
On the Volunteer Dilemma I: Continuous-time Decision

H. SHAPIRA1* and I. ESHEL2

1Department of Economics, College of Management, Rishon Le Zion, Israel,
2Department of Statistics and Operations Research, School of Mathematical Sciences,

Tel Aviv University, Israel

(Received: 9 February 2000,

Accepted in revised form: 4 July 2000)

It is assumed that there is a group of unrelated individuals taken at random from a large population which is exposed

to the same time-continuous threat of dying. Accumulated loss of each player increases as the game goes on until at

least one participant volunteers to take some extra risk on its own. The risk is taken by a volunteer in order to stop the

threat may or may not depend on the time of volunteering.

This situation can be modeled as an n-player War of Attrition, which ends when one of the players volunteers.

We called this sort of generalization, “The (n-player) volunteer dilemma”. Indeed, a two-player volunteer dilemma

is equivalent to the original War of Attrition. It was further assumed that both the risk for the volunteer and the in-

tensity of the risk of waiting are time dependent according to some integrable function, this instead of being con-

stants as assumed in the original War of Attrition model of Maynard Smith.

Necessary and sufficient conditions for a strategy to be a Nash strategy are given. This strategy is characterized

by a time-intensity of volunteering. In the stationary case the Nash strategy is proven to be ESS.
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1. Introduction

The War of Attrition was first introduced by

Maynard Smith (1974). In the original model, two

members of a population both wish to obtain the

same object. Each one of them makes a sealed bid.

The higher bidder wins and both must pay the low

bid.

Maynard Smith conjectured that the exponential

mixed strategy of bidding between x and x + ε with

probability (1/V) · e–x/V · ε + o(ε), where V is the ob-

ject value, will satisfy his requirements for evolu-

tionary stability (see Maynard Smith and Price,

1973). This was formally demonstrated by Bishop

and Cannings (1978a, b). Bishop and Cannings also

pointed out that the War of Attrition model can be

applied in a wide range of contexts.

Haigh and Michael (1980) introduced the model

for Evolutionary Game Auctions, which is a possi-

ble generalization of the War of Attrition model. In

this model, if x and y(x > y ≥ 0) represent the values

the contestants are prepared to bid, then the potential

x-player gains V, and pays the amount y + f(x – y),

where f(u) is the overshoot cost function. The ex-

treme cases f(u) = 0 and f(u) = u give us the War of

Attrition and the Scotch Auction models, respec-

tively. General results are found for different classes

of overshoot cost functions.

The asymmetric model for the War of Attrition is

discussed by Hammerstein and Parker (1982). A

mixed evolutionarily stable strategy (a pair of strate-

gies for each role) is found.

Milgrom and Weber (1985) investigated a sym-

metric model with n players, where each player’s

privately known valuations of the prize, measured in

terms of the maximum stopping time that makes the

contest worth the prize, are independent.

If the valuations are t1 ≥ t2 ≥ … ≥ tn, then the first

player (i.e. the one with the highest valuation) ob-

tains the payoff t1 – t2 whereas all other players ob-

tain –tk; k = 2, 3 … n.

This extension of the War of Attrition model,

though natural, is only one of many possible. For ex-

ample, the game may be stopped when one of the

contestants drops out. These two extreme cases are,

of course, identical in the case of n = 2. The latter ex-

tension can be also interpreted as a Volunteer Di-
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lemma. The following example from Dawkins

(1976) will make this point clear: “Perhaps we can

sympathize more directly with the reported cow-

ardly behaviour of emperor penguins in the Antarc-

tic. They have been seen standing on the brink of the

water hesitating before diving in, because of the

danger of being eaten by seals. If only one of them

would dive in, the rest would know whether there

was a seal there or not. Naturally nobody wants to be

the guinea-pig, so they wait, and sometimes even try

to push each other in.”

This situation, described by Dawkins, can be

modeled as an n-player War of Attrition, which ends

when one of the players volunteers. We call this sort

of a generalized war of attrition The (n-player) vol-

unteer dilemma. Indeed, a two-player volunteer di-

lemma is equivalent to the original war of attrition.

In this work we assume, for simplicity, that both the

cost of volunteering and that of waiting are mea-

sured in terms of survival probability.

For the general case of the volunteer dilemma we

further assume that both the risk for the volunteer

and the intensity of the risk of waiting may change in

time according to some integrable function, known

to the players. This instead of being necessarily con-

stants as assumed in the original model of Maynard

Smith (indeed, the penguins’ risk of dying of starva-

tion at any given unit of time is most unlikely to re-

main constant). It is assumed, though, that the inte-

gral over time of the intensity of the risk of waiting is

finite over any finite interval of time but it tends to

infinity as time tends to infinity. This means that if

no one ever volunteers, all will die in probability

one. Assuming further that the risk of volunteering

is always positive but never one, it follows that if at

least one player ever volunteers, all participants of

the game have a positive probability to survive.

