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Plasticity, Part II: Comparison of 
Model Simulations With 
Experiments 
The material constants of the new plasticity model proposed in the first part of the 
paper can be divided into two independent groups. The first group, c(,> and. r(l> (i = 
1.2, . . . , M), describes balanced loading and the second group, x''-1 ("( = 7, 2, . . . , 
M), characterizes unbalanced loading. We define balanced loading as the case when 
a virgin material initially isotropic will undergo no ratchetting and/or mean stress 
relaxation, and unbalanced loading as the loading under which a virgin material 
initially isotropic will produce strain ratchetting and/or mean stress relaxation. The 
independence of the two groups of material constants and the interpretation of the 
model with a limiting surface concept facilitated the determination of material con
stants. We describe in detail a computational procedure to determine the material 
constants in the models from simple uniaxial experiments. The theoretical predictions 
obtained by using the new plasticity model are compared, with a number of multiple 
step ratchetting experiments under both uniaxial and biaxial tension-torsion loading. 
In multiple step experiments, the mean, stress and stress amplitude are varied in a 
stepwise fashion during the test. Very close agreements are achieved between the 
experimental results and the model simulations including cases of nonproportional 
loading. Specifically, the new model predicted long-term ratchetting rate decay more 
accurately than the previous models. 

1 Determination of Material Constants for the New 
Model 

In this paper, a method of establishing the material constants 
for the proposed model will be described, followed by direct 
comparison of the simulations with the experiments. The mate
rial used was a 1070 (0.7 percent carbon) steel with a pearlitic 
structure. For the sake of conciseness, references listed in Part 
I will be used but not repeated in this part, and the notation 
used here is consistent with Part I. 

1.1 Specialization of Hardening Rule to Uniaxial Load
ing. In this section, we present a rather unique procedure for 
determining the material constants for the constitutive model 
outlined in Part I. 

When analyzing a uniaxial tension-compression test, consider-
that the uniaxial loading begins from the most compressive 
stress state where all the backstresses are saturated (on the 
limiting surfaces) in the compressive direction. Consideration 
of the one-dimensional problem results in the following simpli
fications: 

= 4 2 . «WI V|; 4p = Vfd(Ae"). (1) 

Aep in Eq. (1) is the axial plastic strain range measured from 
the strain state corresponding to the most compressive stress 
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state. Simplifying the hardening rule for the one-dimensional 
problem, we have the following differential equation: 

dx 
= 1 \y\'"y 

where 

vfcwAe"; y = 
Vj« 

and m = x°'' • 

(2) 

(3) 

The initial condition corresponding to the most compressive 
stress state is a','? = -vfrc ' ' \ Aep = 0, y |.v=o = - 1 . The solution 
to. Eq. (2) corresponding to m = 0, 2, and +°° are shown in 
Fig. 1. We note from Fig. 1 that all solutions to Eq. (2) are 
asymptotic to y = 1 and they do not have a strong dependence 
on the exponent m or xM • The asymptotic curve in Fig. 1 
represents a limiting surface for the one-dimensional problem 
such that 

1 when 4c">< Aefo = 2 (?= 1,2,.. . ,M) , (4) 

where Aef() is the plastic strain range at which the z'th backstress 
a(,) is saturated. This relationship will be vital when attempting 
to determine c<0 and rM in subsequent discussions. 

While c ( 0 (2 = 1 , 2 , . . . , M) and k, the yield stress, may be 
used as variables to model transient behavior, it is assumed that 
they remain constant for a given reversal. Assume that x0) 0 
= 1 , 2 , . . . , M) are infinitely large, then 

/(Oil (">+1 0 when 

1 when 

, ( 0 | 

,U)\ 

< r l 

(5) 

where \\a( 

, ( 0 
infers saturation of the ith backstress a ( 

Since x have the most pronounced influence on ratchetting 
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Fig. 1 Numerical solutions to the differential equation 

(to be shown later), the assignment for % l 0 a large number has 
minimal effect on the values of the constants, c ( 0 and ru) (i = 
1, 2, . . . M). The major implication of this choice is that the 
uniaxial stress-strain curve simulated is piecewise linear. The 
plastic modulus function, when only the backstresses, j = 1 , 2 , 
. . . , (i — 2), (i — 1), are saturated, can be expressed in the 
following form: 

M 

hV) = - I c « V " l (6) 

The scalar ii(/) represents the value of the plastic modulus func
tion between the intervals corresponding to points i — 1 and i. 

