DRAFT — Do Not Distribute

Ludics Programming |

Interactive Proof Search

Alexis Saurin

INRIA Futurs

Ecole Polytechnique

saurin@lix.polytechnique.fr

Abstract

Proof theory and Computation are research areas which leye v
strong relationships: new concepts in logic and proof thedten
apply to the theory of programming languages. The use offptoo
model computation led to the modelling of two main programni
paradigms which are functional programming and logic paogr
ming. While functional programming is based on proof noirzal
tion, logic programming is based on proof search. This aggro

of cut-elimination procedures in proof systems such asrabtie-
duction or sequent calculus and the development of typeryheo
and its relationships with functional programming langemdogic
programming has been built on the paradigm of proof seararevh
the computation of a program is viewed as the search for & proo
some deductive system.

Computation as proof search. The proof search paradigm was at
first founded on the resolution method: computation cowedpd

has shown to be very successful by being able to capture manytg the search for a resolution for first-order Horn clauseg. tBis

programming primitives logically. Nevertheless, impottparts of
real logic programming languages are still hardly undedtoom
the logical point of view and it has been found very difficoligive
a logical semantics to control primitives.

Girard introduced Ludics [12] as a new theory to study intera
tion. In Ludics, everything is built on interaction or in ariéractive
way.

In this paper, which is the first of a series investigating & ne
computational model for logic programming based on Ludics,
namely computation as interactive proof search, we initedhe
interactive proof search procedure and study some of ifsgties.

Keywords Ludics, Game Semantics, Logic Programming, Proof
Search, Interaction, Proof Normalization.

1. Introduction.

Proof Theory and Computation. Recent developments in proof
theory have led to major advances in the theory of programmin
languages. The modelling of computation using proofs irtgzhc
deeply the foundational studies of programming languagesedl
as many of their practical issues. Declarative programnfémg
guages have been related mainly in two ways to the mathemati-
cal theory of proofs: on the one hand, the "computation asfpro
normalization” paradigm provided a foundation to functibpro-
gramming languages through the use of the well-known Curry-
Howard isomorphism relating simply typedcalculus with intu-
itionistic natural deduction proofs and reductions of-germ with
cut-elimination in NJ. On the other hand the "computatiopef
search” paradigm stands as a foundation for logic programgmi
While functional programming found strong theoretical feu
dations and very powerful formal analysis tools thanks &ostudy

[Copyright notice will appear here once 'preprint’ opticrémoved.]

Version du 17 juillet 2007.

approach was uneasy to extend to larger fragments or riogsl
Later, the use of sequent calculus allowed to overcome ithis |
the introduction of Uniform Proofs and Abstract Logic Pragr
ming Languages [16] and the discovery of the FocalizatiapPr
erty [2] in Linear Logic [11] allowed to extend the proof selar
paradigm to larger fragments (Hereditary Harrop formutasiri-
stance) and to richer logics (higher-order logics, linemid, ...)
and to benefit from the geometrical properties of sequeutiz.

In the uniform proofs model for instance, computation wélod-
elled as a search for a proof of a sequerit G whereP represents
the logic program and- the computation goal. The computation
then proceeds as a search for a proof directed by the@ptie
logic programP being used through backchaining when the goal
is an atomic formula.

In addition to the interest from the fundamental point ofwie
this approach allowed to enrich logic programming langsagi¢h
numerous additional programming primitives while tregtthem
logically (higher-order programming, modules, resour@nage-
ment, concurrent primitives...). Nevertheless some ¢isdgmon-
structions of logic programming languages could not betdeigh
logically, in particular when we are concerned with the coint
of computation (backtracking, intelligent backtrackirgt predi-
cate). As a consequence, some parts of the languages doveot ha
a very well established semantics and they cannot be amhlgze
a satisfactory way using the rich logical methods that pesafrch
paradigm provides.

Recalling Kowalski’s motto "Algorithm = Logic + Control” [4],
one can notice that with the development of real implemantat
of logic programming languages, the correspondence tuouéd
to become much closer to: "Algorithm = Logic + Control + 1/O +
Data Abstraction + Modules + ...” since those useful progremng
primitives are needed. The extension of the proof searcidigmn
to broader settings allowed to capture some of these comgmne
in the logical component (modules, data abstraction, ut)the
control part is still there.

One of the long-standing research directions on proof kdarc
to treat the extra-logical primitive in a logical way in orde get
closer to the "ideal” correspondence: "Algorithm = LogitVe can
draw a useful and enlightening comparison with functiona- p
gramming: the extension of the Curry-Howard corresponelénc
classical logic allowed to capture logically several cohtperators

2007/7/19

that were used in practice (likea11/cc) thanks to typing rules for general picture of this paradigm of "computation as intséoat (or
those operators [13] or thanks to extensions-@alculus such as more precisely "computation as interactive proof searahit)e an
Ap-calculus [17]. informal account of Ludics together with intuitions and iations

and illustrate it with examples from MALL sequent calculums i
Section 2. To set the stage to the definitions of InteractiaoP
Search in section 4, we then introduce the reader to the basic
definition of Ludics in Section 3.

The heart of the paper is Section 4 where we present an algo-
rithm for IPS through the definition of an abstract machire t
SLAM, that is obtained by modifying Faggian’s Loci Abstrada-
chine [8]. After running the interactive search processmexam-
ple, we define the SLAM firstly in a restricted case and latehén
general setting and we establish several properties ofRBeré-
lated with correctness of this algorithm and then we illatgtrour
method on a toy program for paths in a graph. We finally coreclud
in Section 5 by outlining future works and relating our réswulith
other works.

Why is it so difficult to have a satisfactory logical treatmenf
control? There is certainly a question of point of view which
stands there. For instance, we can notice that there is aattbm
between sequent calculus proof theory and logic progragmin
while in sequent calculus, the objects we manipulate arefpro
(and the theorems which are proved deal with proofs), thegqa®
of searching for and constructing proofs does not deal witiofs
until the computation is completed. Instead, the objectprobf
search are partial proofs (or open proofs) which may end wp no
leading to a proof at all but to a failure. Such failed proofe a
not part of the proof theory of sequent calculus. Thus, thy ve
dynamics of computation stands outside the theory we wotlk. wi
Moreover, while one often considers that the state of the-com
putation is represented by a sequent the essential eleorgmiobf
search does not lie in the sequents themselves but in thérptes
which are applied to sequents: the sequent should rathertside 2. Logic programming, interactivity and Ludics
ered as a constraint on the action that can be performed goge® The aim of this section is to draw the general picture forrtéve
towards completing the search. Proof Search and to give an informal description of Ludics.

