
Bottom-Up Fuzzy Partitioning in Fuzzy Decision Trees

Maciej Fajfer
Dept. of Mathematics and Computer Science

University of Missouri – St. Louis
St. Louis, Missouri 63121

maciejf@kme.pl

Cezary Z. Janikow
Dept. of Mathematics and Computer Science

University of Missouri – St. Louis
St. Louis, Missouri 63121

janikow@umsl.edu

Abstract
FID is a publicly available fuzzy decision tree software for
classifying fuzzy data. This paper describes a new domain
partitioning technique, bottom-up, which has just been
implement to complement the previously available top-
down technique.

1. Introduction

Decision trees are one of the most popular methods for
learning and reasoning from feature-based examples [7].
However, they often have been criticized for their persistent
over-reliance on near-perfect data, and for the resulting deg-
radation in the presence of imperfect data. Data imperfec-
tion might have been the result of noise, imprecise
measurements, subjective evaluations, inadequate descrip-
tive language, or missing data. Additional problems arise
from continuous or simply large nominal attributes - all
such domains have to be partitioned. Some of these poten-
tial problems have been successfully addressed in the past.
For example, Quinlan has proposed some methods for deal-
ing missing features both in training data and in the exam-
ples to be classified [8]. Continuous domains have been
addressed by CART [1] and subsequently by C4.5, along
with tree pruning techniques [9].

A more recent method is to combine fuzzy representa-
tion, and in particular its ability to provide comprehensible
descriptive language, and its approximate reasoning tech-
niques, with decision trees. The result is a fuzzy decision
tree, such as that described in [3].

The methodology consists of three elements. First, there
are two domain partitioning methods: one is top-down, cre-
ating local and minimal partitioning needed for generating
a fuzzy tree, the other is bottom-up, creating more global
partitioning. Here, domain partitioning is performed prior
actual tree generation. Second, there is a procedure for
building fuzzy decision tree, which tree can also be inter-
preted as a set of fuzzy rules. The tree can be built using a
number of potential fuzzy norms. Finally, there are a num-

ber of inference rules, for assigning classifications to new
samples - based on the information extrapolated from the
tree. The inferences fall into two basic categories: set-based
(following local inferences in fuzzy rules) and exemplar-
based (following exemplar-based learning). The software
can handle a mixture of features: symbolic, fuzzy terms,
and numeric, and it can reason under incomplete/missing
information.

This paper describes the new bottom-up domain parti-
tioning technique. The previously available technique was
aimed at producing the minimal set of partitions locally
necessary for minimizing tree size [4]. As such, it was a top-
down technique, implementing domain splitting rules while
building a tree. However, the fuzzy decision tree has just
been extended to a decision forest (described separately),
which uses redundant knowledge for performing more elab-
orate classification. This redundancy requires more global
rather than minimal local partitioning. Such a domain parti-
tioning is presented here.

2. Fuzzy Decision Trees

Decision tree methods use recursive partitioning proce-
dures to build decision trees. Subsequently, they use match-
ing inference procedures for classification of new samples.

ID3 [7], and its successor C4.5 [9], along with CART
[1], are the two most widely used decision trees. Their basic
ideas are the same: partition the sample space in a data-
driven manner, and represent the partition as a tree. An
important property of these algorithms is that they implic-
itly attempt to minimize the size of the tree while optimiz-
ing some local quality measure - such as entropy or gini
index [1][7][9].

The tree is constructed in a data-driven algorithm. Each
node in the tree represents a subspace of the event space,
and thus the whole tree is a partitioning procedure on the
event space. In each node, the partitioning continues by
selecting the best decision (an attribute or a relation) to fur-
ther partition the subspace. When a single attribute is
selected for the split decision, the most commonly used

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357321203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

selection method is information gain, which is computa-
tionally simple and effective: select an attribute for testing
(or a new threshold on a continuous domain) such that the
information difference between that contained in a given
node and in its children nodes (resulting from splitting
according to those tests) is maximized. The information
contents is measured according to [7]:

, where C is the set of decisions,

and pi is the probability that a training sample in the node
represents class i.

