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Abstract

In this paper, we address the question, can biologically feasible neural nets compute more than can be computed
by deterministic polynomial time algorithms? Since we want to maintain a claim of plausibility and reasonableness we
restrict ourselves to algorithmically easy to construct nets and we rule out infinite precision in parameters and in any
analog parts of the computation. Our approach is to consider the recent advances in randomized algorithms and see
if such randomized computations can be described by neural nets. We start with a pair of neurons and show that by
connecting them with reciprocal inhibition and some tonic input, then the steady-state will be one neuron ON and one
neuron OFF, but which neuron will be ON and which neuron will be OFF will be chosen at random (perhaps, it would
be better to say that microscopic noise in the analog computation will be turned into a megascale random bit). We
then show that we can build a small network that uses this random bit process to generate repeatedly random bits.
This random bit generator can then be connected with a neural net representing the deterministic part of randomized
algorithm. We, therefore, demonstrate that these neural nets can carry out probabilistic computation and thus be less
limited than classical neural nets. © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction Over the last several years researchers have begun
more intensively studying the formal computa-

From their beginning with McCulloch and tional power of more biologically-inspired ANNSs.

Pitts, artificial neural nets (ANNs) have been used Most of this work deals with discrete-time net-
as models of computation. In the hands of von works, but a few results have appeared for analog
Neumann, neural nets became the logical basis for systems including a demonstration that idealized
describing computing machinery. Kleene (1956) discrete-time deterministic networks with infinite
showed that the computational power of a dis- precision weights are more powerful than deter-
crete-time threshold neural net was equivalent to ministic Turing machines (TMs) (Siegelmann and
the computational power of a finite state machine. Sontag, 1992). However, once physically realistic

limitations are imposed on the weights, these net-

B . works are no more powerful than deterministic
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physically realistic discrete-time networks makes
them equivalent to probabilistic TMs and thus
meaningfully augments their capabilities (Par-
berry and Schnitger, 1989).

For analog networks it appears likely that ide-
alized deterministic analog networks are much
more powerful than TMs (Moore, 1993). As with
discrete networks, however, deterministic analog
networks with physically realistic limitations on
bandwidth and precision appear to be no more
powerful than TMs (Vergis et al., 1986). Similar
limitations in computational power appear to ap-
ply for deterministic spiking networks, which en-
code information in spike timing (Maass, 1994)
when one applies radar and sonar pulse detection
theory to these models.

The literature also contains a few complexity
results for discrete-time ANNs, which most likely
also hold for continuous-time ANNSs. It is known
that symmetric threshold gate networks (syn-
chronous or asynchronous) cannot solve NP-hard
problems unless co-NP = NP (Bruck and Good-
man, 1990) nor even approximate solutions unless
co-NP = NP (Yao, 1992) and, for some strongly
NP-complete problems like TSP, unless P = NP
(Bruck and Goodman, 1990). Furthermore, it
seems learning cannot increase the recognition
power of discrete-time or continuous-time ANNs
(Blum and Rivest, 1988).

Although these results are highly suggestive, at
this point it appears that our knowledge of the
computational power of biologically-inspired —
and biologically plausible — stochastic analog
networks is still fragmentary. In the hope of par-
tially filling this gap, this work examines the
computational power of one such model derived
by Hangartner (Hangartner, 1994) as an approxi-
mation for the dynamics of a biologically in-
spired, stochastic pulse neuromime network
(SPNN) model. The results show that while
families of these networks do not have any greater
recognition power than a deterministic TM, they
do have practical space—time complexity advan-
tages over conventional digital computers.