Ludics and Interaction. We noticed earlier the strong relation- 5 4 Computation as Interaction
ship between logic and computation. We can thus expect gvat n))) o
developments in proof theory will provide new tools, new met ~ We described Computation as Proof Search in the previoti®sec
ods and maybe new paradigms on the computer science side. Suc @S the search for a proof @ - G in sequent calculus. The proof
impacts can be expected in particular when these new reshéts IS required to satisfy certain conditions. _ _
light on concepts that had not been well understood befoee. W While the whole dynamics of proof search is concerned with
think that the recent work by Girard on Ludics [12] should bec ~ Partial proofs, sequent calculus proof theory is a theomoafiplete

sidered in this way. proofs. Thus it is very difficult to speak about failgres, kiaack or
Ludics is a logical theory that attempts to overcome the dis- changes in the search strategy (such as what is done byuthe
tinction between syntax and semantics by considering thetac- predicate) in this setting. , ,
tion comes first and by building syntax and semantics aftetsya We propose to consider another approach which considen$ pro
thanks to interaction. Ludics objects, designs, can be agénter- search interactively.
mediate objects "between” syntax and semantics since e gearching for proofs interactively The sequen® + G is the
abstraction of linear sequent calculus proofs and a cangegsion state of the computation but it is also a way to constrain titeré
of strategies in a game semantics model. Ludics is foundedemy of the computation. In the same way, restrictions on theckgi
concepts of proof theory, especially of linear logic seduzcu- rules that are allowed (like in linear logic) or proof stgits also
lus [11] and especially the fundamental result of Focaliraf2] impose constraints on proof search. But all this is impgitl not
that allows for synthetic connectives to be defined. Ludas lbts done explicitly. In particular, it is fairly difficult to argze these
of connections with game semantics [14, 1] as well sincerttez- constraints in proof theory itself. In some sense, the cdatjmn

action process in Ludics can be seen as a play [9]. Many c@icep enyironment cannot really be dealt with explicitly.
have been inspired by proof search. We shall introduce the ma Thjs is sad because some important programming primitives
definitions of Ludics in section 3 after we provided some minre precisely deal with these constraints, adding some of tseemgth-

tuitions on Ludics concepts and technics. ening others, etc...

Computation as Interaction. In recent years, interaction has be- The interactive approach to proof search we are investigati
come a crucial concept of the theory of computation. Theihic- precisely makes explicit the constraints on proof seartstead of
tion of linear logic [11] surely is partly responsible foigtbut game ~ building a proof depending on a given sequent, we shall densi
theoretical interpretations of logic and computation hasen stud- building a proof that shall pass some tests, that shall besgapto
ied prior to linear logic. One can for instance refer to Cuisavork attempts to refute it. The tests will have the form of (paragis

on Concrete Data Structure, abstract and environment meghi ~ and thus will be built in the same system as the one in which we
and more recently Abstract Bohm Trees [3, 5, 6, 4]. Ludias ce are searching for proofs.

tainly goes further in this direction. We propose a computational setting which would roughlyesorr
We think that Ludics provides lots of tools that should be-use spond to the following (the terms will be made clear later. on)

ful for logic programming especially in order to develop adst o

of logic programming that would benefit from the concepts and ® We are willing to search for a prod? of - A.

tools from interactive theories, such as an epriCit treathof the e Formula A is actua”y given as a set of tests: the tests that
cct))mputa[ttl]onal environment which is uniform to the compotzl| shall be successfully passed by the proof we are constgictin
objects [7]. Eiy...,En.

This paper is the first of a series of works [19, 20, 21] in which
we investigate the use of Ludics as a foundation for proofcea
and logic programming by means of a model of interactive foroo
search. The present paper is concerned with the very milestb
this project, that is defining what would be an interactiveqgbr o After some interaction, we may have an object that cannot
search procedure in Ludics. In order to do so, we first draw the be extended any more. Either the construction is terminated

e The proof construction shall proceed by consensus with the
tests:D can be extended with rulg only if the extended object
interacts well with the tests.

Version du 17 juillet 2007. 2 2007/7/19

becauseD cannot pass every test or because all the test are tive connectives, &, L, T). When searching for a proof, one al-
satisfied and no more constraint appliesaso that there is ternates between two phases, a synchronous phase and an asyn
no need to extend it further. In the first case, we have a filur chronous phase. During the asynchronous phase, we aréncerta
while in the later case we have a win. not to lose provability, while during the synchronous phasecan

make the wrong choice and end up not finding a proof even if the
sequent we started with was provable. Thus there is clearbca

tive phase (positive, synchronous) and a passive phasativeg
asynchronous) and the two phases alternate. This is thestiést
towards a game theoretic interpretation of sequent proofs:

The interesting point with this interactive approach lieghe
fact that the setting if symmetrical is tested by€; but it is
also a test for thé€;s. In particular, even failures are interesting
and useful objects.

if a failure D has been reached, we may be willing to try . . ,
another search. Indeed, maybe at some point we chose a wrong ® the negative phase is the opponent’s turns to play (and the
way to extendD and that caused the failure. There is a standard ~ @Synchronous rule gather all information that is neededaotr

way to backtrack, that is erase some parD3f and try some to this move)

other construction. But since we are in an interactive rsgiti o the positive phase is the player’s turn: after a move of the
there is another option: we can try to (®& in order to provide opponent, the player decides what she will play followingavh
new tests€”” that will constrain the search to look for a proof her strategy (that is her proof rules) tells her to play.

; i P

that shall be different from the failuB™. An interesting invariant with proofs in the hypersequeittéa
the use of previous computations in order to enrich the com- calculus for MALL is that there is at most one negative foraul
putational behaviour has actually no reason to be redtricte in a sequent.

failures...

. o .] Proof Normalization. The cut elimination process reflects this
Basically, this is the research program we are willing teesw game interpretation: a conversion step corresponds tetheton,

tigate. The present paper will only be concerned with deginihe by the positive rule, of a continuation for the normalizat{or the
interactive search. The treatment of past computatioridwipost- play): think of the selection of a.-premise by ap-rule.
pone to a future paper. But there is still a problem for an interactive interpretatithere

L . . are not enough proofs! If the system is consistent, we cagvet
2.2 Motivations and intuitions for Ludics find both a proof forA and a proof forA*. Notice that if there
Ludics has recently been introduced by Girard [12] as arracte cannot be proofs for both a formula and its negation, it i$gutly

tive theory that aims at overcoming the traditional didtiim be- legal to attempt to prove both and A*. The only thing is that at
tween syntax and semantics by saying that neither syntagsator most one of the two formulas can be proved (and maybe nane...)
mantics should come first as a foundational stone for logieri However, if the proof search fails, the partial object that have
action should come first and logic shall be reconstructenh fitus obtained can be used in an interaction with proof attempth®f
interactive approach. negation... except for the point where the failure was entsred