1.2 Determination of r u) from Preselected c ( ' ' . For the 
moment, if we neglect cyclic hardening and take cu) (i = 1, 2, 
. . . M) as constant, a simple procedure can be proposed to 
calculate the constants cu) and ru) (i = 1 , 2 , . . . M) as follows. 
Select M points in the Acr — Ae'' curve from the uniaxial test 
(refer to Fig. 2) so that the stress range, Acr(/), and plastic 
strain range, Aep

(n, are known for any point i. Note that again 
Ae^0 denotes the plastic strain range at which the ith backstress 
a(/) is saturated, and Acr(l) is the stress range corresponding to 
Ae'(0. From Eq. (4) it follows that 

c( /) = 2V|—— (i = 1, 2, ...,M). (7) 

Utilizing the results of Eq. (6) , the radius of the ith limiting 
surface can be computed as follows: 

3 c<0 

where 

A ^ ^ A o ^ ( . = 1 2 M) ( 9 ) 

Aam = 2^k, Ae"m = 0, HiM+1) = 0. (10) 

The constant k is the yield stress in pure shear and the maxi
mum stress range, Aa(M), satisfies the following condition: 

M 

Aa ( M ) = 2vf X r<° + 2Jik. (11) 

A(j(M) is the maximum stress range that the model is intended 
to simulate. The procedure (Eqs. (7) - ( 9 ) ) is repeated until all 
c<0 and ru) (i = 1, 2, . . . , M) are determined. 

Within the context used to derive the current model, the 
cyclic hardening is considered through the coefficients c ( 0 (i = 
1, 2, . . . , M) as functions of the accumulated plastic strain 
while the radii of the limiting surfaces, r<0 (i = 1 , 2 , . . . , M), 
are assumed to be constants. 

1.3 Determination of c(1) from Preselected iA'\ When 
considering cyclic hardening, the method of determining c w 

and r{<) (i = 1, 2, . . . , M) is somewhat more complex but we 
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will demonstrate this as follows. If a maximum stress range is 
M 

given and the yield stress has been determined, 2 rU) can be 

obtained from Eq. (11) and therefore individual rM can be 
selected. The strategy is to find the stress and plastic strain 
ranges at each point in the stress-strain curve where the corre
sponding backstress is saturated. This procedure begins from 
point M and follows the order M-1, M-2,. . . , 1, 0. To determine 
the coefficients at (i'-l)th point (knowing ;'th point) the slope 
of the line linking the point (i-1) and point i in the stress-strain 
reversal is calculated using the following formula: 

M 

/ / „ , = | S c">r«>. (12) 
j=i 

This segment of the stress-strain curve is modeled as piecewise 
linear and can be described by 

ACT = Aa0) + H(n(Ae"- Ae"(n) (i = 1,2,. . . ,M). (13) 

Point (/-l) is one of the piecewise linear segment points that 
intersects the experimental stress-plastic strain curve, Acr = 
/ (Ae ' ' ) (Fig. 2) . Once the coordinates at point (i-1) are ob
tained, c<,_1) is calculated employing Eq. (7) for a known 
Ae^i-i). This procedure is repeated until all M segments have 
been calculated. Corresponding to a given cycle all the constants 
c ( 0 (J = 1 , 2 , . . . , M) can be determined. These c ( 0 ((' = 1, 2, 
. . . , M) are plotted against p, the accumulated plastic strain, 
and then the relationship between c<0 (i = 1, 2, . . . , M) and 
p can be established. From the c ( 0 — p (i = 1 , 2 , . . . , M) 
relations, the constants a\'\ a%\ b\'\ and b^ can be determined 
through a best fit technique. When only cyclic hardening or 
softening is considered, the constants a^ and b^ (i = 1, 2, 
. . . , M) can be set to zero and the fitting technique can be 
simplified. 

We note that McDowell (1992) proposed a similar procedure 
earlier. In McDowell's method, it was implied that only one 
backstress part (say ith) is active while the other parts are either 
saturated (backstress parts less than i) or zero (backstress parts 
larger than i) for fully reversed uniaxial loading. It is true that 
when ith backstress part is active, the backstress parts a u) (j 
= 1, 2, . . . , i-1) are saturated when xu) a r e large numbers. 
However, the backstress parts a 0 ) (j = i + 1, i + 2, . . . , M) 
are not zero. 