However, the survival probability of the volunteer is

always lower than that of his non-volunteering com-

panions.

Because of this last observation it may look, as

mentioned by Dawkins for the case of the penguins,

as if waiting for others to volunteer is always a ratio-

nal strategy to follow; but is it really so? Clearly, if

all follow this suggested pattern of behavior, all will

starve to death sooner or later. In such a case it will

be advantageous for any single player to take the

risk and volunteer immediately, hence non-volun-

teering cannot possibly be an ESS or, for this matter,

even just a weak response against itself, say a Nash

population strategy. But, indeed, so is immediate

volunteering because, once adopted by the entire

population, it becomes disadvantage against any

sort of defection. In this work we characterize

the Nash population strategies of the general volun-

teer dilemma and characterize special conditions un-

der which these Nash strategies are shown to be

ESSs.

We first analyse a special case, namely that of the

pending catastrophe, in which death events of non-

volunteering individuals, if occur, occur simulta-

neously. This case is relatively easier to analyse be-

cause the assumption of the simultaneous death

event guarantees that the number of players n will

remain fixed to the end of the game. We then take

over the general case in which no specific assump-

tion is made about how the death events of the vari-

ous non-volunteering players depend on each other.

This seems a much more complicated situation to

cope with not only because of its generality but also

because of the fact that when death events are not

synchronized, the number of participants is ever de-

creasing as players die out during the game. This in-

evitable fact appears to require that each of the play-

ers, comparing his chance of survival if he vol-

unteers versus his chance of surviving in the future if

he waits, must take into consideration the possibility

that in the latter case he will lose part of his compan-

ions.

Quite surprisingly, we shall see that this is gener-

ally not the case. Under a plausible assumption it is

shown that with all the players following the Nash

population strategy, the survival probability of each

player turns out to be independent of the number of

other players, participating in the game. This is so

because, as the number of players increases, the

Nash tendency to volunteer decreases accordingly.

As a result, we shall see that even when the number

of participants in the game is not constant, the indi-

vidual players should be impartial to the death of

their companions.

This result, obtained for non-kin players is con-

trary to a previous result obtained for a game among

relatives where everyone seeks to increase his own

inclusive fitness (Motro and Eshel, 1988; Eshel and

Motro, 1988). In this case it has been shown that the

survival probability of the participants is a decreas-

ing function of their number. The loss in inclusive
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fitness, due to the death of a relative, may then be

partially compensated by the resulting increase in

one’s survival probability in the future.

For a different model with some similarity to the

volunteer’s dilemma, the reader is referred to the

“vigilance game” (Pulliam et al., 1982).

2. The model

Let us consider a symmetric population-game in

which n non-related individuals (say players), taken

at random from a large population, are exposed to

a permanent time-continuous threat. This threat

comes to an end (in which case we say that the game

is over) only when one of the following two events

occurs: Either all players die out, or at least one of

the players volunteers to take over some extra risk

D.

1 ≥ D ≥ 0 and to avoid triviality we assume strict

inequalities. D may or may not depend on the time t

(t ≥ 0) of volunteering.

As long as the game continues it is assumed that

at any short time interval [t, t + h) (t ≥ 0, h > 0), each

individual has a probability h · sk(t) + o(h) of dying

where k (k > 0) is the number of players still surviv-

ing at time t. Death events of different players in the

group may or may not be independent. For mathe-

matical definiteness we assume, generally, that D =

D(t) and s = sn(t) are smooth functions of t. We fur-

ther assume

s t dtn ( ) = ∞
∞

∫
0

(2.1)

for all n = 1, 2, ... This precludes the possibility that

the game will continue forever: If nobody ever vol-

unteers, all players should eventually die for sure.

We assume that the payment function which each

individual seeks to maximize is its survival proba-

bility to the end of the game.

A pure strategy in the population game is a set of

volunteering times{ }Tn n=
∞

1 , such that the player vol-

unteers at Tn if at that time the group size is n and if

the game is not yet over. We define Tn = ∞ a decision

never to volunteer if the group size is n. A mixed

strategy is a set{ ( )}F tn n=
∞

1 of semi-distributions such

that Fn(t) = P(Tn ≤ t), n = 1, 2, ...; t ≥ 0.

This defines a n-player non-cooperative game,

i.e. a game in which there are no possibilities for

communication, correlation or precommitment.

If, for any n, Fn(t) is continuous with density fn(t)

= F¢n(t), we say that{ ( )}F tn n=
∞

1 is a fully mixed strat-

egy.

We are interested in strategies which are evolu-

tionary stable or at least Nash solution of this popu-

lation game. Under the assumption of the model, it is

easy to see that no strategy with the Nash property

can have an atom at any time t0. Indeed, one can eas-

ily see that if the entire population has a p-atom at

the time t0, then any single player can strictly gain by

slightly shifting his p-atom to the right, thus giving

the other a positive chance to volunteer before him.