The whole theory of Ludics is built on the notion of interacti (here normalization is undefined... for the moment).
of designs which are intermediate objects between syntd>san A failed (or interrupted) attempt to provéis a proof tree where
mantics (they can be viewed as an abstraction of MALL sequent some branches are still open. Let us add a new rule to mark the
proofs or as a concrete presentation of game semanticsgigs). fact that the search for a proof has been stopped, that weugave

Thus in Ludics, things are not built from syntactic objedis t
which is assigned a semantic interpretation, they do notecom
from a semantic space for which we need an adequate language
There are objects interacting with each other and their s
are defined interactively. Even Ludics’ behaviours which tire
analogous of types or formulas will be defined interactively -

Of course, Ludics in not built by forgetting every thing that ~any sequents, even for the empty ore
exists. On the contrary one can argue that Ludics comes from a
careful analysis of logic and from a clever synthesis in pitde
obtain the right notion of interaction. In particular, Lagihas been
inspired by many fundamental properties from proof thetat t
we are going to present in order to provide the reader withitioh
before exposing the formal definitions of Ludics.

FT %. What is this sequent T" where we stopped? It would be
unfair to stop if- T" contains a negative formula since decomposing
this formula costs nothing (remember: it is asynchronolifus
we restrict the application of¢ to sequents that are made only of
positive formulas (positive sequents). We thus have pacdpifor

Winning and loosing. The normalization between two para-
proofs is clearly a process through which they test each.cithe
one that is caught usinfy is considered as the loser of the play and
since he lost, the play ends there. Notice that this normatidia
process is an exploration of the two paraproofs: the cutsvisime
parts of the paraproofs. In the case the normalization eritthoIv
We now introduce informally and discuss some key notions of the paraproofs are said to be orthogonal.
Ludics in a way that we hope will emphasize connections tdwar

logic programming and proof search. Locations. Whereas in functional programming it is important to

know if the types of a function and its argument are identital
Focalization. Andréoli showed a fundamental property of linear is not relevant for proof search to know the complete stmectf

logic proofs which has great impact on proof search. Foatitin the proof from the beginning. We only need to know enough to

is also very important because it is the root of a polarizgut@gch choose a rule to apply. This idea is reflected in Ludics by ge u

to logic and polarization is the first step towards a gamerttan of addresses or locations (or loci). A formula is only matéped

interpretation of proofs. Indeed polarization tells youosé turn it through its addres§. When we apply a rule og we come to

is to play. know whereits subformulas are (nathat they are...)£i, &5, . ..
Probably the most important outcome of Focalization is the the subaddresses &f

possibility of defining synthetic connectives and synthetiles in Let us say a word about proof normalization: what happens if

MALL and a hypersequentialized calculus (that is, a calsuls- we cutA & B with A* @ C+? Clearly, things may go wrong if

ing the synthetic rules). MALL connectives can be decomgose the® R rule is applied tod- @ C~*. But on the other hand it L

in two sets: the positive connectives (@, 1,0) and the nega- is applied, the normalization goes perfectly well... thetyem we

Version du 17 juillet 2007. 3 2007/7/19

noticed in case of thes R should be compared to the case of a
player that did not anticipated the fact that its opponemntdplay
some move and thus has nothing ready to play in responseptexce
if she can give up with &!).

Behaviours. A provable formula can be considered as the set
of its proofs... since any formula is paraprovable in Lugdits

is perfect! Actually things are even more drastic in Ludits
formula is defined interactively depending on the way thestgs.
They will be defined by a standard technique of biorthogyali
closure.

Incarnation. Given a paraprodfl in A and a paraprodfl’ in A=,

a part ofII can be explored byl’ thanks to normalization. Under
very special circumstances, it may happen ia entirely visited
by IT'. The usual situation is actually that there are partH ¢fiat
cannot be explored, whatevel' € A+ you choose. However, a
class of para-proofs which is highly interesting from ouemactive
perspective is the class of paraproofs that can be comphatited
during normalization against elements4f . They are said to be
incarnated or material. They are the most interesting eisrie A
since they can be completely characterized interactively.

2.3 Searching for proof interactively? Interactive proof
search in MALL.

In this section, we give some concrete logical example whteze
construction of a proof of a MALL sequent is led by a contextlma
of "counter-proofs” (they are proofs with weakening andnaain —
).

2.3.1 Adding more proofs

If we want to search for proofs by interaction, we need to have

object to interact with, but we never have a proof foend A+ at
the same time, that means we need to extend a little bit the.log
and introduce the daimon for instance as described in theque
section.

2.3.2 Anexample of IPS in MALLX
Consider the two following paraproofs of sequagt @ (1+ @

13)*
— K
F
12‘7F1F _
F1, P Fifoas @F’L
Di= 13 ® (1 @ 13)* F
iis1lor?2.

We can look for a paraprodP of sequent- 13 & (11 &
13)" such that the paraprodi; (i € {1,2}) built by relatingD

The branch ending at; has been built by interacting witB,

while the branch ending &t has been built by interacting with.

When normalizingD with D;, ther used byD; that means that
the paraproo was able to find an error i®;, without lettingD;
discover its potential logical leakage.

One could have added to tfi& s a third paraproof:

— ——— X
RO 11 @ 13

Ds=15 @ (1F @ 13)" F
And in this case, one could have interactively biiilt

—
'_
- o

D =F17 @ (1 ® 13)*

During the normalization betwee® and D3, Ds launches
the »X, but during the normalization betwedn and anyD; the
"I would have been caused . D loses the dispute witD;,

1 € {1, 2}, but wins the dispute wit®Ds.

Finally, one could even have imagined adding the followiag (

bit peculiar) paraproof:

F®,

F 1o "X
Dy=17 @ (1f ® 13)* F
If D4 is in the normalization environment théh is forced to

uset-@; as afirst rule.
On the contrary, it would have been possible to add:

Bk |1

————
F1f @ 15
Ds =17 @ (1 © 13)* F

and the result would have been to forbid the search that teads
a failure by forbidding the first rule ®;.

F 2

2.3.3 Beyond MALL*

This brief study shows that there are lots of possibilitegaide
(or constraint) a proof search interactively. Howevess inéeded to
relax some of the logical principles that usually ensurestfety of
logic and are precisely the reasons why it is desirable tdagie.
For instance, it is needed to add the daimBrwhich allows to
prove any sequent, but it is also important to admit "pdrtagical
rules (seeD, andD,) and other principles of (linear) logic shall be
reconsidered (the weakening for instance).