1. The root of the decision tree contains all training exam-
ples. It represents the whole description space since no
restrictions are imposed yet.

2. Work with any node N. The node becomes a leaf when
either its samples come from a unique class, when all
attributes are used on the path leading to the node, or
when possibly information in the node becomes too
unreliable (e.g., when too few examples are found). Pro-
ceed only when decided to further split the node.

3. Compute the information content at the node N. Then,
for each attribute ai not appearing on the path to N and
for each of its domain values aij, compute the informa-
tion contents in children nodes restricted by the addi-
tional condition ai=aij. Subsequently, compute a
combined weighted information contents in all the chil-
dren, and the resulting gain with respect to N. Note that
for the not-pre-partitioned domains, the algorithm tries
all applicable thresholds, selecting the best one - this
results in a binary test (note that such attributes can
appear more than once on a given path, with different
binary test).

4. Select the attribute maximizing the gain, and subse-
quently split node N using the applicable tests.
Afterwards, decision trees use the same basic inference

mechanism for classifying new samples. Features of a sam-
ple are matched against the tests of the tree, starting from
the root and descanting along the matching path. The sam-
ple is classified according to the classification of the leaf
that it reaches.

Fuzzy decision trees differ in two respects: they use
splitting criteria based on fuzzy restrictions, and their infer-
ence procedures are different. Fuzzy sets defining the fuzzy
terms used for building a tree are imposed on the algorithm
(or generated in the domain partitioning stage).

FID is a widely used publicly available fuzzy decision
tree. It can handle data described by various kinds of
attribute domains. For example, the same data can be
described by a mixture of nominal attributes and attributes
with continuous domains - which can be prepartitioned by
the user or not. The same mixture of values can be used as
classes values. Each piece of data is also augmented with a

“confidence” weight (disregarded here in subsequent pre-
sentation).

If some domains lack partitioning, the algorithm per-
forms the preprocessing, in which either the top-down or
the bottom-up technique is applied to partition such
domains. After the preprocessing, the fuzzy decision tree is
constructed similarly to the standard decision tree, with a
recursive depth-first procedure. However, there are a num-
ber of subtle differences:

1. Data samples may match more than one test of a node.
When aggregated over multiple levels, this leads to sam-
ples falling into many nodes, with a real-valued degree
(based on the aggregated match to the fuzzy restrictions
on the path).

2. The information contents formula is modified to reflect
partial memberships (in addition to allowing absent fea-
tures). For details, see [3].

3. Fuzzy match is determined based on preselected norms,
or by selecting best norms from a predefined set.
However, the most profound differences are in the pro-

cess of classifying a new sample. These differences arise
from the fact that

• FID trees have leaves that are more likely to contain
samples of different classes (with different degrees of
match),

• the inference procedure is likely to match the new sam-
ple against multiple leaves, with varying degrees of
match.

Figure 1 Illustrations of the knowledge of two FID
trees trained for the mexican sombrero function.

IN pi pilog⋅()
i 1=
C∑–=

0.00

0.50

1.00

0.00

0.50

1.00

To account for these potential problems, a number of
inferences routines have been proposed. Some inferences
follow the ideas of approximate reasoning [3], other follow
machine learning principles of exemplar learning [4]. Some
of these inferences have more global character, some are
more local and behave like noise filters [3]. Whatever spe-
cific inference is used, the outcome is a value from the
domain of the class variable.

FID trees have been shown to be capable of producing
knowledge which is both comprehensible yet capable of
generating finer levels of detail - depending of the actually
used inferences. For more information, see [3].

As an illustration of the descriptive power of FID trees,
consider the well known mexican sombrero function [10].
When the FID tree is trained with data samples from a
13x13 grid, using domains with predefined 13 fuzzy terms,
two of its interpretations, following two different infer-
ences, are illustrated in Figure 1.

3. Fuzzy Partitioning

If at least one attribute does not have a predefined fuzzy
partitioning (does not have the linguistic domain), data-
driven preprocessing is invoked in order to partition such
domains for relevant attributes (and not necessarily all such
attributes).

