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Šμ¡ÊÏ±¨´ �.�., ‘É·μ±μ¢¸±¨° ….�. E2-2013-14
‘¶¨´μ¢μ§ ¢¨¸¨³Ò¥ ´ ¡²Õ¤ ¥³Ò¥ ¨ ¶ · ³¥É· D2

¢ · §¢ ²¥ ¤¥°É·μ´  ¨ 3He

ŒÒ  ´ ²¨§¨·Ê¥³ ¨³¶Ê²Ó¸´Ò¥ · ¸¶·¥¤¥²¥´¨Ö ±μ´¸É¨ÉÊ¥´Éμ¢ Ö¤·  3He ¨ ¸¶¨-
´μ¢μ§ ¢¨¸¨³Ò¥ ´ ¡²Õ¤ ¥³Ò¥ ¤²Ö ·¥ ±Í¨° · §¢ ²  (3He, d), (3He, p) ¨ (d, p). �¸μ-
¡μ¥ ¢´¨³ ´¨¥ Ê¤¥²Ö¥É¸Ö μ¡² ¸É¨ ³ ²ÒÌ μÉ´μ¸¨É¥²Ó´ÒÌ ¨³¶Ê²Ó¸μ¢ ±μ´¸É¨ÉÊ¥´Éμ¢
Ö¤¥· £¥²¨Ö-3 ¨ ¤¥°É·μ´ , £¤¥ ¥¤¨´¸É¢¥´´Ò° ¶ · ³¥É·, μ¡μ§´ Î ¥³Ò° ¢ ²¨É¥· ÉÊ·¥
± ± D2, ¨£· ¥É μ¶·¥¤¥²ÖÕÐÊÕ ·μ²Ó ¤²Ö ¸¶¨´μ¢μ§ ¢¨¸¨³ÒÌ ´ ¡²Õ¤ ¥³ÒÌ. ŒÒ
É ±¦¥ ¤¥² ¥³ μÍ¥´±Ê ÔÉμ£μ ¶ · ³¥É·  ¤²Ö ¤¥°É·μ´  ´  μ¸´μ¢¥ ¸ÊÐ¥¸É¢ÊÕÐ¨Ì
¤ ´´ÒÌ ¶μ É¥´§μ·´μ°  ´ ²¨§¨·ÊÕÐ¥° ¸¶μ¸μ¡´μ¸É¨ (d, p)-·¥ ±Í¨¨.
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¨ �.Œ. � ²¤¨´  �ˆŸˆ.
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Spin-Dependent Observables and the D2 Parameter
in Breakup of Deuteron and 3He

We analyze the momentum distributions of constituents in 3He, as well as
the spin-dependent observables for (3He, d), (3He, p), and (d, p) breakup reactions.
Special attention is paid to the region of small relative momenta of the helium-3 and
deuteron constituents, where a single parameter, D2, has determining role for the
spin-dependent observables. We extract also this parameter for the deuteron, basing
on the existing data for the tensor analyzing power of this (d, p) breakup.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

Momentum distributions of one and two nucleon fragments in the lightest
nuclei such as 3He and deuteron give important information about nuclear system
structure. They cast light on such interesting problems as the nucleonÄnucleon
interaction at short distances, the role of three-body interaction (the 3N forces
in the 3He case), and non-nucleonic degrees of freedom in nuclei. Data on
spin-dependent observables contain an important complementary information to
this.

Precise data are currently available on the momentum distributions of the
proton and deuteron in 3He obtained with electromagnetic [1Ä4] and hadronic
probes [5Ä7]. Data on the energy dependence of the differential cross sections of
backward elastic 3He(p,3He)p scattering, which are related to the same momen-
tum distributions, also exist [8, 9]. Furthermore, the spin-correlation parameter
Cyy for this reaction was recently measured for the ˇrst time [9]. Finally, the
tensor polarization of the deuteron in the 12C(3He, d) reaction was also mea-
sured [10,11]. Both these and the Cyy data [9] are sensitive to the spin structure
of 3He.

A convenient parameterization of the fully antisymmetric three-nucleon wave
function based on the Paris [12] and CD-Bonn [13] potentials has been pre-
sented [14]. We used it in Ref. [15] in order to calculate the momentum distrib-
utions in 3He, as well as the spin-dependent observables, within the framework
of the spectator model for the 3He breakup reactions. In [15], we paid special
attention to the study of the two-body 3He → d + p channel and compared our
results with other theoretical works and existing experimental data.