This is one of the reasons why we go to Ludics which is a
clean theory with a good theory of interaction. Moreoveg, ligvel
of abstraction of Ludics is also interesting to develop &irsl of

to any of theD;s using a cut can normalize, that is reduce the cut model, even though we may go back to something more concrete

up to finding simply the empty sequent proved thanks tolhele
which is the only rule that can prove any positive sequent.

D; D
11 o1) F Fi1g @ (1f @ 13)*
F
Performing the cut reduction will impose constraints@rand
we can use this as a guide to search for a paraproof ag @
(11 @ 13)*"
Finally, we end up with:

cut

Moy 22y
1, -1,
1 & 14 +
1 © 13 F®o

D=F13 & (11 & 13)*

Version du 17 juillet 2007.

in a later phase of this program.

3. Introduction to Ludics.

In this section, we provide the definitions for most Ludic$ects
that we need for interactive proof search. Most of the dédingt in
this section are adapted from Girard [12] or from Faggian [8]

3.1 Actions and Designs

DerFINITION 1 (Bias, Locus and RamificationjA bias is a natu-
ral number (writter:, j, k, ...). Alocus(or address) is a finite se-
quence of biases (writtefy o, 7, . . .). o is asublocusof 7 if 7 is

a prefix ofo (written+ C o). o andr are disjoint if none of them
is sublocus of the other. The empty sequence is a locus anit-is w
ten () or e. Concatenation is writtel§ x o or &o when it is not
ambiguous and « (i) is written¢: and is said to be thenmedi-
ate sublocusof £. A ramification is a finite set of biases (written

4 2007/7/19

1,J,K,...). Given a ramificatiory and a locusg, we write£ for
the set of locki for all 7 € I.

DEFINITION 2 (Base and Prebaseé).prebaseis a set of polarized
loci (€1 or ¢7). Abaseis a finite prebase of pairwise disjoint loci
with at most one negative locus. A base is said tonbgative

if it contains exactly one negative locus, itpssitive otherwise.
We write§ + A for negative bases; A for positive bases and
sometimest(!, ..., & for arbitrary bases. When a base is a
singleton it is said to beatomic and is writtené or - £. We
simply write - for theempty base

DerFINITION 3 (Proper Action).A proper action is a pair of a lo-
cus and a ramification together with a polarity: positive pes ac-
tions are written(+, &, I) or (£, I)™ while negative proper actions
are written (—,&,I) or (§,I)”. We say thate, &, I') hasfocus &
and that it creates sublogii for i € I.

We shall sometimes consider pairs of a locus and a ramifigatio
without a polarity, say(¢,), that we will refer to asneutral
actions Given x a proper action, we writes,, for the neutral
action associated te. andx ™ andx ™ for the positive and negative
actions with same focus and ramificationras

DEeFINITION 4 (Action). Anaction s either a proper action or the
daimon written &, It has positive polarity; it has no focus and
creates no sublocus.

We say that actiow justifies action s’ if:

¢ they have opposite polarity;
e the focus of’ is one of the loci created hy.

Notice that only proper actions can justify an action andtttie
daimon cannot be justified (it has no focus).

Designs (the ludics counter-part of proofs or strategiel) w
be defined as trees of actions satisfying certain properiiées
introduce these conditions by defining chronicles first.

DEFINITION 5 (Chronicle).Achronicle y onabased = &£7,..., &k
is a sequence of actior{go, . . ., x») such that:

¢ Polarity. The polarities of the actions alternate and the first
action has the same polarity as the base;

e Daimon. For i < n, K, IS a proper action;

e Justification. For 0 < ¢ < n then either (i), is X« or (ii)
itis (e,&,I) and&® € g or (iii) it is justified by an actions;
occurring earlier inx (5 < 7). Moreover, ifs;4+1 IS hegative, it
shall be justified bys;;

¢ Linearity. Each focus only appears oncen

Thepolarity of a chronicle is the polarity of its last action,y,.

All actions except the daimon and the actions using a focus of

the base shall be justified. The daimon can only appear asishe |
action iny. The first action of the chronicle is eith&s (in that case

n = 0) or its focus is an element of the base. The loci cannot be
reused in the chronicle.

When writing chronicles (and later designs and slices) vepad
the Faggian’s drawing convention: the positive actionscinaed
with the ramification written outside the circle while thegagéive
actions are not circled. We give in figure 1 three examples of
chronicles,x1, x2, xs, which are respectively on bases, £ + o
and¢ F.

DEFINITION 6 (Design).A designon a base3 = £71,...,&" is
a (possibly infinite) forest of actions such that:

e Chronicles. The branches of the design are chronicleshn
¢ Positivity. The leaves are positive actions;

Version du 17 juillet 2007.

1 1
|
€1{1} @ @ (1}

X1 = @{0’1,2} X2 = &{J,z} X3 = &{0,'1,2}

Figure 1. Examples of chronicles

¢ Positive branching.The tree only branches on positive actions:
two incomparable chronicles first differ on negative actipn

e Additive sharing. If ko and x; are two different actions with
the same focus then the chronicles leadingstoand ~; first
differ on negative actions;, and ; that have the same focus:
Ko = (_757 I) andﬁ1 = (_757 J)'

o Totality. If the base is positive, then the design is non-empty.

A design is said to be positive or negative according to hiseba

In figure 1,x1 andys are sequences of actions that satisfy the
conditions for designs: they are chronicles which are absighs
(actually, any non-empty positive chronicle is a designi. tbe
contrary,yz is not a design.

An essential design is the daimon, which is the positivegiesi
reduced to an actiof. There is a daimon for any positive base.
Other designs are shown in figure 2 and 3.

It can sometimes be useful to see a design as a set of ch®nicle
with adequate conditions (prefixed-closed, maximal clulesiare
positive, etc...).

We now introduce slices which are a particularly importdass
of designs:

DEFINITION 7 (Slice).A sliceis a design where the focus of any
action is distinct of all other focus, that is in a slice evdogus
appears at most once.

A slice of a desigm is any slice included i® when considered
as sets of chronicles.

In particular, a negative slice is a tree.

A design can be seen as the superimposition of slices in the
same way as done with additive proof nets. We give in figure 2
two examples of slices dn ¢ and an example of a design bng.
Notice that® is the superimposition ab; andS..

3.2 Normalization and Interaction

Interaction of designs is built with cut-nets normalizatiowhich
reflects linear logic cut-normalization. In Ludics, thesenio cut-
rule in designs: a cut is the coincidence of a locus with ojpos
polarity in the base of two designs.