All attributes with predefined partitions retain their given
partitions. The remaining attributes are partitioned with
fuzzy sets. There are two different methods available. One,
reported previously [4], only partitions attributes relevant to
building a decision tree. Below we describe the new
method, which attempts to partition all domains in a more
global way.

4. Bottom-up Partitioning

The bottom-up partitioning is a global data-driven parti-
tioning strategy. It is aimed at partitioning all continuous
domains. Moreover, based on some user parameters, each
domain may be forced to have a number of partitions in
some predefined range (between minNumLingVals and
maxNumLingVals).

The process starts with a maximal partitioning (at the
data level, that is each attribute-value is treated as an indi-
vidual partition of the given domain) and then uses heuris-
tics to generalize that partitioning. The algorithm consists
of three main stages: clustering, safe merging and merging.
In the initial clustering stage, every data event is assigned to
an individual cluster. Then iteratively, two nearest clusters,
using some distance measure, are joined as long as a given
error measure is not exceeded.

The clustering stage ends with projecting the clusters
onto the domains. This creates initial partitioning for the

merging stage. Safe merging combines neighboring parti-
tions only if they contain data of exactly the same classifi-
cation. It is followed with the proper merging, in which
entropy measure and error rate are both used to select parti-
tions to be joined. The process stops when no more joins
can be made under the allowed error rate.

This algorithm is an extension of a similar algorithm
proposed by Grzymala-Busse [2].

4.1 Clustering

The set of training examples is

, where is the fuzzy

class or continuous decision value, , where

is number of examples and is the number of attributes
used in discretization (only those subject to discretization).
The set of clusters is , , where

is the number of clusters.

Figure 2 Illustration of projection of clusters.

1. We start with N clusters. Each cluster consists of one
example and it is a point in the hyperspace defined by
the set of attributes.

2. Compute the distance between clusters i and j as:

3. Join two closest clusters into , and compute

new distances to all remaining clusters using the follow-
ing formula

4. For each cluster, compute the error rate

E e j e j u j
1 …u j

n y j,,()={ }= y j

j 1 …N,= N

n

C cD{ }= D 1 …m,= m

LB RBLA

cA

cB

cC

BA

BB

BC

UA

V2

V1

dij ui
k u j

k–()
2

k 1=

n

∑=

cA cB, cAB

cD C∈ cD cAB≠,()∀ dAB D,
dAD dBD+

2

dAB

4
---------+=

EcD

Pk
cD

k 1=

DC

∑ maxk 1 … Dc,= Pk
cD()–

Pk
cD

k 1=

DC

∑
---=

5. If the global error rate is greater

than a parameter ClusterStop, stop clustering, undo
the last join and go to the next step, otherwise go back
to step 3.

6. Project the clusters onto domains and create partitions.
Figure 2 illustrates partitions for attribute :

[)[], and : [)[], gener-

ated by clusters . To define partitions we use the

minimal boundary of every cluster on a given attribute
and the maximal boundary of all maximal boundaries
(skipping clusters which define subdomains of any other
cluster).

4.2 Safe Merging

Safe merging is the process of joining neighborhood par-
titions under the condition that they contain examples
belonging to exactly the same class. For example, partitions

and in Figure 3 would be merged if they contained
examples of exactly the same class. We repeat the process
for all possible unions.

Figure 3 Safe Merging.

4.3 Merging

Merging is the final joining process, where partitions
containing different classes can be joined - the process is
driven by heuristics (entropy) and error measures.

1. Compute entropy in every partition :

.

2. For all possible unions compute the resulting entropy as

.

However, union on a given attribute is possible if the

number of partitions is still greater than the parameter
minNumnLingVals.

3. Find the union with minimum over all attributes.
4. Join partitions i and j. Compute error rate for all hyper

subspaces defined by partitions on all attributes

and global error rate

5. If is less than parameter MergeStop then accept the
union, update needed entropies and go to step 3. Other-
wise, undo the union, select next union with minimum

, and go to step 4. If no more unions can be
selected, go to step 6.

6. If there are attributes on which the number of partitions
is greater than parameter maxNumLingVals then
continue merging these attributes as long as needed,
regardless of the error rate.