In our analysis [15] of spin-dependent observables for (3He, d) and (3He, p)
reactions, we carefully consider their behavior in the region of small (below
≈ 150MeV/c) internal momenta of the 3He fragments, where a single quantity,
known in the literature as the D2 parameter, completely determines both the sign
and the momentum dependence of the observables.

Similar parameter is known for the bound 2N system (the deuteron) as well.
It determines the behavior of spin-dependent observables for the (d, p) breakup
in the same sense as for the 3He case, but for the (d, p) breakup rather good
database exists what makes possible an independent extraction of this parameter.
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We performed here the corresponding analysis; the obtained result agrees well
with existing theoretical values as well as with experimental estimations, extracted
from low energy reactions.

1. PARAMETERIZATION OF THE THREE-NUCLEON WAVE
FUNCTION

We here give a brief review of the parameterization of the 3He wave func-
tion [14]. Working in the framework of the so-called channel spin coupling
scheme (Ref. [16]), the authors of Ref. [14] restricted themselves to ˇve partial
waves ∣∣∣∣[(

(�s)j
1
2

)
KL

]
1
2

〉
, (1)

where �, j, and s are the orbital, total, and spin angular momenta for the pair
(the 2nd and 3rd nucleons); L and K are relative orbital angular momenta for the
spectator (the 1st nucleon) and the channel spin, respectively. Coulomb effects
are not included. The appropriate quantum numbers of the partial waves are
collected in Table 1.

We use the standard deˇnition of the Jacobi coordinates r (the relative coor-
dinate between nucleons in the pair) and ρ (the relative coordinate between the
nucleon spectator and the pair) with the corresponding momenta being p and q.

Explicitly, the wave function of 3He in momentum space, normalized to
unity, reads (see also Ref. [15]):
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, (2)

where σ and ξ are the spin projections of 3He and the nucleon spectator; t3 is
the isospin projection of the nucleon spectator; M is the projection of the total
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Table 1. Quantum numbers of the 3He partial waves. Here s, τ , �, and j are spin,
isospin, orbital and total angular momenta of the pair; L and K are relative angular
momenta for the spectator and the channel spin, respectively

Channel
Label � s jπ K L τ

P ν

No. Paris CD-Bonn

1 1s0S 0 0 0+ 1/2 0 1 0.5000 0.5000

2 3s1S 0 1 1+ 1/2 0 0 0.4600 0.4658

3 3s1D 0 1 1+ 3/2 2 0 0.0282 0.0231

4 3d1S 2 1 1+ 1/2 0 0 0.0103 0.0102

5 3d1D 2 1 1+ 3/2 2 0 0.0015 0.0009

angular momentum of the pair; χξt3 and |ss3; ττ3〉 are the spinÄisospin wave
functions of the spectator nucleon and the pair, respectively.

The values of the partial channel probabilities, deˇned as Pν =
1
3

∫
d3q ρν(q) =

∫
dp dq p2q2|ψν(p, q)|2, are given in the last two columns

of Table 1.
It is important to note that the distributions for the 1s0S and 3s1S channels

are very similar in both their magnitude and their momentum dependence.
We use the following convention for angular momentum summation in

Eq. (2):

j +
1
2
→ K, K + L → 1

2
. (3)

Other conventions are often used in the literature, for example:

j +
1
2
→ K, L + K → 1

2
, (4)

1
2

+ j → K, L + K → 1
2
. (5)

The convention of Eq. (4) was used, in particular, in Ref. [17], whereas that
of Eq. (5) was exploited in Ref. [18].

