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1 Introduction The behaviour of consumers is believed to be influenced
by many factors. Some of these factors include the individuals culture, so-
cial status, lifestyle and attitudes. Understanding how these complicated and
interrelated factors drive the consumer is the primary goal of Manifold Data
Mining. The question posed to the group was to 1) find an algorithm that pre-
dicts the likelihood of consumers to respond favourably to a given product. In
addition, once this prediction is made for a given consumer the group was also
asked to 2) develop a second algorithm that infers other statistical information
regarding the consumer.

Manifold Data Mining has developed innovative demographic and house-
hold spending pattern databases for six-digit postal codes in Canada. Their
collection of information consists of both demographic and expenditure vari-
ables which are expressed through thousands of individually tracked factors.
This large collection of information about consumer behaviour is typically re-
ferred to as a mine. Although very large in practice, for the purposes of this
report, the data mine consisted of m individuals and n factors where m ' 2000
and n ' 50. Ideally, the first algorithm would identify a few factors in the data
mine which would differentiate customers in terms of a particular product pref-
erence. Then the second algorithm would build on this information by looking
for patterns in the data mine which would identify related areas of consumer
spending.

To test the algorithms two case studies were undertaken. The first study
involved differentiating BMW and Honda car owners. The algorithms de-
veloped were reasonably successful at both finding questions that differenti-
ate these two populations and identifying common characteristics amongst the
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groups of respondents. For the second case study it was hoped that the same
algorithms could differentiate between consumers of two brands of beer. In
this case the first algorithm was not as successful as differentiating between
all groups; it showed some distinctions between beer drinkers and non-beer
drinkers, but not as clearly defined as in the first case study. The second al-
gorithm was then used successfully to further identify spending patterns once
this distinction was made. In this second case study a deeper factor analysis
could be used to identify a combination of factors which could be used in the
first algorithm. The case studies are discussed in detail in Section 8.

2 Latent variable models The initial problem proposal suggested that
the method of Projected Latent Spaces could prove fruitful in the first task,
that is, in identifying a few factors which could differentiate between con-
sumer preferences on a particular product. In essence this means finding the
dominant factors that are closely related to a particular difference between cus-
tomers, while showing that the remaining factors are not significant. Mathe-
matically, we can view this as trying to represent consumer behaviour in a low
dimensional space of factors. This idea is common in many different areas of
application, with many different names. In this section and the next we give a
discussion of latent variables and related methods. Note that in the remainder
of the report we show that this method was not useful for the first algorithm for
differentiating between customers with a few factors; however, we also discuss
how it could be useful in improving the second algorithm.

The underlying task is to model a set of n continuous variables

T = (t1, . . . , tn)

that have some joint probability density f(t; µ, Σ) where µ and Σ are the mean
and covariance of the underlying distribution. The prime here denotes the
transpose. If for example we assume that the components of T satisfy a joint
Gaussian process then

(1) f(t; µ, Σ) = (2π)−n/2|Σ|−1/2 exp

[
−1

2
(t − µ)′Σ−1(t − µ)

]
.

Since Σ is an n×n symmetric matrix and µ is an n component column vector
there are

(2) n +

n∑

j=1

j =
1

2
n(n + 3)
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free parameters in this model. If we denote {τj}m
j=1 as m observations

(columns) of the n variables (rows) then by maximizing the logarithm of the
likelihood function corresponding to (1) one obtains the usual maximum like-
lihood estimates

µ̂mle =
1

m

m∑

j=1

τj , Σ̂mle =
1

m

m∑

j=1

(τj − µ̂mle)(τj − µ̂mle)
′.

Note that the maximum likelihood estimator Σ̂mle is a biased estimator of the
population covariance matrix.

As n, the number of factors one attempts to model increases, expression (2)
implies that the number of free parameters grows as n2. To reduce the number
of free parameters one could simply assume that Σ is diagonal. However,
this is a very drastic assumption since it is equivalent to assuming that the
variables being modelled are independent. On the contrary, it is known from
the data mine that some variables are very strongly correlated. One possible
way of reducing the number of free parameters while still preserving the main
correlations between the various factors is to choose a set of k < n hidden or
latent variables x = {x1, . . . , xk}.

For a given latent variable model one specifies a density function g(x) for
x and some map from the latent variables into the random variables t as

t = y(x, ω) + ε

where ω are the weights that generate t and ε is some random variable with
zero mean that is independent of x. Typically h(ε), the probability density of
ε, and g(x) are specified à priori. Knowing these distributions, the density of T
is computed by conditioning on the latent variables so that if T is a continuous
random variable,

(3) u(t) =

∫
f(t |x)g(x) dx.