1.4 Non-Masing Behavior. The non-Masing behavior is 
handled through the yield stress & as a function of the memory 
surface size, RM. By conducting fully reversed strain-controlled 
uniaxial experiments at different strain amplitudes, the k-RM 

relationship can be established. A clever way to establish this 
is by conducting an increasing/decreasing loading step test on 
a single specimen. In each step, the number of the loading 
cycles should be large enough so that the stress-strain responses 
stabilize. Because the non-Masing behavior is characterized by 
an increase in yield stress for a larger stress level, a shift of the 
hysteresis loops when putting the upper branches together 
allows determination of the change in yield stress for different 
stress levels. For uniaxial loading the following equation ap
plies: 

RM = i|(crmox - Sk), (14) 

where amaK is the maximum stress in the stabilized stress-strain 
hysteresis loop. From several selected stress/strain levels and 
their associated values of k, the k-RM relationship can be estab
lished. The constants, k0, ak, and bk, can be obtained using a 
best fit technique. 

1.5 Memory Surface. Consider two steps from a decreas
ing step test. Since the stress amplitude in the second step is 
smaller than that of the first step, during the second step loading, 
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Ao = Ao(i) + H(i) AeP - AeL) Aa = f(Atf) 

AEP 

Fig. 2 Illustration of the procedure to determine c ( " and r1" from a uniaxial stress-
plastic strain reversal 

H(g) = 0, and | a | =s RM. Integrating dRM expression results 

RM — RMO CM 

f>Ap 

Jo I " ? 5 I*. (15) 

where Ap is the accumulated plastic strain with reference to 
the beginning of the second loading step. RM0 is the stabilized 
memory surface size from the first step. It is assumed that during 
the second loading step, there is no more cyclic hardening/ 
softening behavior. Therefore, any change in the stress response 
is attributed to changes in the yield strength which are related 
to changes in the size of the memory surface, RM. The instanta
neous memory surface size, RM, is calculated using Eq. (15). 
The constant cM can be then determined by the trial and error 
fitting of RM-^P relation. 

1.6 Determination of Exponent x{i)- At this point all 
constants for the new model except x < 0 0 = 1, 2, . . . , M) 
have been established. The exponents x w 0 = 1> 2, . . . , M) 
are determined from ratchetting tests. For a given stress level, 
the memory surface size, RM, is a constant, and hence x W IS a 

constant. The coefficients x <0 (i = 1, 2, . . . , M) can be deter
mined from a uniaxial ratchetting test for a given stress range 
and mean stress. A change in the range and/or mean stress will 
alter the coefficients x < 0 («' = 1. 2, . . . , M). Using the coeffi
cients x (/) (i• = 1 , 2 , . . . , M) obtained for several different one-
step tests at different stress levels, the constants Xo\ ax, and 
bx can be determined using trial and error fitting. 

1.7 Discussion of the Model Constants. The model con
stants for 1070 Steel are given in Table 1. The determination 
of the material constants c ( 0 and rM (i = 1, 2, . . . , M) was 
based on the assumption that the exponents x w (< = 1 . 2 , . . . , 
M) were large enough so that the plastic modulus function can 
be treated as a step function in terms of the plastic strain. In 
fact, the exponents x <0 (i = 1, 2, . . . , M) have little influence 
on the stress-strain prediction for fully reversed tension-com
pression. Figure 3 proves this point with simulations using the 
new model for x ( 0 = 0 and x < 0 = +°° (?' = 1, 2, . . . , M) 
along with the experimental result. When x < 0 = 0 (i = 1, 2, 
. . . , M), the predicted stress-strain loop is smooth. In either 
case, the stress-strain simulations obtained by using the new 
plasticity model are in close agreement with the experimental 
data. Therefore, the material constants cM and ;-(,) (i — 1, 2, 
. . . , M) can be determined following the procedures introduced 
previously. Further analyses indicate that the exponents x < 0 0 
= 1 , 2 , . . . , M) have minimal influence on the predicted results 
for balanced loading. As will be discussed in the next section, 
it is unbalanced loading where the exponents x ( , ) 0• = 1> 2, 
. . . , M) play an important role. This suggests that the materials 
constants involved in the new plasticity model can be divided 
into two independent groups. One group, c( l) and r0) (i = 1, 2, 
. . . , M), describe balanced loading and the other group, x < 0 