Due to the properties of the ClebschÄGordan coefˇcients under permuta-
tions, some of the wave function components have opposite signs in different
conventions. For example, using Eq. (4) rather than Eq. (3) would result in
ψ3(p, q) → −ψ3(p, q) and ψ5(p, q) → −ψ5(p, q). Similarly, the use of Eq. (5)
instead of Eq. (3) would give ψ2(p, q) → −ψ2(p, q), ψ3(p, q) → −ψ3(p, q),
ψ4(p, q) → −ψ4(p, q), and ψ5(p, q) → −ψ5(p, q), while ψ1(p, q) would not
change the sign.
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2. MOMENTUM DISTRIBUTIONS

2.1. One-Nucleon Distributions. The momentum distribution of a nucleon
N with spin and isospin projections ξ and t3 in 3He with spin projection σ is

Nσ(ξt3)(q) = 3
∑

ss3ττ3

∫
d3p

∣∣∣χ†
ξt3

〈ss3ττ3|Ψσ(p,q)
∣∣∣2 . (6)

In the neutron case, Eq. (6) reduces to nσξ(q) =
2
3
δσξρ1(q) ≡ δσξn(q); the

number of neutrons in 3He is Nn =
∫

d3q n(q) = 1, so the ψ1 component must

be normalized as
∫

dp dq p2q2 [ψ1(p, q)]2 = 1/2. Here and below we use pσξ and
nσξ instead of Nσ(ξ, 1

2 ) and Nσ(ξ,− 1
2 ), respectively.

The momentum distribution of the proton, given by the sum of p 1
2

1
2
(q, θ) and

p 1
2−

1
2
(q, θ) (where p 1

2
1
2
(q, θ) and p 1

2−
1
2
(q, θ) are the momentum distributions of

protons with spin projection
1
2

and −1
2

in the 3He having spin projection +
1
2
) is

p(q) =
1
3
ρ1(q) + ρ2(q) + ρ3(q) + ρ4(q) + ρ5(q). (7)

The number of protons in 3He is Np =
∫

d3q p(q) = 2 (see Ref. [15]).
2.2. Two-nucleon momentum distributions. We deˇne the two-body ampli-

tudes Adp(M, ξ, σ,q) as

Adp(M, ξ, σ,q) = (2π)
3
2
√

3
∫

d3p ψd
†(M,p)χ†

ξ 1
2
Ψσ(p,q) =

= (2π)
3
2

{√
1
4π

〈11
2
Mξ|1

2
σ〉u(q) −

∑
K3L3

〈11
2
Mξ|3

2
K3〉〈2

3
2
L3K3|

1
2
σ〉 ×

×Y2L3(q̂)w(q)} ,

(8)

where
√

3 is the spectroscopic factor; ψd(M,p) is the deuteron wave function in
momentum space; M and ξ are spin projections of the deuteron and the proton
and

u(q) =
√

3
∫ ∞

0

dp p2 [ud(p)ψ2(p, q) + wd(p)ψ4(p, q)] ,

w(q) = −
√

3
∫ ∞

0

dp p2 [ud(p)ψ3(p, q) + wd(p)ψ5(p, q)] ;
(9)

here ud(p) and wd(p) are the deuteron S and D wave functions, respectively ∗.
The momentum distribution of the deuteron in 3He is d(q) = u2(q) + w2(q).

∗For the convention given by Eq. (4) one must replace w(q) by −w(q). This notation was
used, e.g., in Ref. [20].
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The effective numbers of the deuterons in 3He, Nd =
∫

d3q q2d(q), are 1.39
and 1.36 for the Paris and CD-Bonn potentials. These can be compared with
Nd = 1.38 obtained in variational calculations [19] with both the Argonne and
Urbana potentials. The probabilities of the D wave in the d + p conˇguration are
1.53 % and 1.43 % for the Paris and CD-Bonn potentials, respectively.

3. SPIN-DEPENDENT OBSERVABLES

3.1. Tensor Analyzing Powers and the D2 Parameter. In a plane wave
Born approximation, the tensor analyzing powers T20, T21, and T22 of the (d, t)
and (d,3He) reactions at low energies are determined by a single parameter,
D2, used, for example, in Refs. [17, 21Ä23]: D2 = limq→0 w(q)/[q2u(q)], i.e.,
w(q)/u(q) ≈ q2D2 at small q. The D2 parameter is closely related to the
asymptotic D to S ratio for the p + d partition of the 3He wave function, as is
noted in Ref. [23].

The spin-dependent observables considered here depend upon the bilinear
forms of S and D waves of the 3He wave function, and the behavior of their
ratio at small q is completely governed by the D2 parameter. In Table 2, we
compare this parameter, calculated for the bound 3N system (using the wave
functions based on different potentials), with the value derived from experiment.