In summary, a given latent variable method is determined by specifying g(x),
h(ε), the map y(x, ω) and computing u(t) with (3) or its generalization de-
pending on the probability measure involved.

One example of a latent variable method is factor analysis where one spec-
ifies that y is a linear map

t = y(x, ω) = Ωx + µ + ε
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from R
k to R

n. The µ and Ω are parameters, and x, ε are assumed to be
independent normal random variables with zero mean. For x one assumes unit
covariance while for ε one assumes that the covariance is a diagonal matrix so
that x ∼ N(0, I), and ε ∼ N(0, Γ) where Γ is some diagonal matrix. From
the structure of the map one can determine that T ∼ N(µ, Γ+ΩΩ′). As in the
case without latent variables, one may estimate µ, Ω and Γ using a maximum
likelihood estimate however even in the case of this linear model there is not a
closed form for the estimates and they are typically found through an iterative
process.

This linear model illustrates the point of using latent variables. In particular
for factor analysis, the symmetry of Γ + ΩΩ′ reduces the original kn free
parameters of Ω to [2]

(n + 1)(k + 1) − 1

2
k(k + 1)

which only grows linearly with n. This is accomplished while still preserving
some of the underlying correlation structure. The trade-off is the increase in
complexity when faced with the determination of the latent variables x. We
now turn to another method closely related to the projection onto latent spaces1

(PLS). Namely principal component analysis.

3 Principal component analysis Principal component analysis (PCA) is
the particular latent variable method where the k principal components are the
leading eigenvectors of the sample covariance matrix

Σ̂ =
1

m − 1

m∑

j=1

(τj − µ̂)(τj − µ̂)′.

Rather than using the covariance matrix, an alternative choice (not used here)
is to base PCA on the correlation (basically standardized covariance) matrix.
In either case, PCA can be viewed as a transformation that diagonalizes Σ̂
thereby reducing correlations between various combinations of factors while
simultaneously finding directions in which the variance is a maximum.

Another way to view PCA is in the mean squared error sense [5]. With
this viewpoint, the objective is to find a set of k orthonormal basis vector that
span a k dimensional subspace such that the mean squared error between x and
its projection onto the subspace is a minimum. As before the n × m matrix
T corresponds to m observations of n random variables. If one denotes the

1In much of the statistical literature, the latent space methods are known as partial least squares
methods. Fortunately this yields the same PLS mnemonic.
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orthonormal basis set as {ξj}k
j=1 and the projection of T onto this set as Tξ

then the expected value of the mean square error is

E
(
‖T − Tξ‖2

)
= E

(∥∥∥∥T −
k∑

j=1

(ξ′jT ) ξj

∥∥∥∥
2)

= E
(
‖T‖2

)
− E

( k∑

j=1

(ξ′jT )2
)

= (m − 1)

(
Tr (Σ) −

k∑

j=1

ξ′j Σ ξj

)

(4)

where we have assumed E(T ) = 0 and Σ = TT ′/(m − 1) is the covariance
of T . By the spectral theorem every symmetric matrix Σ = Σ′ has a factor-
ization Σ = V DV ′ with D real diagonal and V an orthogonal matrix [8].
Consequently, Σ has n eigenvectors that can be chosen to be orthonormal and
moreover, all of the corresponding eigenvalues {λj} are real. From the right
hand side of expression (4) one can see that the mean squared error is mini-
mized by choosing {ξj} to be any set of k orthonormal vectors [3].

Representation (4) also illustrates the particular advantage of choosing the
first k eigenvectors of Σ. In this case the residual of the mean squared error is
the sum of the absolute values of the remaining n− k eigenvalues. Because of
the relationship, a natural method of choosing the number of latent variables is
to fix some acceptable level of error δ > 0 and then choose k so that

E
(
‖T − Tξ‖2

)
=

n∑

j=k+1

|λj | < δ.

It should be emphasized that these results only hold if the error is computed in
the mean squared sense.

3.1 Contrasting PCA and SVD The above material shows that PCA corre-
sponds to choosing the k dominant eigenvectors of the covariance matrix Σ.
Provided one has E(T ) = 0 this corresponds to finding the singular value de-
composition (SVD) of T . To illuminate the connection, let T = LSR′ be the
SVD of T where L and R are unitary matrices with columns that span R

n and
R

m respectively. From the decomposition of T and the fact that E(T ) = 0,
one has

Σ =
TT ′

m − 1
=

LSR′RS′L′

m − 1
=

LSS′L′

m − 1
.
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This should be compared to the eigenvector expansion of Σ = V DV ′ where
V is the matrix of orthonormal eigenvectors of Σ and D is the corresponding
diagonal matrix of eigenvalues. As a result, one can identify the eigenspace V
of Σ with the left singular space L of T . In addition, the matrix of eigenvalues
D = diag(λ1, . . . , λn) corresponds to the matrix

SS′

m − 1
=

diag(σ2
1 , . . . , σ2

n)

m − 1
.