DEFINITION 8 (Cut-Net).Acut-netR = (D;);cr is a non-empty
finite set of designs on basgs;):<; such that:

1. the loci in the bases are either equal or disjoint;

2. alocus¢ appears in at most two bases (in that case, it occurs
once with positive polarity, once with negative polaritydanis
called acut in fR);

5 2007/7/19

O @

| |
£0,{1} §1,{2} £0,{2} £2,{2}

\@fo,m o

€o, {1} &{2} y& {2}
@ {0,1,2}

Figure 2. Two slices and a design

O @

G2 =

Dairy : @ Daig e o (T€Prw)
\u?gﬂkg iel
Talgprgr oo (I € Pr(w))

Figure 3. Some important designs

3. the cuts define a binary relation over the designs whicli bea
connected and acyclic.

Thebaseof R is the set of polarized loci of thg5;):cr which are
not cuts. A net is said to idosedwhen its base is empty. An action
in R is visible if it is ¥ or if its focus is sublocus of a locus of the
base of the net, it is hidden otherwise. In any cut-net, tie®
main designwhich is the only positive design of the net if such a
design exists or the only negative design of baseA such thatg

is not a cut.

Whereas the linearity condition ensures that in a slicehal t
actions are distinct, a desigh may contain several timesahge
action. Thus, describing an action by providing only itsUs@and
ramification is ambiguous: we need an additional infornmatio
the position of the action in the design. The chronicle leading to
the action we consider is surely a good description sinchdivs
the path in the design that shall be followed to reach theoacti
The following definition for views will provide a way to find ¢h
chronicle for an action provided we know a certain path in the
designs of a cut-net leading to this action.

DEFINITION 9 (Positive and Negative Views).ety be a sequence
of neutral actions. We define the positive and negative viewg
by induction:

° re—\+ =

o "¢l —¢;

* s (§7I)j+ ="s'™ . (+7€7[)v

o Ts. (&) ="t . (= &, 1) if s = tu andwu is the longest

suffix of s such that no (neutral) action im creates¢ (see
definition 3).

Notice that in the last case of the definition, eithé empty or
its last neutral action i§o, J) with £ = oj for somej € J.

Version du 17 juillet 2007.

Moreover, one can trivially extend positive views to sequen
ending with theX (even thoughi« is not a neutral action).

Given anyy, both ™y and ™y~ are sequences of actions
with alternating polarity and such that the negative actiane
either the first action of the sequence or are justified by teeipus
action in the sequence. That is not enough to enSwyre™ and
Tx ™ are chronicles.

However, when the path will be the path of an interactionnthe
the view will be a chronicle and will actually be a chronictethe
interacting designs. Moreover, the next definition and psitpn
will tell more: from any visit path one can reconstruct theasticle
of an action.

DEFINITION 10 (Visit path).LetS be a slice. A pathy in S (that
is a sequence of actions &) is a visit path if it is:

¢ of alternating polarities;

e made only of proper actions;

e downward closed: given a prefiX of p with last actions, all
the actions below: in G are inp’.

The polarity ofp is the polarity of its last action.
Given a pathp, we writep,, for the sequence of neutral actions
canonically associated with.

Notice that a visit path cannot necessarily be realized tar-in
action.

PrRoOPOSITIONL. If & is asliceon an atomic basg andp is a visit
path in& of polarity e then™p, 7 is the chronicle of5 leading to
the last action ofp. If this last action isx we note the chronicle
Ch(k)

Proof Let us first notice a property of the visit paths: when a visit
pathp in a slice& ends with a negative action then there is at most
one positive action i® that can exteng in a path which is still a
visit path (if prx’ is prefix of a visit path or& with x a negative
action thenx' is immediately above in G).

We prove the proposition by induction on the length p@ind
by case on the polarity ofin &.

e if pis the empty path, then the result is trivial.
e if pis of length 1, then the result is also immediate.

e if p = p'k with p’ non-empty. All strict prefixep” of p of
polarity € are paths satisfying the conditions of the proposition
and thug p,, 7 is a chronicle inS.

» negative path: we havep, 7~ = "t . k= with p = tu
andw is the longest suffix of such that no (neutral) action
in u creates the focus of. Since the base is atomic afl
is a slice, therft7™ is not the empty sequence, induction
hypothesis ensures it is a chronicle. kgtbe the last action
of "¢+, by definition of "t 7", ko justifies. Sincex is a
negative action ii® it is placed right above its justification,
that is the chronicle fok is Ch(ko) - x = "t7T - k™ =
I’pyjf
positive path: we havep™™ = "p' 77 kT = 5.k withs a
negative chronicle. By induction hypothesis, we know that
Tp'7” is a chronicle inG. Moreover, sinces is positive,
the previous action ip (that is, the last action ip’) is the
negative action which is immediately belowin &. Let
be this action. By induction hypothesigy’"™ = Ch(k1)
and finallyCh(x) = Ch(k1) -k ="p 7 -k ="pt

O
In the following definition, we introduce the LAM [8], an ab-
stract machine that computes the interaction of a cutheThe
interaction is described as tokens travelling on the ctit-ne

6 2007/7/19

DEeFINITION 11 (Loci Abstract Machine and Normalizatiori)et
R be a cut-net on a bas8. A token is a pair (s, x) of a neutral
sequence of actionsand an actiork. It represents the position of

the token irfR: s records the path that the token has followed from

the initial state up tos.

LetTw be the set of of all positions reached by the tokens during

normalization.

e Initialization. If is at the root of the main design B the
(e,k) € Tw;
e Transitions. Let (s, k) € Tw. There are three cases:
= Visible. If « is a visible action of polarity, then for each
k' suchthat sk ™k’ € R, (sk, k') € T (notice™ sk is
the chronicle leading ta)
= Up. If k is a hidden negative action, then let be the suc-
cessor of the extremal action'0fx™~, we have(sk, k') €
Tw
= Jump. If x is a hidden positive action, then lat be the
same action asc but for polarity. If "sk7~ € R then
(s,k") € Tw. If "sk7~ & M then normalization fails.

DEFINITION 12 (Normal form of a cut-net)Let R be a cut-net

and letTw be the positions reached by the tokens during normal-

ization. Anormalization path is the sequence of actions which are
visited during the normalization dR: Path(fR) is defined to be
the set{s - k. /(s, k) € Twsuch that s is maximyl We also de-

fine hide(p) to be the sequence resulting from removing all hidden

actions inp and Hide(R) to be the sef{hide(p),p € Path(R)}.
Moreover, given a sequence of neutral actienwe defines© to
be:

Thenormal form of a cut-netR is the design defined to be:
[R] = {x/xis a prefix ofp™ withp € Hide(R)}.

DEFINITION 13 (Dispute).If R is a closed cut-net, we catlis-
pute the normalization path dR.
If the netis{®, ¢}, we write[© = €] for the dispute.

