoints [21].

Acknowledgments
The author thanks Dale Miller for his advice and directions,Jean-
Yves Girard for his comments on this project as well as Claudia
Faggian for helpful discussions regarding the material in this paper.

References
[1] Samson Abramsky and Radha Jagadeesan. Games and full

completeness for multiplicative linear logic.J.of Symbolic Logic,
59(2):543–574, 1994.

[2] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. J. of Logic and Computation, 2(3):297–347, 1992.

[3] G. Berry and Pierre-Louis Curien. Sequential algorithms on concrete
data structures.Theoretical Computer Science, 20:265–321, 1982.

[4] Pierre-Louis Curien. Abstract böhm trees.Mathematical Structures
in Computer Science, 8(6):559–591, 1998.

[5] Pierre-Louis Curien. Abstract machines, control, and sequents. In
Proceedings of APPSEM Summer School, pages 123–136. Springer,
September 2000.

[6] Pierre-Louis Curien. Symmetry and interactivity in programming.
Bulletin of Symbolic Logic, 9(2):169–180, 2003.

[7] Pierre-Louis Curien and Hugo Herbelin. The duality of computation.
In ICFP, pages 233–243, 2000.

[8] Claudia Faggian. Travelling on designs. InProceedings of CSL’02,
pages 427–441, 2002.

[9] Claudia Faggian and Martin Hyland. Designs, disputes and strategies.
In CSL, pages 442–457, 2002.

[10] Marie-Renee Fleury and Myriam Quatrini. First order inludics.
Mathematical Structures in Computer Science, 14(2):189–213, 2004.

[11] Jean-Yves Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[12] Jean-Yves Girard. Locus solum.Mathematical Structures in
Computer Science, 11(3):301–506, June 2001.

[13] Timothy Griffin. A formulae-as-types notion of control. In POPL’90,
pages 47–58, 1990.

[14] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for pcf: I.
models, observables and the full abstraction problem, ii. dialogue
games and innocent strategies, iii. a fully abstract and universal game
model. Information and Computation, 163:285–408, 2000.

[15] R. Kowalski. Algorithm = logic + control.Communications of the
Association for Computing Machinery, 22:424–436, 1979.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming.Annals of
Pure and Applied Logic, 51:125–157, 1991.

[17] Michel Parigot.λµ-calculus: an algorithmic interpretation of classical
natural deduction. InProceedings of International Conference
on Logic Programming and Automated Deduction, volume 624 of
Lecture Notes in Computer Science, pages 190–201. Springer, 1992.

[18] David J. Pym and Eike Ritter. A games semantics for reductive logic
and proof-search. InGALOP, pages 107–123, 2005.

[19] Alexis Saurin. Programmation logique, ludique et contrôle: vers une
programmation ludique. Unpublished draft, june 2004.

[20] Alexis Saurin. Ludics programming II: backtrack and control.
Unpublished draft, july 2007.

[21] Alexis Saurin. Ludics programming III: definition and fixpoints in
ludics. Unpublished draft, july 2007.

Version du 17 juillet 2007. 11 2007/7/19