If one does not ensure that E(T ) = 0 then at least the first component of
PCA and SVD indicate different primary directions. Figure 1 illustrates this
behaviour where T = 〈x, 3 − x + y〉 with x uniformly distributed on the
interval [0, 3] and y uniformly distributed on [−1/2, 1/2]. In this case the first
component of the PCA points in the direction corresponding to the maximum
variance of the data cluster, 〈−1, 1〉/

√
2, whereas the first component of the

SVD points in the direction of the centroid of the cluster, 〈1, 1〉/
√

2.

4 Difficulties with latent variables There are two disadvantages of these
initial models when one considers them with respect to the data mine. Firstly,
these models typically indicate that while there may be only a few principal
directions, these directions may have significant weight in many of their com-
ponents. This corresponds to the situation where one should ask large num-
bers of questions to determine which cluster to assign to a given individual. In
essence, this analysis does not provide a natural way to determine which of the
items is the best indicator (or the best few indicators).

Secondly, one must deal with the diverse collection of data in the data mine.
Responses range from binary information about the ethnicity of an individual
to continuous data regarding the market value of their dwelling. These two
problems suggest that a robust algorithm is needed to gain a foothold on the
structure of the mine before a more sophisticated latent variable analysis is
attempted.

5 Determining the best question(s)

5.1 Factor analysis as a first look at the mine Factor analysis is the means
by which we find the covariance relationship among many variables in terms
of a few unobservable (or latent) variables. For example, if someone owns a
Porsche, we would suspect that the person also has a high-paying job, lives
in an upper class neighbourhood, has a six-figure stock portfolio and dines at
high-class restaurants on a regular basis. If we were to label a latent variable
that encompasses these four variables, we could label it quality of life.
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FIGURE 1: Illustrated are the components of a two factor PCA and SVD anal-
ysis for a randomly generated set of m = 100 points (x, 3 − x + y) where
x is uniformly distributed on the interval [0, 3] and y uniformly distributed on
[−0.5, 0.5]. Since E(x) = E(y) = 3/2 6= 0, the PCA and SVD analysis yield
a different principal direction. For this simulation, ξ1

PCA = 〈−0.7043, 0.7099〉
and ξ1

SVD = 〈0.7978, 0.6029〉. The other complimentary components are
ξ2

PCA = 〈0.7099, 0.7043〉 and ξ2

SVD = 〈−0.6029, 0.7978〉.

In conducting a factor analysis, the basic model as discussed in Section 2
is:

(5) t = Ωx + µ + ε.

t is the observed random vector at n levels with a corresponding mean vector
µ so that µi is the expected value of ti. The vector x consists of the common
factors at k < n levels and the n × k matrix Ω is a matrix of coefficients
otherwise known as the factor loadings. The element Ωij is referred to as the
loading of the i-th variable on the j-th factor. In the above example, n = 4 and
k = 1.

The model (5) can be rewritten as

(6) t − µ = Ωx + ε
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and in order to have an orthogonal factor model, the following assumptions are
made:

• x and ε are independent so that Cov(x, ε) = 0,
• E(x) = 0 and Cov(x) = I ,
• E(ε) = 0 and Cov(ε) = Γ where Γ = diag(γ1, . . . , γn).

Based on these assumptions, equation (6) yields an expression for the covari-
ance of t,

Cov(t) = ΩΩ′ + Γ.

In particular for the variable ti one has, σ2
ii = l2i1 + · · · + l2ik + γi where

lij = Cov(ti, xj). The sum of l2i1 through l2ik is called the i-th commonality
while γi is the unique variance.

From here we can determine which common factors contribute the most
to the total variability in ti. The ultimate objective is to be able to group the
factor loadings for any one factor and attach some type of label to them as we
did with the Porsche example. In particular, we are interested in the loadings
which carry a significant amount of the weight.

There are two main methods for estimating the factor loadings: principal
component and maximum likelihood. The former uses the eigenvalue/eigen-
vector pairs of the sample correlation matrix in order to construct Ω. If x and ε
can be assumed to be normally distributed, then maximum likelihood methods
can be used to estimate the covariance matrix of t and thus ΩΩ′ + Γ.