Table 2. D2(3N) parameter (in fm2)

Paris CD-Bonn AV18 [19] Urbana [19] Experiment [23]
Ä0.2387 Ä0.2487 Ä0.27 Ä0.23 Ä0.259±0.014

3.2. Tensor Polarization of the Deuteron. We start by considering the
tensor polarization ρ20 of the deuteron in (3He,d) breakup. The quantization axis
is chosen along the deuteron momentum, i.e., q = (0, 0, q).

We obtain (see also Ref. [15] for details) within the spectator model that

ρ20 = − 1√
2

2
√

2u(q)w(q) + w2(q)
u2(q) + w2(q)

; at small q : ρ20 ≈ −2
w(q)
u(q)

= −2q2D2.

(10)
Results of calculations are given in Fig. 1, a. Note that even in the case of the
breakup of an unpolarized 3He, the deuteron spectator emitted at 0 ◦ has a tensor
polarization.

3.3. Polarization Transfer from 3He to d. We consider here the case
when the quantization axes for the 3He and the deuteron are parallel and both
are perpendicular to the deuteron momentum. In this case the coefˇcient of
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Fig. 1. Tensor polarization of the deuteron in 3He (a) and polarization transfer κd from
3He to d (b). Solid and dashed lines are for the Paris and CD-Bonn potentials, respectively

the vector-to-vector polarization transfer from polarized 3He to deuteron is (see
Ref. [15])

κd =
2
3
· u2(q) − w2(q) − u(q)w(q)/

√
2

u2(q) + w2(q)
. (11)

We point out that the expression given in Eq. (11) differs from Eq. (5) of
Ref. [25] by a factor of 2 (this factor was erroneously lost in Ref. [25]).

Results of calculations for κd are shown in Fig. 1, b.

The observables κd and ρ20 are related by:

(
3
2
κd

)2

+
(

ρ20 +
1

2
√

2

)2

=
9
8
.

Furthermore, at small q

κd ≈ 2
3

(
1 − q2D2√

2

)
≈ 2

3

(
1 +

ρ20

2
√

2

)
, i.e., κd → 2

3
, when q → 0. (12)

3.4. Polarization Transfer from 3He to p. The polarization transfer from
3He to p is deˇned by

κp =
p 1

2
1
2
− p 1

2−
1
2

p 1
2

1
2

+ p 1
2−

1
2

, (13)

(pσξ are deˇned in Subsec. 2.1; details are in [15]). At θ = 90◦ this reduces to

κp =
ρ1 − ρ2 − ρ4 − 2(ρ3 + ρ5) + 2

√
2(ρ13 + ρ45)

ρ1 + 3(ρ2 + ρ3 + ρ4 + ρ5)
, (14)

where ρμν(q) = [3/(4π)]
∫ ∞
0

dp p2ψμ(p, q)ψν(p, q).
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Fig. 2. The coefˇcient of polarization transfer from 3He to the proton. The 3He wave
function used is based on the Paris potential (a) and CD-Bonn potential (b). Solid line:
full wave function; short-dashed line: only the d + p projection (i.e., the κ̃p)

It is interesting to compare (14) with the polarization transfer for the d + p
projection of the 3He wave function (see Fig. 2):

κ̃p = −1
3
· u2(q) + 2

√
2u(q)w(q) + 2w2(q)

u2(q) + w2(q)
. (15)

It is easy to see that the observables κ̃p and ρ20 must be related because
they are determined by the ratio of the two functions u(q) and w(q). One then
ˇnds [15]:

κ̃p = −1
3

(
1 −

√
2ρ20

)
; at small q: κ̃p ≈ −1

3

(
1 − 2

√
2q2D2

)
→ −1

3
at q → 0.

(16)

A linear combination of the two polarization transfer coefˇcients at small q
is

1 − (κ̃p + 2κd) ≈ 3q4(D2)2 ≈ 3
4
(ρ20)2 . (17)

By the way, the similar coefˇcient of polarization transfer from 3He to the
neutron, i.e., κn, is equal to 1 in the spectator model.