It is important to note how this work differs
from that of Sato (1978) and others on mathemat-
ically sound stochastic models for single neurons
(and some specific small networks), as well as

more recent work in the spirit of Turova (1997).
In contrast to the former, this research focuses on
the problem of assessing the computational capa-
bilities of arbitrarily large neural networks com-
posed of neurons described by a slightly more
sophisticated stochastic single-unit model. And
unlike the latter, the fundamental neuromine
model incorporates an arguably more realistic,
but less mathematically idealized, non-uniform
renewal sequence model for neural spike trains
along with explicit axonal delays. These latter
features lead to important differences between the
network dynamics of the SPNN model and other
network models that are key to the computational
complexity results presented here. More specifi-
cally, in Hangartner (1994) it was also shown that
a rather robust mapping existed between the bio-
logically-inspired pulse (spiking) network model
and a model for the mean dynamics of the net-
work. Furthermore, a robust mapping also exists
between this mean dynamics model and a ternary
logic based analysis model, which supports exten-
sive study into the formal computational capabili-
ties of these networks.

2. The stochastic analog network model

The model derived in Hangartner (1994) ap-
proximates the mean dynamics of a biological-in-
spired, homogeneous recurrent stochastic pulse
neuromime network by a stochastic analog net-
work described by a noise-driven differential-de-
lay equation:

dj ! ! i /
% = — —F(O+—2EBAG( ) +7)

1 1
FA0 = =)+ G 1) + )
S S (1)

(Henceforth boldface quantities represent stochas-
tic processes.) In Eq. (1), the scalar 7, represents
the time-constant in a leaky-integrator model for
the dendritic tree, the state vector yeR” denotes
the mean membrane depolarization in the leaky-
integrator model, while the soft-limiter function
&(7) approximates the effect of dendritic reverse
synaptic potentials. Similarly, B represents the
synaptic connection strengths and /7 represents a
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net tonic input, the scalar ¢ denotes an explicit
gain parameter, 7, represents the axonal propaga-
tion delay, and H()?) approximates the sigmoidal
Hopfield—Tank activation function relating the
cell input to the output firing rate. Finally, §(¢) is
an stochastic process, which models the various
random properties of biological networks; for
present purposes, it is only necessary to assume
that this is a bounded-variation process with zero-
mean and short correlation time.

As Hale (1997) has demonstrated, systems de-
scribed by deterministic and stochastic differen-
tial-delay equations have significantly different
dynamics from those described by their pure delay
counterparts. As the analyses of these systems are
correspondingly more complex, the remainder of
this section summarizes just the results from
Hangartner (1994), and Hangartner and Cull
(1995) needed for the complexity analyses in the
following sections.

2.1. Ternary logic model for characterizing
network equilibria

The equilibria of the deterministic part of Eq.
(1), (which henceforth we shall just refer to as the
equilibria of Eq. (1)) correspond to the fixed
points of the state transition mapping.

I=y( 2)=hg(le(2) 2
where gz?(z*) = BZ+ f and Z= ﬁ(f) (note that the
mapping between the equilibria of Eq. (1) and the
fixed points of Eq. (2) may be many-to-one if, for
one or more i, di;(y;)/dy;=0 over some range of
;). Now consider the three-level quantization
function §: R—97, 7 = {0, x, 1} defined compo-
nentwise as:

0 <z <z
0 1

gz)=9x zZ¥<z<zV (3)
1 W<z <M

It can be shown that for most networks a consis-
tent ternary quantization exists in the sense that
there is a minimum gain &, such that the state
transition mapping takes binary-valued vectors
into binary-valued vectors if &> ¢, the same
results hold for all networks if slight perturbations

of f are allowed. As a result, the state transition
mapping has a Boolean model ¥ 3" B" for 2
such that §(2)e#”, where %4 = {0, 1}.