In addition, if the initial factor loadings cannot be easily interpreted, var-
ious factor rotation methods exist to aid interpretation. The most common
method used is the Varimax method which seeks to spread out the squares of
the loadings on each factor as much as possible so that the factor loadings can
be grouped more easily. It should be noted that in recent years, Bayesian fac-
tor analysis has arisen [6]. One of the features of the Bayesian approach is
the elimination of the need to rotate factors. Bayesian factor analysis was not
attempted in the analysis of the data mine.

5.2 Ranked differences of means To deal with the eclectic data in the mine,
the most direct method of determining which questions seem to reflect the
choice of an individuals product preference is to compute the observed differ-
ence in means across the given factors. Moreover, this is easily accomplished
when there is a simple choice between two products as in the case studies that
follow. The idea can also be generalized to the case when there are multiple
products.

If only one product is under consideration the mine Ω is split into two
groups, those respondents that have the product and those respondents that
do not have the product. Denote these two groups as Ω1 and Ω2 consisting
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of m1 and m2 = m − m1 rows (respondents). For each of the n question
responses, one computes the test statistic

zj =
x1j − x2j√

s2

1j

m1

+
s2

2j

m2

, j = 1, . . . , n.

Using this statistic to classify the data is based on the need to find factors which
are important to all of the respondents, yet at the same time differentiate the
two groups. In terms of the solution to the normal equations, those factors with
a large value of zj correspond to coefficients which are large for both groups,
but the peaks in the graphs of the coefficients occur at significantly different
locations. It is precisely this failure to differentiate between the two groups that
demonstrates why latent variable methods do not work easily as a first step.

Due to the large number of samples (m � 50), the zj are each approxi-
mately normally distributed with zero mean and variance one under the null
hypothesis that there is no difference in means between the two groups. Or-
dering the test statistics from the most negative to the most positive induces a
reordering of the questions. In this sense, one can rank the indicators as to their
ability to differentiate the two populations with respect to a given product. The
factor with the largest observed values of zj define the starting points of the
cluster analysis and because of this, these particular questions form the first
steps into the data mine when Ω is viewed in the light of a given product.

Typically the number of questions, n, can be large, and one is likely to
find some means which will appear significantly different even when no dif-
ference in means exists. To analyse this situation let U be the number of the
of questions with a test statistic that lies in the interval (−s, s). If we assume
for simplicity that the questions are independent then U ∼ Bin(n, p) where
p = 2(1 − Φ(s)) and Φ(s) is the normal cdf. Therefore the probability that
U ≥ u and the expected value of U are

P (U ≥ u) = 1 −
u−1∑

j=0

(
n

j

)
pj(1 − p)n−j , E(U) = np.

The case studies at the end of this report use n = 53 data factors compiled from
census data. For this many factors and s = 3 standard deviations, one finds
that P (U ≥ 1) = 0.1289 and E(U) = 0.1378. Consequently, to eliminate any
false alarm differences we have chosen to consider statistically significantly
differences at three rather than the common two standard deviations from the
mean under the null hypothesis.
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6 Consumer based clustering A simple definition of classification or
clustering is using a metric or a set of rules which groups the data, and is also
used to classify future data. For example, medical diseases may be classified
by the manifesting symptoms which in turn describe each class or subclass
of a given disease. In data classification one develops a description or model
for each class in a database, based on the features present in a set of class-
labelled training data. There have been many data classification methods stud-
ied, including decision-tree methods, such as C4.5 algorithm, ID3 algorithm,
and SLIQ algorithm, statistical methods, neural networks, rough sets, nearest
neighbour method, database-oriented methods, parallel algorithms, etc. The
method for classification is in general application dependent, based on the goal
of mining the data.

In this paper we have chosen a relatively simple metric to determine the
clustering of the data, in particular, correlations between data columns corre-
sponding to the different questions. The choice of the metric is based on the
underlying goal that the salesperson has the opportunity to learn about a cus-
tomer’s preferences by asking only a few questions. This metric of clustering
then indicates which are the most informative data that one would like to infer
from these few questions. This metric is most similar to a nearest-neighbour
type rule, where two of the census data are near when they are strongly posi-
tively correlated.

Another reason for looking at this metric is that it is computationally ef-
ficient. In order to look for more complicated classification structures, one
could consider classification-rule learning which requires finding rules or de-
cision trees that partition the given data into predefined classes. Of course,
there many possible such decision trees; for any realistic problem domain of
the classification-rule learning, the set of possible decision trees is too large to
be searched exhaustively. In fact, the computational complexity of finding an
optimal classification decision tree is NP hard.