Property:

e Given{D, ¢} a closed cut-nef® = ¢] is always contained
in a single slice of® and¢;

e If MR is a closed cut-net, its basehs The only design on this
base is the daimor®ai-. If normalization of a closed cut-net
terminates, its output can only kR, otherwise normalization
fails.

3.3 Orthogonality and Behaviours
Orthogonality describes those normalizations that weceessful.

DEFINITION 14 (Orthogonality).Two designs®, ¢ are orthogo-
nal if they form a cut-net and?®, ¢] =%

If © and & are orthogonal, we write® | &

In general ifD is a design of basg(!, ..., & and (€,)1<i<n
are designs on atomic bag¢ “* (polarity inverse from the one in
B), (D, €,,...,¢E,) forms aclosed cut-net.

If [9, @51, ey Qfgn] = we Write@J_(Qfgi)lgign

DeFINITION 15 (Orthogonal of a design, of a set of desigri)e
orthogonal of a desigr® with an atomic base is:

Dt ={¢/DL¢}

Version du 17 juillet 2007.

If E is a set of designs on the same atomic baseethit), its
orthogonal is:

E' ={9/V¢ cE,D1¢}

Property:
hold:

o if EC E thenE'* C E*;
° EQEJ_J_,

° EJ_ — EJ_J_J_.

Given two ethicsE andE’, the following properties

DEFINITION 16 (<). Given® and @', we define® < D’ if
D+t CDt.

The preordek relation is actually a partial order.

DEFINITION 17 (Behaviours)A behaviour G is an ethic which
is equal to its bi-orthogonalG = G++.

Property: The orthogonal of an ethic is a behaviour.
DEFINITION 18 (Principal behaviour)Let ® be a design. The
principal behaviour of D is {D}*. It is a smallest behaviour
containing®.

DEFINITION 19 (Incarnation)If & € G, there exists a smallest
design® C € such thatd € G itis theincarnation of € in G
written |€|c

4. Interactive proof search algorithm.

In this section, we present an algorithm for
Interactive Proof Search. We give a machine
based on Faggian's Loci Abstract Machine,
the Searching LAM (SLAM) which allows
us to interactively build material designs in
a behaviour generated by orthogonality to a

set of tests. €11,
4.1 The Idea of the algorithm @ {13
Before going to the formal definitions of IPS 501!101
procedure, we sketch how IPS works on a :
simple example in order to show the main {1}
structure of the search: consider the Interac- ¢ _ [

tive Proof Search driven by one very sim- §{0,1,2}

ple design we already considered in figure 1.
Let us proceed with an IPS with environment
{€} in order to build a desig®.

0. To begin with,®, is empty and we have visited no path by
normalization:Patho = ;

1. ¢ is a negative design so that it is a forest: it may begin with
several negative actions on focgs one of which shall be
followed during a normalization process. Its initial acsoare
in Inite = {(¢,{0,1,2})” }. We choose some actioty in
Inite and addk1, to the normalization path andf as the first
action of®:

Path1 = ((&,{0,1,2})) = (k1)

2. Design® in construction could have several negative actions
abover but at this point, normalization would follow only
one action which corresponds to the positive action affein

+
@1:,‘{1

7 2007/7/19

€. This action is<§ = (€0, {1})" and thus:

Ka
I

332:,{+

Paths = <Hly, l{zy> !

3. In ¢, x7 is followed by the actions in seit(£01, Io1) ™}, we
choose an action in this set, say, and we extend’aths with
k3, and extendd with rd:

+
K3
|
%)
|

33:H+

Paths = (K1v, K2v, K3)]

4. In &, x5 is followed by the only actiom, = (£1,{1})" and
thus, Paths shall be extend withcs, . ©4 must containk,
in order to interact properly, but this negative action kbal
placed right after the positive action justifying it. Therchicle
leading tox, in ® is given by:"ki,, kov, k3w, ke T =
kT, k; and thus:

Pathy = </€1u7 R2v, K3v, H4u> Dy = ‘Lil+

We then skip several steps to go directly to the last two stéps
the IPS:

7. In&, Suce(sd) = {(€21, I1)™ }. We choose one of these ac-
tions, sayx- , to extend the disputé?athr = (k1v,..., K7)
and we adds} where the view Path; 7" of the dispute re-
quires it to be placed:

+ + +
K3 K5 K7
| | |
Ko Ky Ke
\ | /
Path; = <I€1u,...,,‘€7u> D7 = Ki%

8. In ¢, k; is followed by a unique action-;g+ = "X, Since the
dispute leads to this action, the normalization ends @itlsing
a*k and the final dispute I = €] = (k1u, ..., K7,)

After the IPS process, we have got a des@yon base- ¢ such
that [D, €] = "k with the daimon caused b.

e the cut relation induces hipartitegraph between the elements
of E and the elements @&. That is, ifD; and®- have base
that share a cut, then one shall bekhand the other irF.

Note that since the cut relation is acyclic, one can alwagsemt
a cut-net as a bipartite cut-net.

DEFINITION 22 (IPS Cut-net)AnIPS Cut-netis a closed bipar-
tite cut-net(Erps, Epnv) whereE; pg is a set of IPS designs and
such that all the visit paths given by the IPS designs candiezesl
by the normalization ifE;ps U Egny.

The designs irfE;ps are the designs to be built interactively
while the elements oEgnv are the designs of the environment
that will guide the interactive search. The constraint goattite
graphs ensures that designd€i vy only interact with designs in
Egnv.

DEeFINITION 23 (initial IPS Cut-net)An IPS Cut-net is said to

be initial when the first componed;prs is such that a positive
design inE;ps shall be the daimon and a negative design shall be
empty.

4.3 SLAM-1

LetR = (E;ps, Egnv) be aninitial IPS Cut netand |&;ps =
{D1,...,9n}andEgny = {€&1,..., €y} Inthe algorithm, the
setsEprs andEgny are viewed as sets of chronicles.

Initialization.

e if the main design ofR is in Egnv with let its first action be
kT thenPy = (e, x™);

e if the main desigr® of R isin E;ps, then consider all designs
of Egnv that share a cut witlD: (&;);cs. Those designs
¢; are negative. letinit = UjesInit(€;) with Init(€;)
the set of initial actions fo;. Choosex™ € Init and set:
Py = (e, KJr);

Progression.

1. If (s,0") € P, with "so" € Egnv, then add s~ in
E;ps and extend the corresponding interaction path with
(5,07) € Payy;

2.1f (s,07) € P, with "sc7~ € Egnv, then lets™ be
aboves™ in Egnv (such an action exists and is unique), then
(so, n*) € Ppia;

3. If (s,0%) € P, with"so ™" € E;ps, then(s,07) € Pot1;

4. 1f (s,07) € P, with"so7~ € Erps, thenletSuce("so ™) =
{k~/"sc" k™ € Egnv}. We choose &~ € Succ(Tso)
and we add so~x* 7" inE;ps and(so, k1) € Pay1.