The Boolean model is extended into a ternary
model ¥: 7"— 7" by redefining y to simulta-
neously denote the quantized representation for
intermediate valued components of Z and a repre-
sentation for uncertainty as to the binary value of
components of ¥(Z). This latter notion, derived
from Brzozowski and Seger (1989) formal theory
of asynchronous sequential networks, proposes
that the value y be assigned to ¥(Z) if different
Boolean assignments can be found for the y com-
ponents of Z such that f’(z’) evaluates to both 0
and 1, i.e.

x Z¢R";
Y’)(z) — 313’ qeg}ns y11(15) = Syl(c’l)a
’ pP#4, pi=q,=2z for zeA

Y.(z) otherwise

For present purposes, the most important prop-
erty of this ternary model ¥(Z) is that it can be
used to localize the fixed points Z* of the state
transition mapping.

Theorem 2.1. Suppose the state transition mapping
1[(6, Z) for an instance of Eq. (1) has a consistent
ternary quantization §(Z) and g Boolean model with
corresponding ternary model W (Z). Suppose further
that

77 =V (" )es" 4)
and let

¥ = il = g}

Then there exists a &, such that the SPNN has an
asymptotically stable equilibrium y*e% for any
&> ¢, As is shown in Hangartner (1994), this
result is a unique consequence of the differential-
delay network model and the threshold value ¢ is
strongly inversely related to the average axonal
delay t,.

It would be nice if the converses of this theorem
also held, i.e. that the network equilibria corre-
sponding to non-binary fixed points of ¥(Z) were
unstable, but this does not appear to be true.
Fortunately, it turns out that the bounded stabil-
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ity region means that a slightly qualified version
does hold:

Theorem 2.2. Suppose the state transition mapping
W (&, 2) for an instance of Eq. (1) has a consistent
ternary quantization §(Z) and g Boolean model with
corresponding ternary model ¥ (2). Suppose further
that

1 <WGeT" — B (5)
and let
Y = {7 = «h ()

If JG=, &), the Jacobian, is not nilpotent every-
where in the closure %° of %, then there exists a &,
such that any equilibrium 7 €% of the network is
unstable for any & > &,. (Here < denotes a partial
order relation in which 0<x, 1<0.)

The preceding two theorems show that the
ternary logic model can be used to locate and
characterize the equilibria of the autonomous part
of Eq. (1) for a broad class of instances. It follows
for this class of networks that sufficiently small
perturbations {(¢) will not destabilize the asymp-
totic equilibria in the sense that once the network
state trajectory enters a bounded neighborhood of
some minimum radius it will not exit. Similarly,
the trajectory should exit any connected unstable
limit set.

2.2. NOR networks

Although these results apply for networks with
a wide variety of interconnection matrices B and
tonic vectors f, the remainder of this paper will
study one particularly important class of net-
works. The networks in this class are distin-
guished by the property that the ternary model
for the state transition mapping ¥ (3, &) is the
ternary NOR function

0 if Jiz,=1
dF) =<1 if Yiz,=0 (6)
i otherwise

and hence are dubbed NOR networks. Clearly,
any network with a state transition mapping that

has a Boolean model can be represented by a
NOR network having an equivalent Boolean
model.

3. Mutual inhibition networks

In many biological neural networks, mutual
inhibition (the generalized case of recurrent inhibi-
tion) between neurons similar to that shown in
Fig. 1 plays a key role. In the discussion to follow,
we assume that all units have quasi-tonic excita-
tory inputs but we will only depict the inhibitory
inputs that are the focus of our discussion. Al-
though the two units in this network have a
common external input x,, the network is not of
the form Eq. (1), but it suffices to consider the
network behavior when x, is inactive. Recurrent
inhibition in combination with other network fea-
tures is identified frequently as the mechanism
underlying oscillatory dynamics in many small
invertebrate neural networks (e.g. the Tritonia d.
swim CPG Getting, 1988). Recurrent inhibition
has also been found in structures of the human
brain such as the neostratium (Wilson, 1990) and
the pyriform cortex (Haberly, 1990) where it fre-
quently is proposed as a mechanism for enhancing
the difference between neurons with high and low
firing rates.