4. COMPARISON WITH EXPERIMENT

4.1. Empirical Momentum Distributions. In order to compare the calculated
momentum distributions as well as the spin-dependent observables with experi-
ment, it is necessary to establish a correspondence between the argument q of the
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Fig. 3. The empirical momentum distributions (EMDs) of deuterons (a) and protons (b)
in 3He. The solid and dashed lines are calculated with the Paris and CD-Bonn potentials.
Abscissa: the light cone variable k, representing the argument q of the 3He wave function.
Full circles: the EMD extracted from Ref. [5]. Squares and triangles represent data
extracted from Refs. [6] and [7]. The EMD for protons is normalized to the calculated
one for k < 100 MeV/c

3He wave function and the measured spectator momentum. This must be done
in a way that allows one to take into account relativistic effects in 3He. This
problem was discussed in our paper [15] and here we follow to prescriptions
formulated there on the basis of the so-called ®light front dynamics¯.

Using the corresponding relations, one can extract the relevant momentum
distributions from the measured cross sections; we call such extracted momentum
distributions as ®empirical momentum distributions¯ (EMDs) of the spectators
in 3He.

In Fig. 3 we show EMDs for protons and deuterons in 3He extracted from
12C(3He,p) and 12C(3He,d) breakup data, obtained for fragments, emitted at zero
angle and at pHe = 10.8GeV/c [5]. They are compared with the results of our
calculations and with available results of other experiments. Good agreement
between the data and the calculations is obvious at small k � 0.25GeV/c, which
indicates that in this region the spectator model can be used for data interpretation.
Note that the difference between the light cone variable k and the spectator
momentum, taken in the 3He rest frame, is small in this region.

There is an enhancement of the extracted EMDs over theoretical curves at
very small k � 50MeV/c. A natural explanation of this enhancement appears
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to be a maniˇstation of the Coulomb effects, which we neglect here, as well
as any possible ˇnal state interaction between the outgoing proton and deuteron,
following to [15].

It was argued in Refs. [5] and [15] that the k variable is an adequate measure
for the internal relative momentum of the 3He constituents. Data on the (d, p)
breakup [26], including those for spin-dependent observables [27, 28] and their
analysis, have resulted in similar conclusions: at small k � 0.25GeV/c the
spectator model can be used for the data analysis. Thus, we expect that the
reliability of the spectator model for the 3He breakup at k � 250MeV/c should
be the same as in the (d, p) case.

The data points for momenta above k ≈ 0.25GeV/c, where the distances
between the 3He constituents become comparable to the nucleon radius or even
less, systematically exceed the calculated momentum distributions. This is once
again very similar to the excess of data over calculations in the (d, p) breakup [26].
It is possible that the observed enhancements in (3He, d) and (3He, p) reactions
have the same nature.

4.2. Tensor Polarization of the Deuteron. Data on the tensor polarization ρ20

of the deuteron in the reaction 12C(3He, d) at several GeV have been published
in [10, 11]. It should, however, be noted that the preliminary data [11] of this
experiment have the opposite sign to those tabulated in the ˇnal data set [10].

On the other hand, the experimental value of the D2 parameter for 3He
projected onto the d + p channel has the opposite sign with respect to the experi-
mental data on the similar Dd

2 parameter for the deuteron. Therefore the sign of
the ρ20 under discussion must be opposite to that of the tensor analyzing power
in the (d, p) breakup. Taking this into account, together with the contradiction

Fig. 4. Deuteron tensor polarization ρ20 calculated with the 3He wave functions for the
Paris (solid) and CD-Bonn (dashed) potentials compared with experimental data. The signs
of the data points [10] are reversed to bring them into accordance with the preliminary
results [11] of the same experiment, as well as with the sign of experimental data on the
D2 parameter for 3He
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in signs of ρ20 between Refs. [11] and [10], it is tempting to conclude that the
data tabulated in Ref. [10] have the wrong sign. We therefore use the data from
Ref. [10] but with a reversed sign and compare them in Fig. 4 with ρ20 calculated
according to Eq. (10).

Our results for other spin-dependent observables in the 3He breakup cannot
currently be compared with experiment because at the present time there are no
polarized 3He beams with energies of several GeV/nucleon.