(i = 1, 2, . . . , M), characterizes unbalanced loading. The inde
pendence of the two groups of material constants facilitates the 
determination of material constants. In view of the common 
features associated with the Armstrong-Frederick type models, 
the procedures outlined above for determining the material con-

Table 1 Material constants used in the new plasticity model for 1070 steel {M = 10) 

c«> 

c<)
1>=1510 c<,2>=461 c£>=177 44>=77 <45)=39 

c<f>=20 cW=12 c<,8)=6.7 c<»>=4.8 c<0
10>=2.7 

a«=4 i ) =0( i= l ,2 10) 

i « ) 

r<l)= r«) = i<3)= iO)= r<5)= r<« =i<?> = r«> = i<«) = 63.5 MPa 
r<io>=245MPa 

3^ = 0.0293 1^ = 0.0128 MPa"1 

Q g > - 0 2 5 Q<2>=1.0 <#> = Q<4> = 2.3 

Q<f> = C f = QP> = <#> = Qf> = 2.75 C#0> = 4.5 

Others cM = 10 ki=92.7MPa an=0.0361 c t = 0.0094 MPa 1 
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Fig. 3 Demonstration of the minimal influence of xm on the stress-strain 
description of a uniaxial balanced loading 
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Fig. 5 Relationship between xv) and ratchetting rate predicted by the 
new model for nonproportional axial-torsion consisting of alternating 
shear with constant axial stress 

stants can be also applied to the original Armstrong-Frederick 
model (1966), the model of Chaboche et al. (1979), and the 
Ohno-Wang model (1993). 

2 Experimental Procedure and Simulations 
The material used in this investigation is a 1070 steel which 

displays a pearlitic microstructure. All data acquisition and con
trol were performed with microcomputers. Two kinds of tests 
were conducted on both uniaxial solid specimens and biaxial 
tubular specimens. One is a single step test in which the stress 
magnitudes are constant during the test. The other is a multiple 
step test, which is composed of several single step tests. The 
details of material can be found in an earlier work by Jiang 
and Sehitoglu (1994a,b) and early references on this class of 
materials can be found in Slavik and Sehitoglu (1987). 

Experimental data for 1070 steel (Jiang, 1993; Jiang and Sehi
toglu, 1994a,b) are utilized to examine the new model's capability 
to predict ratchetting. The uniaxial experiments were conducted 
using solid circular specimens. The axial-torsion biaxial experi
ments were conducted employing thin-walled tubular specimens. 
In the simulations using the new plasticity model, the number of 
terms for the backstress expansion, M, was 10. Cyclic hardening 
for 1070 steel is small and is neglected. In Figs. 4 and 5 the 
experimental ratchetting rates are presented on logarithmic coordi
nates along with simulations with different values for x w 0' = 1, 
2, . . . , 10). The solid lines in Figs. 4 and 5 are obtained from a 
uniaxial experiment and a nonproportional axial-torsion experi
ment, respectively. The nonproportional axial-torsion experiment 
consist of fully reversed shear with superimposed static axial stress. 
In Fig. 5 the ratchetting in the shear direction is not shown because 
in this case both the experiment and the predictions demonstrate 
no shear ratchetting. In both cases, the experimental axial ratchetting 

o 1 0 ' 

10 1 

I 1—1 I I I l l j 1 I I I I I l l j 1 1—I 1 I I 

1 10 100 1000 10000 
Number of Cycles 

Fig. 4 Relationship between x1" and ratchetting rate predicted by the 
new model for uniaxial loading 

rate varies from around 10 ~3 per cycle at the beginning of the 
loading to on the order of TO""6 per cycle after a few thousand 
cycles. Since the experimental results are approximately a straight 
line on log-log coordinates, the ratchetting rates follow a power 
law relation with respect to the loading cycles. Figures 4 and 5 
reveal the pronounced influence of the exponents x W o n the ratch
etting rate predicted for both proportional and nonproportional load
ing. The larger the numerical values of the exponents x ( , ) 0 = 1, 
2, . . . , 10), the faster the models predict ratchetting rate decay. 
This contrasts with the apparent insensitivity of x < 0 0 = 1> 2, . . . , 
10) previously discussed for the fully reversed strain-controlled 
uniaxial loading conditions (Fig. 3). When x w = 0 (i = 1, 2, 
. . . , 10) the model predicts a slight ratchetting rate decay for the 
first 100 cycles and then constant ratchetting. When x < 0 = +°° (' 
= 1, 2,. . . , 10), no ratchetting is predicted for the uniaxial loading. 
This is because the model with x < 0 = + ro (» = 1. 2, . . . , 10) 
produces a perfect hysteresis loop closure. For the nonproportional 
loading consisting of fully reversed shear with constant axial stress 
(Fig. 5), the model with x < 0 = +<»( /= 1, 2, . . . , 10) predicts 
ratchetting rate decay for about 60 cycles before ratchetting arrest. 
This confirms that, in the absence of cyclic hardening, the new 
plasticity model can predict (i) long-term ratchetting rate decay 
and (ii) ratchetting from near- constant rate to zero rate (ratchetting 
arrest) for both proportional and nonproportional loading. 