Most, if not all, of the previous work on mu-
tual inhibition has focused on the autonomous
dynamics produced by this configuration. In con-
trast, this section shows that under certain cir-
cumstances mutual inhibition can also produce
stochastic dynamics. Although the results are rig-
orous for the SPNN model studied here, it re-
mains an open question whether biological

-

Fig. 1. Mutual inhibition network.
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instances have the necessary characteristics to ex-
hibit stochastic dynamics.

The mutual-inhibition network has three fixed
points:

z*e{01, 10, yyx}

According to Theorem 2.1, the binary fixed points
z=01 and Z=10 correspond to asymptotically
stable equilibria of the network if the gain ¢ is
large enough. Similarly, Theorem 2.2 demon-
strates that any equilibrium corresponding to the
fixed point Z= yy is unstable for large enough
values of &. A version of a theorem by Roska et
al. (1992), based on a more powerful result by
Smith (1987), shows that the non-constant peri-
odic limit set of the network is unstable.

An informal argument suggests how noise af-
fects the dynamics of a mutual-inhibition net-
work. Because the non-constant periodic limit
cycle is unstable, relatively low intensity noise is
sufficient to drive the network trajectory into the
attraction basin for one of the two asymptotically
stable equilibria. These basins are relatively deep
so that the trajectory will eventually enter a small
neighborhood of the equilibrium state (perhaps
after bounding between the two basins for a short
time). Since neither outcome is preferred over the
other, the mutual-inhibition network in effect exe-
cutes a computation analogous to a ‘coin-flip’
when operated in this mode. Of course, slight
differences between the units in a biological or
artificial network will bias the coin-flip but this
will not effect the complexity results presented
below.

4. A stochastic oscillator

The probabilistic behavior of mutual-inhibition
pairs is just an idle curiosity unless it can be
shown that larger networks incorporating these
pairs can have dynamics, which express their
probabilistic behavior in a meaningful way. If the
network trajectory is viewed as a computation, as
this work proposes, then the dynamics must in-
duce a ‘coin-flip’ at appropriate points in the
trajectory so that the entire trajectory represents a
meaningful probabilistic computation. Fig. 2 de-

v

Fig. 2. The stochastic oscillator.

£
o4

picts the simplest member in one class of SPNNs
that meets this requirement. As the rest of this
section shows, this network has a well-defined but
stochastic trajectory. Using this result, the follow-
ing sections show that networks in this class have
dynamics, which can be consistently interpreted as
probabilistic digital computation.

The behavior of the net in Fig. 2 can be infor-
mally understood by recognizing that units C1-
C6 form a two-input OR gate, the inputs of which
are driven by the outputs of the C7, C8 mutual-
inhibition pair and the output in turn drives the
input of the C7, C8 pair. Now, suppose initially
that the input to the C7, C8 pair goes active
forcing both units in the pair to go inactive. This
in turn drives the output of the C1-C6 OR-gate
active. At this point both units in the C7, C8 pair
start to go active and, if the network were deter-
ministic, both units eventually would reach a high
activity level. Since the feedback path through the
C1-C6 OR-gate involves four units, the feedback
delay is significantly longer that the unit time
constants and both units in the C7, C8 pair would
inhibit each other before the feedback would drive
the C1-C6 OR-gate active. At that point both
units would again go active and the cycle ...00 —
11 -00... would repeat ad infinitum. However,
the previous section shows this limit cycle is un-
stable in the SPNN; this implies that the C7, C8
pair converges towards a neighborhood of one of
the two asymptotically stable equilibrium. Since
neither equilibrium is preferred over the other, the
network makes the probabilistic transition 00—
10 or 00— 01. Either case forces the C1-C6 OR-
gate active which, in turn, forces the C7, C8 pair
inactive and the entire cycle just described begins
anew. Since this pattern repeats ad infinitum, the
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network functions as a stochastic oscillator, or in
computational terms, as a repeated ‘coin-flip’.