4.3. Tensor Analyzing Power in the Deuteron Breakup. For the (d, p)
breakup reaction with proton emitted at 0◦, considered within the same scheme
as in Sect. 3, it is possible to connect corresponding spin-dependent observables
with parameter Dd

2 deˇned by the same equation as for the 3He case, where

Fig. 5. Data on T20 from Refs. [27,28] at small k. Solid line: ˇt according to Eq. (18) in
the region of k ≤ 150 MeV/c

Fig. 6. Data on T20 from Ref. [28] at small k. The solid line is the same as in Fig. 5 (ˇxed
Dd

2 ). Dotted line: similar ˇt to the C(d, p)X data at k ≤ 150 MeV/c
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ud(q) and wd(q) functions are the S and D waves of the bound p + n system.
It is straightforward to see that for the analyzing power T20 and the polarization
transfer coefˇcient κ0 at small k one has

T20 ≈ −2k2Dd
2 and κ0 ≈

(
1 +

1√
2
k2Dd

2

)
≈ 1 − 1

2
√

2
T20 . (18)

The T20 data published in [27,28] are accurate enough in order to use Eq. (18)
for estimation of the Dd

2 parameter.
Fit of the T20 data for the p(d, p)X reaction in the region of k ≤ 0.15GeV/c

gives 2Dd
2 = +(23.70 ± 0.33) (GeV/c)−2 with χ2/DoF = 19.7/12 (the Dubna

data are not included in the ˇt as well as two Saclay data points at k ≈ 74 and
106 MeV/c).

The obtained value of 2Dd
2 = +(23.7 ± 0.33) should be compared with

values published in [17]: 2Dd
2 = +(22.19± 0.82) (GeV/c)−2 and in [30]: 2Dd

2 =
+(24.80 ± 0.67) (GeV/c)−2. Theoretical estimations of this parameter ∗ can be
found, for example, in papers [24], [29] for different NN potentials (in the paper
by E. Epelbaum [24] the estimations are based on the chiral EFT calculations
in N3LO); all of them are in the interval from +24.07 to +24.99 with two
exceptions: for the RSC potential (+25.09 in [29]) and the old MSU potential
(+25.76, see [29] as well).

Data for T20 in the C(d, p)X breakup from [28] are less accurate in compari-
son with the p(d, p)X data from [27], but still can be used in order to address the
question of the T20 sensitivity to Coulomb effects at k < 50MeV/c [31]. As it is
shown in Fig. 6, these effects (if exist) are invisible at the present data accuracy.
(In both cases we do not take into account any possible systematic uncertainties
of the experiments.)

5. CONCLUSIONS

We have presented here an analysis of the spin-dependent observables for
(3He, d), (3He, p), and (d, p) breakup reactions and obtained some rather strict
relations between experimental observables at small internal momenta of frag-
ments.

Our analysis demonstrates that the breakup reactions with the lightest nuclei
at intermediate energies provide a new way for obtaining experimental data on
the D2 parameter for these nuclei, which is complementary to the usual methods,
involving rearrangement reactions at low energies.

∗We use (GeV/c)−2 units for the 2Dd
2 parameter everywhere.
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Alternatively, the (d, p) breakup reaction can be used for polarimetric pur-
poses (for example, measurements of the deuteron beam tensor polarization)
because (i) the accuracy of knowledge of the Dd

2 parameter is now high enough
for such purposes, and (ii) the cross section of this reaction is high enough, what
results in rather high ®ˇgure of merit¯, almost independent of the beam energy.

We emphasize that the different conventions regarding the angular momen-
tum summations for the 3N system result in different forms for the formulae
connecting spin-dependent observables with the 3He wave function components.
Of course, the ˇnal numerical results do not depend on the conventions provided
that the calculations are performed systematically within one chosen scheme.
However the occasional mixing of the schemes leads unavoidably to erroneous
results. Therefore an explicit indication of the chosen angular momentum sum-
mation scheme is important for the applications∗.

Comparing the results of calculations of the deuteron and proton momentum
distributions in the 3He nucleus with existing experimental data, we conclude
that the model used for the 3He breakup reactions works reasonably well for
k � 250MeV/c, but at higher momenta the data and calculations are in system-
atic disagreement. This disagreement, i.e., the enhancement of the experimental
momentum distributions over the calculated ones above k ≈ 0.25GeV/c is very
similar to the enhancement of data over calculations observed for the (d, p)
fragmentation [26] at small emission angles. This was interpreted for the two-
nucleon system as a manifestation of the Pauli principle at the level of constituent
quarks [32]. In other words, an extrapolation to this region of the wave func-
tion based on phenomenological realistic NN potentials for point-like nucleons
is questionable even when relativistic effects are taken into account within the
framework of light cone dynamics.
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