The exponents x < 0 (i = 1, 2, . . . , M) in the new model are 
obtained from the analysis of the single-step uniaxial experimental 
ratchetting results, and the constants in the expression for x < 0 0 
= 1, 2, . . . , M) are determined via the procedures forwarded 
previously. These constants are listed in Table 1 for 1070 Steel. 
The ratchetting predictions using these constants are compared with 
the experimental results in Figs. 6 through 8. In all the figures solid 

10 ' 

td 

rr 

100 1000 
Number of Cycles 

-TTTTTJ 

10000 

Fig. 6 Comparison of experimental data and axial ratchetting rate pre
dicted by the new model for an "ellipse" shaped axial-torsion loading 
path (both experiment and new model simulation show no shear ratch
etting) 
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Fig. 7 Comparison of experimental data and ratchetting strain predicted by the new model for a two-
step uniaxial loading 

lines represent experimental results and dotted Unes are predictions The axial ratchetting rate shown is the absolute value because the 
obtained using the new plasticity model. Shown in Fig. 6 is the actual axial ratchetting is in the compressive axial direction. Clearly, 
compaiison of experimental data and ratchetting rate predicted by the agreement between experiment and simulation is very close for 
the new model for an "ellipse" shaped axial-torsion loading path, the long loading history. The ratchetting in shear direction is not 
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Fig. 8 Comparison of experimental data and ratchetting strain predicted by the new 
model for a two-step nonproportional loading history; (a) ratchetting in the axial direc
tion, (b) ratchetting in the shear direction 
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shown since both the experiment and simulation produces no ratch
etting in shear direction. 

Figure 7 is a two-step uniaxial loading case. Because of a 
reduction of mean stress, there is a ratchetting direction change 
in Step 2. Obviously, the model correlates with the experiment 
very well. It should be noted that in this case ratchetting strain 
instead of ratchetting rate is used. The difference between exper
iment and simulation for Step 1 is mainly contributed by the 
first few cycles. Notably in Step 2 the model mimics the experi
mental ratchetting direction change appropriately and the num
ber of loading cycles is up to 2 X 104. 

Comparison of experimental data and ratchetting strain pre
dicted by the new model for a two-step loading history is dis
played in Fig. 8. Step 1 of this loading history is a axial-torsion 
proportional loading. In Step 1 there is a compressive mean 
stress in axial direction and a mean shear stress. In Step 2 the 

mean axial stress is reduced to zero. Step 2 is nonproportional 
because the ratio of axial to shear stress changes during the 
cycle. The axial strain component is shown in Fig. 8(a) and 
the shear component is presented in Fig. 8(fe). Under Step 1, 
ratchetting rate decays in both axial and shear directions. During 
Step 2 loading, the axial ratchetting direction is opposite to that 
of Step 1 and the shear ratchetting rate decreases considerably. 
From Fig. 8(a) , we can find that the model duplicates the 
experimental axial ratchetting behavior very well. In the shear 
direction as shown in Fig. 8(&), the agreement between experi
ment and simulation is not as close as that in the axial direction. 
This is partly because the shear stress was assumed to be homo
geneous despite a small gradient in the radial direction of the 
thin walled cylinder. 

The number of terms for the backstress expansion, M, has 
a weak influence on the predicted stress-strain responses for 
balanced loading, but a strong influence on the ratchetting pre
diction for unbalanced loading (Jiang, 1993). It should be noted 
that the selection of M = 10 in the previous simulations does 
not imply that the model inherently requires a large number 
of backstress terms. From the aforementioned discussion, for 
ratchetting rate predictions, M = 5 ~ 10 seems sufficient. Com
puter simulations for a large number of loading cycles is time 
consuming when both M and the number of incremental steps 
for a loading cycle increase. Compromises have to be made 
between the accuracy of the prediction and the number of load
ing cycles simulated. It is suggested that detailed ratchetting 
predictions be made for a limited number of loading cycles, 
and the results be extrapolated for longer loading histories using 
a power relation between the ratchetting rate and number of 
loading cycles (Jiang, 1993). 