Therefore, we have not attempted to find an optimal decision tree; rather,
we have shown that the correlations give a fast classification of the mine, which
can be readily used in designing questions and conversations with customers.

7 Case study A: BMW/Honda The first case study considered BMW
and Honda owners. Given the census data on BMW and Honda owners grouped
by postal code the goal is twofold:

Select a few questions to ask prospective buyers to infer their BMW/Honda
preference.
Based upon the indicated preference, infer other information about the con-
sumer.
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For the following analysis there are a total of m = 1995 respondents which
are partitioned into mh = 1782 Honda owners and mb = 213 BMW owners.
Corresponding to each of these groups are n = 53 census data factors. Those
portions of the data mine corresponding to Honda and BMW owners are re-
ferred to as Ωh and Ωb respectively. As a starting point, we compute a PCA on
Ωh and Ωb.

7.1 PCA: BMW/Honda The eigenvalue structure of Σh and Σb, the co-
variance matrices of Ωh and Ωb, are virtually identical, ranging from λ1 '
2.6 × 1010 to λ53 ' 6.7 × 10−12. Figure 2(a) illustrates the logarithm of the
magnitude of the {λj}. What is apparent from the illustration is that λ1-λ4

account for much of the variation in the mine. In fact
∑4

j=1
λj

∑53

j=1
λj

= 0.9996.

Corresponding to these eigenvalues are eigenvectors focused in the direction
of factors 21 to 24. These questions correspond to the average home value,
average family income, average household income and total household expen-
diture. At the other end of the spectrum, λ52 and λ53 have eigenvectors that
identify a strong correlation between factors 32 to 35. These latter indicators
correspond to the average amount spent on public transportation, average spent
on streetcars and buses, average spent on taxis and average spent on airplanes.

This preliminary analysis indicates that questions that reflect the total in-
come and expenditure of a particular household should be good indicators of
whether or not an individual owns a BMW or Honda. In addition, there is
a certain amount of redundant information in the data mine with respect to
public transportation. The main difficulty with PCA remains in that it does
not identify a single question that best identifies BMW owners over Honda
owners. Some headway can be made by computing a factor analysis which is
attempted next.

7.2 A preliminary factor analysis In order to conduct a factor analysis, the
data was again split into Ωb and Ωh according to whether the vehicle owned
by the respondent was a BMW or Honda. Both principal component and max-
imum likelihood methods were used with three factors. However, the principal
component method accounted for more of the variability than the maximum
likelihood method. Varimax rotation was used in both methods. Table 1 sum-
marizes the analysis.

As can be seen from the results, the same variables contributed to whether
a person would own a BMW or a Honda with some variations. For example,
under Factor 3, average home value contributes more to a person being a BMW
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(a)

(b)

FIGURE 2: (a) Depicted are the eigenvalues for Σh and Σb, the covariance
matrices for the Ωh and Ωb subsets respectively. The similar spectral structure
for the BMW and Honda covariance typifies the difficulty encountered when
attempting to find differences between these two groups. (b) Displayed is the
ranked test statistic for the difference of means for each of the 53 factors. The
dashed lines indicate the level of three standard deviations and the reordering of
the factors is indicated at the base of the plot.
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Loading valuesFactor 1
BMW Honda

Total adult population 0.996 0.997
Total population 0.995 0.997
Total number of households 0.995 0.991
Total adult labour force 0.994 0.995
Total number of families 0.993 0.996
Total number of dwelling units 0.993 0.989

Loading valuesFactor 2
BMW Honda

% homeowners 0.922 0.939
% single-detached house 0.861 0.772
Average owners’ major payments 0.794 0.859
% home renters -0.924 -0.928
% apartment with ≥ 5 floors -0.746 -0.806
Average gross rent -0.698 -0.759

Loading valuesFactor 3
BMW Honda

Ave. home value 0.749 0.579
% self-empl. inc. 0.735 0.580
% univ. degree 0.694 0.714

Variability explainedFactor
BMW Honda

Factor 1 28.8% 28.5%
Factor 2 20.7% 22.3%
Factor 3 11.2% 8.5%
Total 60.7% 59.3%

TABLE 1: Listed are the three factors identified in the BMW/Honda data sample
and the corresponding loadings. The final table shows that these three factors
account for approximately 60% of the observed variability.

owner than a Honda owner. The percentage of variability in vehicle ownership
explained by the complete model is approximately the same for both: 60.7%
for BMW and 59.3% for Honda. Further analysis tools, such as discriminant
analysis or tree regression can be used to determine which of these variables
distinguish between BMW and Honda owners. The main conclusion is that
the principal factors are strongly positively correlated and the anti-correlated
components are small.