4.4 Creation of Fuzzy Terms on Partitions

Let us assume that we have n partitions on a
given attribute, where . Partition generates
a fuzzy set, at present trapezoidal, in such as way the fuzzy
set intersects neighboring sets (for and) at
and , respectively (except for the first and the last sets).

5. Summary

We have described a method to partition continuous or
large-valued domains into fuzzy sets. The method is data
driven and each domain is partitioned in a data-driven man-
ner. The method is bottom-up as it starts with maximal par-
titions, which are subsequently refined and merged. The
method is especially applicable to just released upgrade to
the fuzzy decision forest, which methodology relies on
redundant knowledge and thus requires partitioning of all
attributes. Therefore, the resulting partitioning are evalu-
ated in the context of the decision forest, reported sepa-
rately.

A public release of FID4.0 is available at
http://www.cs.umsl.edu/~janikow/fid/.

E

Pk
cD

k 1=

DC

∑

Pk
C

k 1=

DC

∑
--------------------EcD

cD C∈
∑=

V 1

LA LB, LB RB, V 2 BC BB, BA U A,

cA cB,

R1 R2

V1

V2

V3

V4

R2 R3R1 R4

Ri

I
Ri Pk

Ri

P
Ri

Pk

Ri

P
Ri

-------log
⎝ ⎠
⎜ ⎟
⎛ ⎞

k 1=

DC

∑–=

I
Ri R j, P

Ri

P
Ri P

R j+()
--------------------------I

Ri P
R j

P
Ri P

R j+()
--------------------------I

R j+=

I
Ri R j,

Ehsi

Pk
hsi

k 1=

DC

∑ maxk 1 … DC,= Pk
hsi()–

Pk
hsi

k 1=

DC

∑
---=

E

Pk
hsi

k 1=

DC

∑

Pk
HS

k 1=

DC

∑
-------------------Ehsi

hsi HS∈
∑=

E

I
Ri R j,

R1 …Rn,
Ri ai bi,()= Ri

Ri 1– Ri 1+ ai
bi

References

[1] L. Breiman, J.H. Friedman, R.A. Olsen & C.J. Stone. Clas-
sification and Regression Trees. Wadsworth, 1984.

[2] M.R. Chmielewski and J.W. Grzymala-Busse. Global Dis-
cretization of Continuous Attrributes as Preprocessing for
Machine Learning. In T.Y. Lin and A.M. Wilderberger,
(eds), Soft Computing: Rough Sets, Fuzzy Logic, neural Net-
works, Uncertainty Management, Knowledge Discovery,
1995, pp. 294-297.

[3] C.Z. Janikow. Fuzzy Decision Trees: Issues and Methods,
IEEE Transactions on Systems, Man, and Cybernetics, Vol.
28, Issue 1, pp. 1-14, 1998.

[4] C.Z. Janikow and M. Faifer. Fuzzy Partitioning with FID3.1.
Proceedings of the 18th International Conference of the
North American Fuzzy Information Society, IEEE 1999, pp.
467-471.

[5] C.J. Merz, P.M. Murphy. Repository of machine learning
databases. Univ. of CA, Dept. of Information and Computer
Science, 1996.

[6] R.S. Michalski. Understanding the Nature of Learning. In
Machine Learning: An Artificial Intelligence Approach, R.
Michalski, J. Carbonell & T. Mitchell (eds.), Vol, II, pp. 3-
26. Morgan Kaufmann, 1986.

[7] J.R. Quinlan. Induction on Decision Trees. Machine Learn-
ing, Vol. 1, 1986, pp. 81-106.

[8] J.R. Quinlan. Unknown Attribute-Values in Induction. In
Proceedings of the Sixth International Workshop on
Machine Learning, 1989, pp. 164-168.

[9] J.R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA. 1993.

[10] I. Suh, Hong & T.W. Kim. Fuzzy Membership Function
Based Neural Networks with Applications to the Visual Ser-
voing of Robot Manipulators. IEEE Transactions on Fuzzy
Systems, Vol. 2, No. 3, 8/1994, pp. 203-220.