For single step loading, each x <0 has a significant influence 
on the predicted ratchetting rate for a limited range of loading 
cycles. The exponents x w with small i's have strong control 
over the initial ratchetting rate, and a weak influence on the 
long term ratchetting. The exponents x < 0 with large f s on the 
other hand control the ratchetting predicted for a large number 
of loading cycles at a given stress level. The relationship be
tween the ratchetting rate predicted and the selection of the 
exponents x(0 illustrates how the exponents x <0 0 = 1. 2, . . . , 
M) would be selected. Detailed discussions can be found in 
Jiang (1993). 

3 Further Discussion on Ratchetting 
We attempt to gain further insight into the ratchetting phe

nomenon here. Deriving the ratchetting increment per cycle in 
closed form for nonproportional loading is virtually impossible. 
However, it may be helpful to discuss a cyclically stable unbal
anced uniaxial simulation. An arbitrary stress-strain response is 
schematically shown in Fig. 9 for a uniaxial loading. Point 1 
denotes the beginning of the cycle, and the material is stressed 
in the forward direction to 2. At point 2, the material is unloaded 
until the stress 3 is reached. 

The ratchetting rate (ratchetting strain per cycle) for this case 
is 

f ^ = £M!=fV (16) 
dN ~, dN J, 

where 

The term, de^/dN, in the previous equations represents the 
contribution to ratchetting rate by the variation of an individual 
backstress. A few insights can be gained from the examination 
of Eq. (17). The denominator on the right side of Eq. (17) is 
a constant since a cyclically stable material was assumed. If 
a(,) varies symmetrically (i.e., no mean value), the integral on 
the right-hand side of Eq. (17) will be zero, which results in 
defldN = 0. The quantity (| |a (0 | |r ( / ))* ("+l is equal to or less 
than 1.0. Therefore, if x ( , ) = +00, then dt^ldN = 0. For 
balanced loading, the scalar product of vector, L ( , ) and n will 
change sign for loading from 1 to 2 and 2 to 3 (refer to Fig. 
9) and results in the sum of these integrals to be approximately 
zero, i.e., de^ldN « 0. For a single step, fully reversed uniaxial 
loading, all the backstresses vary symmetrically and no ratch
etting is predicted. 

Figure 10 shows a two-step unbalanced uniaxial loading. For 
the one-dimensional problem of tension-compression, a<0 can 
be represented by the value of the component a\'?. The term, 
The material constants employed are not listed because V| 
a\'i/r(l), is a normalized quality representing the backstress a<0 

for the uniaxial case. In Fig. 10 the number of terms for the 
backstress, M, is 5 since the desire is to qualitatively display 
the behavior of a w . The selection of the material constants 
does not qualitatively alter the ensuing points of discussion. 
The predicted ratchetting rates for both steps are shown in Fig. 
10(b), and the variations of the backstresses with the loading 
history are presented in Fig. 10(c). During Step 1 loading, 
ratchetting rate decay is predicted. The corresponding variations 

J & 

1 3 

Fig. 9 Schematic representation of strain ratchetting for a uniaxial simu
lation 

de\l 

dN 

m .»,,[|-(^)-'L,»,^+/;(^)-v»:i„; 
—m 

2 cu)ru) 

(i = 1, 2, . . . , M). (17) 

Journal of Applied Mechanics SEPTEMBER 1996, Vol. 63 / 731 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



4 ? =350MPaam=350MPa 
2 

^5=350MPaam=0 
2 

Step 2 
100 cycles 

Fig. 10(a) 

0.0010-

0.0005 • 

or: 

0.0000 • 

-0.0005 

Material Constants 
M=5 

c<1>=574c<2>=88 
c ( 3 ) = 2 5 c ( 4 ) = 8 c ( 5 ) = 2 

r (1 ) = r (Z ) = r (3 ) = r (4 ) = r (5 ) = l 3 l 

x (D= l x ( 2 )= io x ( 3 ) =50 

X(4)=1Q0 3c<5>=1000 

T 
1 10 100 1 10 100 

Number of Cycles Number of Cycles 

Fig. 10(6) 