5. Generalizing the stochastic oscillator

As mentioned earlier, the stochastic oscillator is
the simplest member in a class of networks whose
dynamics represent meaningful probabilistic com-
putations. This section focuses on generalizing the
stochastic oscillator and characterizing the equi-
libris of the resulting networks. Using those re-
sults, the remainder of the paper investigates the
computational interpretation for the dynamics of
these networks.

To frame the proposed classes of networks,
observe that the stochastic oscillator includes one
mutual-inhibition pair and two (disjoint) feedback
paths as defined by the number of inputs to unit
C3. In addition, observe that the outputs of both
units in the mutual-inhibition pair feedback to C3
and that the feedback paths are disjoint. A natu-
ral generalization of this network then is the
network with p mutual-inhibition pairs and ¢
non-disjoint feedback paths. Each unit receives no
external input except for the constant tonic input
so subsequent analyses can omit explicit refer-
ences to the network inputs. Throughout the se-
quel, the family of SPNNs whose connection
matrices meet these requirements will be denoted
by &. Furthermore, it simplifies the following
discussion to define the ternary variables

z2=g(h(7)
where ¢(Z2)is the ternary quantization function for

the network, and then partition Z into several
subvectors:

Cly voes €, =24, ..., Z, )
d=z,,, (®)
W=2Z,,, 9)
a;, by, ...,a,b,=2,,3 ..., 2,,,.> (10)

9 Z4p+q+2 (11)

The discussion in the rest of this paper refers to
these variables, the state vector j, and the quan-

>

tized state vector Z synonymously, choosing in

U, Vip ooy Uy V=Zo, 0 013, -

any particular situation the one which best facili-
tates the analysis.

5.1. Equilibria of networks in &

As in the previous examples, the significant
dynamics of the networks in & can be inferred
from the equilibria. For these networks to be
useful computational devices, only the binary
equilibria should be asymptotically stable. The
next theorem shows this is the case; the key idea
used in the proof is a simple lemma on nonnega-
tive matrices:

Lemma 5.1. 4 nonnegative n x n matrix A is not
nikpotent iff the corresponding graph has a cycle.

From this lemma and the structure of connection
matrices which arise in the networks in %, it
follows:

Theorem 5.1. There exists a &, such that, for any
gain £ > &, any equilibrium state 3 of a network
Ne& is asymptotically stable if and only if

77 =g(h(")es" (12)

The most immediate and useful consequence of
this theorem is that all of the asymptotically
stable equilibria of any network in & can be
located by finding the fixed points of the Boolean
model 'f’(i) for the network. Recall that for net-
works in &, each component ¥;(Z) of the state
transition is just a ternary NOR function (comple-
mented disjunctive clause). Using the variables
defined in Egs. (7)—(11), any equilibrium must
satisfy the set of Boolean expressions

wy=wvyv, i=1, .., p

Vi=WA Y (13)
a=u, i=1,..p

bi=v, (14)

G=Y@b j=1, .. 4q (15)

i= \/ ¢ (16)
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w=d (17)

where each ¥, is a complemented disjunctive
clause. As a consequence of the proof of Theorem
5.1 in Hangartner (1994), d =1 and w =0 for any
asymptotically stable equilibrium. This implies
that ¢; =0 for all j and that u, = v, (and therefore,
a;=b,) for all i. Since each ¥; is complemented
disjunctive clause in the variables u, and their
negations, the asymptotically stable equilibria cor-
respond one for one with the satisfying assign-
ments of the CNF Boolean formula:

f@= A 75 (18)

=1,...p

J
sincced=u and b=v=u=4.

5.2. Probabilistic computation by networks in &

With the equilibria characterized, the dynamics
of networks in & can now be informally inter-
preted. Drawing on the discussion in Section 4 of
the stochastic oscillator and the discussion of
Theorem 5.1, this section investigates the asyn-
chronous switching network (ASN) (Brzozowski
and Seger, 1989) models for the networks in .
The results show that these networks can be
viewed as devices, which effect robust probabilis-
tic digital computation.