The factor analysis identifies a block of questions that differentiates the
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two groups. Further identification is possible by considering the difference of
means across the 53 factors.

7.3 Difference of means: BMW/Honda Figure 2(b) shows the ordered test
statistics for each of the n = 53 factors. Detailed explanations for all of the
census data can be found in the appendix at the end of this report. This ordering
induces a reordering of the factors to {21, 8, 23, 22, 24, 10, . . . , 18, 7}, with
factor 21 having the most negative and question 7 having the most positive test
statistic. This analysis also indicates that any questions related to 21, 8, 23,
22, 24, 10 are equally efficient at identifying BMW owners while factor 7 can
be used to identify Honda owners. Factors 21-24 correspond to average home
value, average annual family income, average annual household income, and
annual household total expenditure, 8 reflects the percentage of individuals
in a dwelling with a university education, 10 indicates self employment, 7
indicates the percentage of those subjects in a dwelling with only up to grade
nine education and question 18 identifies those individuals living in dwellings
with more than five stories. These initially identified factors can now used
as starting points for a cluster analysis. Notice that many of these data items
appear in the preliminary factor analysis.

Being able to identify a particular individual as a BMW or Honda owner
is an important factor for the cluster analysis that follows. To differentiate we
choose question 21, the average home value. We can use the data mine to de-
termine the particular house value that should be used as a cutoff value to cor-
rectly identify the maximum number of individuals. That is, determine x such
that P (H < x and B > x) is a maximum where H and B are the responses to
question 21 for the Honda and BMW owners. Figure 3(a) shows that this prob-
ability has a maximum of 0.41 for x chosen in the interval ($230K, $240K).
This procedure of choosing an optimal cutoff value from the probability struc-
ture encoded in the mine can be repeated for other questions to increase the
differentiating power.

Detected differences in the mean response can be quite subtle. As an il-
lustration of this, Figure 3(b) contrasts the probability distributions of the re-
sponse to question 21 and question 7 for the two groups. For the cluster anal-
ysis that follows, the first six, 21, 8, 23, 22, 24, 10, and the last six factors,
48, 26, 4, 20, 18, 7, are used to define the initial clusters. By doing this it is
hoped that the cluster analysis will be able to identify sequences of questions
that link the Honda group to the BMW group. This in turn may help identify
characteristics of prospective BMW owners.

7.4 Cluster analysis: BMW/Honda A cluster analysis was performed for
two cases with correlations at the 60% and 75% level indicated. The first anal-
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ysis was performed by considering only the BMW owners while the second
analysis considered the complete data mine. As the number of Honda own-
ers was much larger than the number of BMW owners, a cluster analysis of
only Honda owners matches that obtained when using the complete data mine.
Figure 4 summarizes the results.

What is immediately apparent is the greater resolution one can achieve in
the data mine with the BMW group. On the left hand side of each cluster
diagram are those questions identified with the most negative test statistic (+
BMW) and on the right are those questions corresponding to the most positive
test statistic (− BMW). Those traits that identify BMW owners are household
value and income, university education and self employment. Characteristics
that directly stem from these traits are donations to charity, amount spent on
public transportation and amount spent on personal care. From the other end of
the data mine, individuals that do not own a BMW are characterized as either
renters or having less than a grade nine education. A link between the renters
and those with expensive homes is the number of cars per household and the
subsequent expenditure on tires, gasoline, food and transportation.

This cluster analysis implies that there are many possible ways to identify
a BMW owner. For example, university educated individuals that do not rent
and outwardly appear to spend a great deal on personal care. Once identified,
the characteristics of this group could be targeted for a broad range of products
or services that lie within the identified common interests. Examples of these
interests include cosmetics, expensive tires, and perhaps even endowments to
universities.

When we consider the entire mine there is a loss of resolution but much of
the structure remains. In addition, other characteristics come to the forefront.
Two new characteristics are a stronger correlation with the amount spent on
computers the loss of the correlation with public transportation. A possible
implication here is that Honda owners with an expensive home may be differ-
entiated from BMW owners by the amount that they spend on airlines. Again
we point out that being able to accurately classify an individual is an important
first step in that the clustering reflects this bias. However, mis-identifying an
individual does not have as serious a consequence as one might first expect.
The clustering analysis supports this by illustrating that much of the structure
is preserved when moving from BMW to Honda owners. To contrast with the
BMW/Honda data, the second case study considers consumer preference of
two brands of domestic beer.