[Step 1| |Step 2| 

I- 0.0010 

0.0005 

0.0000 

•0.0005 

jrnlo) 

• • m 
"^nnnnnnnn 

0 5 10 100 

Number of Cycles 

5 10 

Number of Cycles 

Fig. 10(c) 

Fig. 10 Demonstration of ratchetting rate decay predicted by the new model for a 
two-step uniaxial loading; (a) two-step uniaxial loading, (b) ratchetting rate, (c) a\') 
variations with loading cycles 

of the backstresses shown on the left side of Fig. 10(c) are 
responsible for the ratchetting rate decay. The magnitudes of 
backstress variations are in an order consistent with the size of 
c( ,) (i = 1, 2, 3, 4, 5) . Subsequently, the mean values of a',!' 
and aff saturate to zero with increasing cycles and the mean 
values of a(n' and a^p increase at the same time. The amplitudes 
of the backstresses do not change with loading cycles. Ac
cording to Eq. (17), for the same variation of the backstress 
and x c ' \ a larger value of c( 'V<0 will result in a larger ratch 
etting rate. Because it was assumed that rc 

rm r( ', 'a larger c 0 ) results in a larger <r 
rm - ro) = 

. The decrease 

of the mean values of aW and a\f (corresponding to larger 
c(0 r0) v a i u e s ) mainly contributes to the initial ratchetting rate 
decay .predicted. It should be noted that the mean value of the 
total backstress is proportional to the mean stress of the stress-
controlled uniaxial loading cycle. Therefore, the sum of all the 
backstress has a fixed mean value for a given step in the loading. 
The decrease in the mean values of aW and a(n' is consistent 
with the increase of the mean values of a\V and aWK It is this 
shifting of the mean values of the backstresses in combination 
with the smaller amplitude of a[V and a\V that contributes to 
the continued ratchetting rate decay. 
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When the mean stress is zero in Step 2, the model predicts 
ratchetting in the direction opposite to that in the first step. 
From the right side of Fig. 10(b), the ratchetting rate (absolute 
value) also decreases with increasing number of loading cycles, 
which again can be explained by the variations of the back-
stresses (refer to the right side of Fig. 10(c)). When Step 2 
with, a different mean stress begins, there are sudden changes 
in the backstresses, which corresponds to a change in the ratch
etting rate. The backstresses aW* and aff with initial negative 
mean levels contribute to the ratchetting rate in the negative 
direction, while the other three backstress parts with positive 
mean values produce ratchetting in the positive direction. As 
was previously stipulated, a larger amplitude of a backstress 
contributes more to the ratchetting rate, hence the overall ratch
etting rate is negative. Since the mean stress in Step 2 is zero, 
all the mean values of the backstresses will approach to zero 
with increasing number of loading cycles. As a result, the ratch
etting rate decreases with increasing number of cycles. For 
ratchetting under nonproportional loading, the ratchetting pre
dicted using the new model may be explained in a similar way. 
However, for nonproportional loading, the ratchetting rate is 
not only dependent on the variations of the backstresses but also 
on the variations of L ( , ) : n (i = 1,2,. . . ,M).A straightforward 
illustration is more difficult for unbalanced nonproportional 
loading. 

4 Conclusions 
The following conclusions are drawn from the work: 

1 The new plasticity model was applied to the ratchetting 
predictions of 1070 steel. Its capability to improve long-term 
ratchetting and multiple step ratchetting predictions was demon
strated. • 

2 The material constants in the new plasticity model can 
be divided into two independent groups; one group, cM and rM 

(i = 1, 2, . . . , M), which describes balanced loading and the 
other group, x 0 ) 0 = 1, 2, . . . , M), which characterizes unbal
anced loading. The independence of the two groups of material 
constants and the interpretation of the model with a limiting 
surface concept facilitated the determination of material con
stants. 

3 The material displays minimal cyclic hardening, however, 
non-Masing behavior is observed. The model correlated the 
non-Masing behavior accurately. 

4 For multiple step loading, the material exhibits a memory 
of the previous loading history. Due to this memory effect the 
strain ratchetting may accelerate under certain circumstances, 
although such an acceleration in ratchetting rate is short-lived. 
The model predicts the prior loading history effect on the subse
quent ratchetting, the change in ratchetting direction and the 
dissipation of this effect with increasing number of loading 
cycles. 
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