If Suce("so7T) = @ thenadd s~ in Erps

This example was intended to illustrate the basic mechanism 4.3.1 Properties of the SLAM-1

that we shall encounter while doing IPS. We now introducenfar
definitions that are needed to give a precise definition oflf&
process.

4.2 Definitions

DEFINITION 20 (IPS Design)AnIPS designis given by a design
D together with a se¥3 of visit paths orD, theinteraction paths.

If p € 3P leads to a leaf o®, then this leaf is said to bepen
We will sometimes refer to an open actioms x°?.

DEFINITION 21 (bipartite Cut-net)A bipartite Cut-net is a pair
of two sets of desigr& andF such that:

e EUF isacutnet;

Version du 17 juillet 2007.

We state some essential properties of SLAM-1 when execuitbd w
an atomic environment on bagée

The algorithm is non-deterministic but one can easily baild
deterministic version of the algorithm. We postpone thia fature
paper which will be dedicated to the study of backtrack ared th
treatment of control in Ludics Programming.

At any steps of the computation, we can consider the chesicl
which are elements of the object under construction. Ifdtisra
maximal chronicle which is negative, we can extend it witfia
By doing so, we get a desigd’> at step n.

PropPosITION2. If we execute SLAM-1 with an environment made
of only one atomic desig#, then at every steP = L ¢.

8 2007/7/19

PrROPOSITION3. Any®™ that is built during the SLAM-1 execu-
tion is material in{&}++.

PROPOSITION. If i < j then® < DF. Q Q @—»@
We have actually{¢}++ C {D¥}+ C {DF}* fori < j.
We can also phrase is a¢DF }++ C {D%}++ C {¢}* for

i< j.

Thus the®’™ are more and more precise.

4.4 SLAM-n

The IPS procedure described by the SLAM-1 only producesslic arc(a).

We extend SLAM-1 to n-Environments and n-IPS Cut nets iniorde arc(b). adj(a, b).

to do interactive proof search with more than on set of desag arc(c). adj(b, c).

thus to enrich the search behaviour. arc(d). adj(b, d).
arc(e). adj(c, e).

4.4.1 Definitions for SLAM-n arc(f). adj(c,).

DEFINITION 24 (Base orthogonality)Given base§/3:, . . ., n}, arc(g). adj(f, g).

{64,..., B, }issaid to beorthogonalto {51, . . ., 8. } ifthere is a arc(h). adj(h, g).

bipartite cut-net made of designs ¢f., . . ., 3, } on the one hand _ _

and of designs ofi3;, . . ., 3., } on the other hand. pX,Y) - adj(X,2), adj(Z,Y).

DEFINITION 25 (n-Environment)Given designs{®1,...,Dx,} :

on bases{f, ..., Br}, an-Environment is a family of sets of Figure 4. Graph

designsEnv;)icr = ({€1,..., &L, }ier such that for alki € I,

the bases cEnwv; are orthogonal to the bases ¢D1,...,D,}.

4. If (s,07,1) € P,with"sc7~ € E;pg, then

DEFINITION 26 (n-IPS Cut net)A n-IPS Cut netis given by: e if 3k such that"sox™"" € E;ps then (so,x",i) €

e a set of design$®+,...,Dn}; Pry1.

* afamily (3%,)cr of paths such that th®; are IPS-designs; e if AT suchthafsorx™ € Erps then letSuce(Tso 1) =

e an-environmentEnv;)ics for {D1,...,Dn} {k~/Ts67Tk™ € Efny). We choose a™ € Suce(Tso)
such that for alli € I, {D1,...,D,}, 3P, together withEnv; and we add so 7" in E;ps and(so, kT, i) € Poyi.
form an IPS Cut net. If Succ(Tso7t) = then add sc~ 7 " in E;ps

An n-IPS Cut net is initial if for ali € I, {D1,...,D,}, 3P,

Env; form an initial IPS Cut net. .
4.5 A concrete example: paths in a graph

4.4.2 SLAM-n . Let G be the graph represented in figure 4.
Let R an initial n-IPS Cut net and IgtR*);:c; the IPS Cut nets We want to implement the search for paths of length 2 in this
associated (the IPS part is shared). graph thanks to interactive proof search. This correspoodke

predicates shown in figure 4.
For instancep(c, g) could be represented as the MALL for-
mula:

Initialization. The main designs are eitherBi ¢ foralli € T
orinEg Ny foralli € 1.

« if the main designs of? are ENV, let(x");c; be the first
action of the main designs. théa x*%,4) € P, forall i € I.

¢ if the main designs off are IPS, then it is the same design for
all the cut-nets. Given € I, let Init; = Uje, Init(€;) for
¢ interacting with®. Let Init = NicrInit;.

= If Init = 0, then the IPS is finished ar®d = »X;
= If Init # 0, lets™ € InitandVi € I, (e,k",4) € Py
Progression.

1. If (s,0,4) € P, with "sa 7" € Efyy, then Hfor a desimnby | 0 with .
50— € B h — e P One wants to search for a designby interacting with a set o
o if "so" € Erpsthen(s, 07, i) € Puti; counter-design specifying the graph and the path relation
e if Tso7~ ¢ Erpsthenadd so™~ in E;pg and extend the Let supposex, b,... ' 95 h are integer codes representing nodes
corresponding interaction path with: (s,0”) € Ppy1; of the graph in the obvious way.
. i The counter-design environnement would be made of two de-
2.1f (s,07,i) € P,withTso~ € Egnv, then lets™ be above signs&, and&s: 9
—in T + . :
o~ inEpyy, then(so, £7,1) € Pati; We are in a case of a 2-environment.
3. If (s,0",i) € P, with"so7" € Erps, then We have 8 choices for the first action in constructing deggn
. _ i _ . but this leads then to the following designs (8 possible agtap
r A 2 .
*iffso™ € E{ENV then(s, 0™, 4) € Pny1; tions) depending on the choice of the first action (only oriadba
o if "Tsc7” ¢ E Ny then FAIL! win):

Version du 17 juillet 2007. 9 2007/7/19

I
pel,@

{1}@{1}
I I)

N R

“p{e}

{2}@ {2}
I I)

2=l win

“Tp{e}

®

pfll,w

1
{1}@{1}{1}@{1}
I I I I

p.{f} p,{9} p.{h}
I
Pf?,@ phl2,®

{2}@ 2} {2}@ 2}
I I I I

. {f} p,{9} p.{h}

Figure 5. Designs¢; and¢&s.