As the discussion in Section 4 and of Theorem
5.1 suggests, the ASN model for the dynamics of
these networks can be understood by assuming
first that w = 1. This forces the units in the mu-
tual-inhibition pairs to be reset, i.e. U=V = 0. As
aresult, i=b=1, &=0,and d= 1. This causes
w = 0 releasing the reset condition on the mutual-
inhibition pairs.

The results in Section 3 show that at this point
each mutual-inhibition pair will execute a ‘coin-
flip’. Suppose first that as a result of this proba-
bilistic operation the vectors 1l and ¥ are such that
& =1 for at least one j. This causes both d and w
to toggle, i.e. d =0 and w = 1; and the entire cycle
repeats. On the other hand, if the probabilistic
operation regults in_a choice of vectors U and
V=1 such that ¢=0, then the values d =1 and
w =0 remain unchanged. This means that the
mutual-inhibition pairs hold their current value

and the network has settled to a stable-state, i.e. a
satisfying assignment for the CNF Boolean for-
mula Eq. (18).

Thus each cycle of the network represents a
probabilistic digital computation with two steps.
The first step represents a probabilistic guess in
the sense that the outcome of the ‘coin-flip’ is
determined by the stastistics of the noise in the
network. The second step checks the guess and
halts the computation if it is correct, otherwise the
guess—check cycle starts anew. If the ‘coin-flips’
are unbiased and if the CNF corresponding to a
network has n variables and m satisfying assign-
ments, then the probability that the network tra-
jectory settles to a neighborhood of an
asymptotically stable equilibria corresponding to
a satisfying assignment in k-iterations is:

2" _m k
p(k)=1—< = )

Straightforward manipulation of this expression
shows that the probability that the network has
not converged after n’ iterations is less than p
where

- loglog 1/(1 — p) — log(n — log(2" — m))

/
logn

(19)

It should be clear that / is constant as » increases
if and only if m is a function of n. The sequel will
be particularly concerned with networks in which
over half the possible assignments are satisfying
(m>2"—") since Eq. (19) shows these networks
find a satisfying solution in constant time (/=
0(1)) for any probability p.

6. Complexity results for NOR networks

The set of asymptotically stable equilibria of an
NOR network in & corresponds one-to-one with
the set of satisfying assignments for the CNF
Boolean formula Eq. (18). This section examines
the implications of that correspondence using a
few ides from probabilistic and nonuniform cir-
cuit complexity theory. In particular, it is shown
first that there can exist no polynomial time al-
gorithm for finding the equilibria of NOR net-
works if P # NP. After that it is shown that the
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family % has the same computational power as a
polynomial-time bonded probabilistic Turing
machine.

The restrictions on the feedback structure of the
members of & means that % contains a NOR
network instance for every CNF Boolean formula
in which each variable and its complement ap-
pears in at least one clause but no clause includes
both. Since the size of the NOR network is poly-
nomial in the size of the CNF formula, this
implies trivially that

Theorem 6.1. There exists no efficient algorithm for
finding the fixed points of the ternary model for
NOR networks, and hence the equilibria of NOR
networks, if P # NP.

The second result, namely that the family &
has the same computational power as a polyno-
mial-time bounded probabilistic Turing machine
(PTM), depends on showing that the algorithm
executed by &% can be simulated in polynomial
time by a PTM and that ¥ and a PTM can accept
the same languages in polynomial time. Recall
that Gill (1977) defined a PTM as a machine that
operates like a deterministic Turing machine
(DTM) with just two differences. First, since the
transition function associates two possible out-
comes with any current state, if the two outcomes
are the same, the transition is deterministic and
the machine executes the transition just like a
deterministic machine, but if the two outcomes
are not the same, the machine executes the transi-
tion by ‘flipping’ an un-biased coin to choose one
of the two outcomes. The other difference be-
tween a PTM and a DTM is that the PTM has a
finite running time defined by the constructible
clock function ¢(n). In contrast to a DTM, a
PTM always halts after executing c(n) steps. This
implies that the computation can be represented
as a binary tree of depth ¢(n). The input is
accepted after c(n) steps if over half the final
states represented by the leaves of the computa-
tion tree for the input are accepting, the input is
rejected otherwise.