8 Case study B: beer preference Our second case study addresses beer
preferences amongst a sample of 707 individuals. Each individual was asked to
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(a)

(b)

FIGURE 3: (a) Probability of correctly identifying Honda and BMW simulta-
neously for a given known home value. This distribution has an extreme value
of 0.41 for the interval ($230K, $240K). At this cutoff value the probability of
correctly identifying a Honda owner is 999/1782 (56%) and that of identifying
the BMW owner is 156/213 (73%). (b) On the left is the probability distribution
of responses to question 21 (average home value). To the right is the probabil-
ity distribution to factor 7 (percentage of household with less than a grade nine
education). These factors yield the most negative and most positive values of zj

respectively.
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FIGURE 4: To the left are the data clusters considering only the BMW group
while to the right is the the same analysis considering the complete data mine. On
the + side of each figure, the factors are larger or more likely for BMW owners,
while the − side of each figure the factors are smaller or less likely for BMW
ownership. Cutoffs at 60% and 75% in the correlation level (either positively or
negatively) are indicated. Explanations for all of the data factors can be found at
the end of the report.

indicate their preference for two different brands of beer (Brand A and Brand
B) according to the four point scale:

0: Don’t drink
1: Tried in the past 12 months
2: Becoming usual
3: Usual brand.

As no respondents indicated that either brand was their usual brand, the re-
sponses broke into nine separate classifications. Figure 5 shows the result-
ing tree structure and the four groups into which the individuals were placed.
Group I essentially consists of non-drinkers, group II and III tend to prefer
brands A and B respectively, and group IV respondents strongly prefer both
brands.

8.1 Difference of means: beer No significant differences were detected in
a direct comparison of groups II and III since all of the zj statistics were lo-
cated within two standard deviations. Large scores were detected when com-
paring groups I and IV but since group IV consisted of only five individuals
our underlying assumptions of normality were no longer valid. Since the 53
characteristics do not seem to be able to clearly differentiate the two brands
of beer, it was more appropriate with this data set to compare drinkers of both
brands versus those individuals that do not drink either brand. As such, groups
II, III and IV were consolidated into a single group which was then compared
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FIGURE 5: The classification tree structure for the beer preference respondents.

to group I. The portions of the data mine concerning these two groups will be
referred to as Ωb and Ω1. Figure 6 illustrates the spectral structure of these two
classifications and distribution of the difference of means.

Comparing Figure 6(a) with Figure 2(a) illustrates a striking similarity with
the eigenvalue distribution of the beer data and the car data of the previous
study. This similarity is also reflected in the preliminary factor analysis which
has been omitted because of its similarity to the BMW/Honda analysis. Even
though the eigenvalue structure was similar, none of the test statistics lie out-
side of the three standard deviations. Despite this, we begin the cluster analysis
starting with factors 50, 7, 48 on the drink beer side of the data mine and fac-
tors 27 and 14 on the don’t drink beer side of the mine.

8.2 Cluster analysis: beer preference We again remind the reader that a
full explanation of each of the factors from the census data can be found in the
appendix. Correlations between the starting factors 7, 14, 27, 48, 50 and the
remaining questions were detected once the cutoff level was dropped to 50%.
This reduction in the cutoff level was expected given the lack of significant
differences detected in the previous section. Figure 7 summarizes the results
and illustrates that respondents that prefer these brands seem to fall along eth-
nic lines. The analysis also indicates that beer drinkers are characterized by
individuals that rent rather than living in a single detached house. However,
with this collection of 53 factors there was no additional product information
that could be correlated with these individuals.

Without a clear indication of questions that differentiate between beer drink-
ers and non beer drinkers, at least for these two brands of beers, we do not
attempt to correlate other characteristics. Clearly, some additional analysis is
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(a)

(b)

FIGURE 6: (a) Eigenvalues for Σb and Σ1, the covariance matrices for the Ωb

and Ω1 subsets respectively. (b) Ranked test statistic for the difference of means
for each of the 53 factors from the census data . As in Figure 2(b), the dashed
lines indicate the level of three standard deviations and the reordering of the
factors is indicated at the base of the plot.
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FIGURE 7: Illustrated is the cluster analysis for beer drinkers. The correlation
cutoff was set at 50%. Solid lines represent positive correlations and dashed lines
represent negative correlations. On the left of the are those indicators whose
mean response for beer drinkers was higher than for non beer drinkers.

necessary to improve the first part of the analysis, namely, making distinctions
according to a particular product preference. Since the difference in means is
not significantly large for any one factor, this suggests that a combination of
questions would be necessary to make a significant distinction. As mentioned
above, a factor analysis has not been done for this data set; however, one could
use this analysis to design a combination of a few questions as a first algorithm
for differentiating between consumers.