I I
pz,{1} pz,{2}

N~
O

O ®

D, =
If z € {a,b,¢,d, g}.

pe,{l}\ /1)61{2}
De = O
EDe ()
| |
pf,{l}\ /Pf,{2}
5= @{f}
® ()
| I
ph,{l}\ /ph’{2}
Dn = @ w

Short explanation of the dialog:

e action(+, p, {z}) corresponds to asserting that there is a path
fromcto g via z;

e the bunch of action$(—, p, {z}) }zca,bc,....g,n} COTESPONAS
to the possible arguments the desighsand &, are ready to
answer;

e action (+,px, {1}) (or (+, pz, {2})) corresponds to a chal-
lenge by thef;s toD meaning: isc adjacent ta: (resp.g);

e action(—, px, {1}) (or (—, px,{2})) corresponds to the possi-
ble attacks by thé&;s the desigrD is able to answer;

e action(+, pz1,®) means: "yes! x is adjacent & (resp. with
index 2 andy). Therk appearing instead of the previous positive
action means that the error in the argumenDd§ there.

Version du 17 juillet 2007.

e action(—, pz1,0) is the preparation bg, to get this argument
by D... and the following means that in this case, desi§n
just gives up (but maybe another design in the environmelht wi
continue asking informations/evidencefd@ausing the design
to be more precise.

5. Conclusion.

The aim of this paper which is the first of a series in which we
investigate Ludics as a foundation for Logic programming W@
motivate our approach and explain its general picture, fimel¢he
Ludics objects that are necessary and to define an linteeRetoof
Search procedure in Ludics.

The point of IPS, or Ludics Programming, is to consider that
the search for a proof in not guided by a sequent as in standard
proof search, but that the search is constrained by a cdanstex
environment, which is made of object of the same kind thabtiee
we are building during the computation.

We introduced IPS thanks to an abstract machine, the SLAM,
which is adapted from Faggian's Loci Abstract Machine [8 W
illustrated our approach on three kinds of examples: infdfiRS
for MALL »X derivations in Section 2, SLAM execution on a simple
design in the introduction of Section 4 and finally a more cete
example related with the Prolog program for finding paths in a
graph.

We presented the first elemnts for analyzing properties @f th
SLAM but most has still to be done, in particulier with respec
to backtracking and enlarging the environment based oriqursv
computations. This is left for future works.

Related works In [8], Faggian introduced the Loci Abstract Ma-
chine and studied some properties which are related witlessn
pects of the LAM. In particular, from a counter-design andran
teraction path, she can reconstruct a design realizing#its

Pym and Ritter [18] give a semantics for proof search which is
related with game semantics. We shall investigate the aiams
with our work.

Future Works Most is still to be done in order to have a compu-
tation model based on interactive proof search:

o first, we have to introduce the backtracking and the logibiwit
our mechanism for IPS [20];

e then, we shall try to extend Ludics in two directions: firstier
and recursive definitions. Ludics is a teory without firsteard

10 2007/7/19

and that may be painful when one wants to program using [21] Alexis Saurin. Ludics programming llI: definition andfioints in

Ludics, however Fleury and Quatrini [10] studied first-arde
in Lducis. On the other hand, Ludics is based on MALL and
there is no exponentials in Ludics. To enlarge the setting on
may be interesting in considering at least recursive dédfirst

or fixpoints. We are currently working on such an extension of
Ludics with definitions or fixpoints [21].

Acknowledgments

The author thanks Dale Miller for his advice and directiaoiean-
Yves Girard for his comments on this project as well as Claudi
Faggian for helpful discussions regarding the materigtisipaper.

References

[1] Samson Abramsky and Radha Jagadeesan. Games and full
completeness for multiplicative linear logicl.of Symbolic Logic
59(2):543-574, 1994.

[2] Jean-Marc Andreoli. Logic programming with focusingopfs in
linear logic. J. of Logic and Computatiqr2(3):297-347, 1992.

[3] G. Berry and Pierre-Louis Curien. Sequential algorishom concrete
data structuresTheoretical Computer Scienc20:265-321, 1982.

[4] Pierre-Louis Curien. Abstract bdhm tredglathematical Structures
in Computer Scien¢e3(6):559-591, 1998.

[5] Pierre-Louis Curien. Abstract machines, control, aaduents. In
Proceedings of APPSEM Summer Schpalges 123-136. Springer,
September 2000.

[6] Pierre-Louis Curien. Symmetry and interactivity in gramming.
Bulletin of Symbolic Logic9(2):169-180, 2003.

[7] Pierre-Louis Curien and Hugo Herbelin. The duality ofqautation.
In ICFP, pages 233-243, 2000.

[8] Claudia Faggian. Travelling on designs. Pmoceedings of CSL'Q2
pages 427-441, 2002.

[9] Claudia Faggian and Martin Hyland. Designs, disputebsirategies.
In CSL, pages 442-457, 2002.

[10] Marie-Renee Fleury and Myriam Quatrini. First orderlurlics.
Mathematical Structures in Computer Scient4(2):189-213, 2004.

[11] Jean-Yves Girard. Linear logicTheoretical Computer Science
50:1-102, 1987.

[12] Jean-Yves Girard. Locus solumMathematical Structures in
Computer Sciengel 1(3):301-506, June 2001.

[13] Timothy Griffin. A formulae-as-types notion of contrah POPL'90,
pages 47-58, 1990.

[14] J. M. E. Hyland and C.-H. L. Ong. On full abstraction fafpl.
models, observables and the full abstraction problem,alodue
games and innocent strategies, iii. a fully abstract andensal game
model. Information and Computatiqri63:285-408, 2000.

[15] R. Kowalski. Algorithm = logic + control.Communications of the
Association for Computing Machinerg2:424-436, 1979.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and An8cedrov.
Uniform proofs as a foundation for logic programmingnnals of
Pure and Applied Logic51:125-157, 1991.

[17] Michel Parigot.Au-calculus: an algorithmic interpretation of classical
natural deduction. IrProceedings of International Conference
on Logic Programming and Automated Deductienlume 624 of
Lecture Notes in Computer Scienpages 190-201. Springer, 1992.

[18] David J. Pym and Eike Ritter. A games semantics for rédeidogic
and proof-search. IGALOP, pages 107-123, 2005.

[19] Alexis Saurin. Programmation logique, ludique et colet vers une
programmation ludique. Unpublished draft, june 2004.

[20] Alexis Saurin. Ludics programming II: backtrack andntol.
Unpublished draft, july 2007.

Version du 17 juillet 2007. 11

ludics. Unpublished draft, july 2007.

2007/7/19