By convention, the family of languages ac-
cepted by polynomial-time bounded PTMs (i.e.
¢(n) is a polynomial in #n) is referred to as PP. It

is known (Balcazar et al., 1988) that the set MAJ,
defined as the set of CNF Boolean formulas sa-
tisfied by over half of the possible assignments, is
PP-complete. Thus, the computational power of
any machine which accepts MAJ equals or ex-
ceeds the computational power of a PTM.

Now, Eq. (19) shows that the set ¥ is a family
of NOR networks each of which probabilistically
computes a satisfying assignment (if one exists)
for the associated CNF in finite time. More spe-
cifically, if the CNF associated with a particular
NOR network in & has a satisfying assignment,
then for any probability p there exists a finite k
such that the probability the network has not
found a satisfying a satisfying solution after &
trials is less than p. This property leads to the
following definition for the family of languages
accepted by & for different time bounds:

Definition 6.1. Let C be an arbitrary time function
class and let SC denote the set of languages ac-
cepted by & with time-bound C. A set & of CNF
Boolean formulas is a language in SC if, for any
probability p, there exists a function c(n)eC such
that for any FeZ, there exists a NOR network
N(F)e¥ which converges to a satisfying solution
of F with probability at least p in time c([F)).

Based on this definition, a computational model
for % can be constructed from the family of NOR
networks in . For a given input CNF, the
ternary model for the NOR network can be con-
structed in linear time. The network can then be
simulated in linear time by a PTM using the
description given in Section 5.2. This model
can be reduced even further to the probabilistic
net_SAT algorithm given below:

algorithm net_SAT(7", €, c(n))

returns ACCEPT or REJECT
inputs: Boolean variables ¥~ = {v,, ..., v,)
propositional clauses ¢ = &, ..., @)
on variables in ¥~
polynomial time constructible
clock function c(n)
output: binary value ACCEPT or REJECT
local: iteration counter k
clause values f, f5, ..., f,
01 for each ®,e%
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02 f;« FALSE;

03 k—0;

04 while at least one f;= FALSE
and k <c(|7"|) +1%| do steps 05-09

05 for each v;e?”

06 v;«coin_1flip(); (probabilistic step)

07 for each ®,e%

08 f; @,(vy, vy, ..., V,);

09 k—k+1

10 if every f;= TRUE

11 return ACCEPT;

12 else
13 return REJECT;
end net_SAT

Algorithm 1. Probabilistic algorithm modeling &

Obviously, the most interesting class of lan-
guages is ¥ P, the class of CNF Boolean formulas
accepted by & in polynomial time. It is straight-
forward to show that

Theorem 6.2. &P = PP.

As a result since, /P < PP.

7. Conclusion

This paper has studied the computational capa-
bilities of an interesting family % of probabilistic
neuromime networks proposed as a model for
biological neural networks. It was shown that due
to the presence of system noise, the NOR net-
works in % function as probabilistic computing
derives and the family can be viewed as a comput-
ing machine where the nth network in the family
handles all size n instances of a PP-complete
problem. A constructive proof is given, which
shows that the nth network has (@(n) space com-
plexity and /(1) probabilistic-time complexity in
the size of the input. Consequently, although this
family has the same recognition capability as a
deterministic TM, probabilistic features endow S
with a space—time advantage over conventional
digital computers. This result suggests that mu-
tual-inhibition could be an important computa-

tional mechanism in biological neural networks
and that biological networks may have a similar
space—time advantage over conventional digital
computers.
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