9 Conclusion For a given product two tasks were required. The first
being identification of consumers that would react favourably to product and
the second being the inference of other characteristics concerning these con-
sumers.

This was accomplished with a twofold strategy. By ranking the differ-
ence of means across all of the factors, those questions that best characterize
favourable consumers can be identified. Once identified, the data mine can
be used to estimate the power of a given strategy to correctly identify a given
individual. For case study A the identification algorithm was simply to use an
individuals home value. By optimizing the cutoff level this single variable was
able to correctly identify 41% of the individuals in the data mine. By using
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a combination of questions this percentage could be increased. Performing a
cluster analysis that is rooted at these key identifying questions allows other
characteristics of these consumers to be inferred.

The two case studies show that being able to identify questions that sig-
nificantly differentiate respondents with respect to a given product is a funda-
mental part of the process. Failure to make this identification decreases the
resolution of the subsequent cluster analysis. Case study A exemplifies the sit-
uation when there is a clear separation with respect to a product whereas case
study B illustrates the decrease in resolution when no clear separation exists.
In general, this first step may be dependent on the type of data and the desired
differentiations. A combination of factor analysis and the consideration of dif-
ferences in basic test statistics proved to be superior to methods based on latent
variables or principal components, due to the underlying eigenstructure of the
data mine.

To increase the capability of this method future advances should include
a more sophisticated clustering algorithm. For example, PLS/SVD could be
used on the clustering subgroups after the first step of separating with the dif-
ference of the means statistic. An addition, automatic determination of the
identification power for a given set of identifying questions should also be ad-
dressed.

Appendix: Factors from Census Data
Question Description Mnemonic

01 Total population PP-TOT
02 Total number of families FM-TOT

Household
03 Total number of households HH-TOT
04 Average gross rent HH-TOTRENT
05 Average owner’s major payments HH-TOTMAPJ

Education
06 Total population 15 years old and over ED-HL
07 Percent education level: less than grade 9 ED-GR-9

Percent education level: university with bachelor’s degree08
or higher

ED-UNIDG

Employment
09 Total labour force 15 years old and over EM-TOT
10 Percent employment: self-employed (incorporated) EM-PSMI
11 Percent employment: self-employed (unincorporated) EM-PSMU
12 Percent employment: unpaid family workers EM-UP

Dwelling
13 Total number of dwelling units DM-TOT
14 Percent: dwelling type: single-detached house DW-SINGLE
15 Percent: dwelling: semi-detached house DW-SEMI
16 Percent: dwelling type: town house DW-ROW
17 Percent: dwelling type: apartment, detached duplex DW-DUP
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18 Percent: dwelling: apartment building, five or more storeys DW-APT5
19 Percent: homeowners DW-OWNED
20 Percent: home renters DW-RENTED
21 Average home value DW-TVALUE

Income
22 Annual average family income IN-AFM
23 Annual average household income IN-AHH

Expenditures
24 Annual household total expenditure D1000-5230
25 Annual expenditure on food D1000-1560
26 Annual expenditure on rent D2000
27 Annual expenditure on transportation D3000-3260
28 Annual expenditure on purchase of automobiles and trucks D3000-3004
29 Annual expenditure on automobiles D3000
30 Annual expenditure on gasoline and other fuels D3050
31 Annual expenditure on tires, batteries, parts and supplies D3060
32 Annual expenditure on bus, subway, street car and train D3200
33 Annual expenditure on public transportation D3200-3260
34 Annual expenditure on taxi D3210
35 Annual expenditure on airplane D3220
36 Annual expenditure on moving, storage and delivery services D3260
37 Annual expenditure on accident and disability insurance D3384
38 Annual expenditure on personal care D3500-3580
39 Annual expenditure on recreation equipment and services D3700-3830
40 Annual expenditure on computer hardware D3750-3752
41 Annual expenditure on computer software D3755
42 Annual expenditure on gifts of money and contributions D5200-5230
43 Annual expenditure on gifts to persons living outside Canada D5210
44 Annual expenditure on contributions to charity D5220-5230
45 Annual expenditure on non-religious charitable organizations D5230
46 Average number of vehicles owned per household NMVEHONP

Ethnicity
47 Percent ethnicity : British BRITISH
48 Percent ethnicity : Chinese CHINESE
49 Percent ethnicity : Dutch DUTCH
50 Percent ethnicity : German GERMAN
51 Percent ethnicity : Italian ITALIAN
52 Percent ethnicity : Polish POLISH
53 Percent ethnicity : Scandinavian SCANDINAV
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