Without loss of generality we, therefore, restrict

our attention to strategies Fn(t) with a density fn(t) =

F¢n(t).

For any strategy Fn(t) with a density-distribution

fn(t) = F¢n(t) and for any t > 0 such that Fn(t) < 1 it is

convenient to define

λ n
n

n

n

n

t

t
f t

F t

f t

f x dx

( )
( )

( )

( )

( )

=
−

=
∞

∫
1

. (2.2)

The set λ λ= =
∞{ ( )}n nt 1 is the volunteering intensi-

ties of the individual player for any moment t ≥ 0 and

group size n = 1, 2, 3, ...

Thus, a fully-mixed strategy can more easily be

given by the set of functions λ λ= =
∞{ ( )}n nt 1 where

λn(t) · h + o(h) is the probability of volunteering dur-

ing the short-time interval [t, t + h), when the num-

ber of players in the encounter equals n and given

that the game is not yet over.

Here, in ESS we mean a strategyλ λ= =
∞{ }

( )

n

t

n 1 such

that for any alternative strategy µ µ= =
∞{ ( )}n nt 1 there

exists a value δ> 0 so that if a minority ε of the entire

population, where 0 < ε < δ, is playing m and the rest

1 – ε of the population in playing λ, there is an aver-

age advantage, over all encounters, to λ-players over

m-players (Hamilton, 1967; Maynard Smith and

Price, 1973).

We denote by Vn(λ | λ, m, ε) the average payoff to

the λ-player in a random n-player encounter, given

that a frequency ε > 0 of all individuals in this popu-

lation choose the strategy m and 1 – ε choose the

strategy λ. A strategy {λ} is an ESS iff for all n = 2,

3, 4, ...

V Vn n( , , ) ( , , )λλ µ ε µλ µ ε> (2.3)

holds for an ε small enough.
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We denote by φ λ λ λ λ( , , ... , )
( ) ( ) ( )

n n nk

k

1

1

2

2• • •

the survival probability of an individual choosing

to play λ = λn(t), when encountering n −1

( )n ni

i

k

− =
=
∑1

1

individuals, ni of which playing

λ λ( ) ( )
( );

i

n

i
t= i = 1, 2, 3, ..., k.

Assuming a large population with random en-

counters, we get:

V nn

n( , , ) ( ) ( ( ) )λλ µ ε ε φ λ λ= − − • +−1 11

+ − − − • +−( ) ( ) ( , ( ) )n nn1 1 22ε ε φ λµ λ

+ −







 − • − •−n

nn1

2
1 2 32 3ε ε φ λ µ λ( ) ( , ( ) )

+ + − • =−... ( ( ) )ε φ λ µn n1 1

= −







 − •

=

−
− −∑ n

k
k

k

n
k n k1

1
0

1
1ε ε φ λ µ( ) ( ,

( ) ).n k− − •1 λ (2.4)

Similarly we get:

Vn ( , , )µλ µ ε =

= −







 − •

=

−
− −∑ n

k
k

k

n
k n k1

1
0

1
1ε ε φ µ µ( ) ( ,

( ) ).n k− − •1 λ (2.5)

Assuming ε <<
1

n
, it immediately follows from (2.4)

and (2.5) that the ESS requirement is equivalent to

the following series of conditions:

(1) φ µ λ φ λ λ( ( ) ) ( ( ) ),n n− • ≤ − •1 1 (2.6)

and in case of equality in (1)

(2) φ µµ λ φ λµ λ( , ( ) ) ( , ( ) )n n− • ≤ − •2 2

and in case of equality in (1) and (2)

(3) φ µ 2 µ λ φ λ 2 µ, λ( , ( ) ) ( ( ) )• − • ≤ • − •n n3 3

and in case of equality in the above (n – 1) condi-

tions

( ) ( ( ) ) ( ( ) )n n nφ µ µ φ λ µ− • < − •1 1 .

For a general n, this is the ESS condition sug-

gested by Broom et al. (1997), (see also the same

definition in H. Shapira, 1995, Ph.D. thesis, Tel

Aviv University) for any symmetric random-n-

player-encounter population-game. In case of n = 2,

the ESS condition (2.6) coincides with the ESS con-

dition given by Bishop and Cannings (1978a, b).

In the next section we investigate the special case

in which death events of non-volunteering individu-

als, if occur, occur simultaneously. Then we relax

this assumption and see that the main results of the

model remain intact.

3. The case of the pending catastrophe

In this section we analyse the special case of an ut-

most dependence among death events of non-volun-

teering individuals, i.e. that such death event, if oc-

curs, occurs simultaneously to all participants. In

this case we know that the number of individuals in

the encounter group remains constant, say n, till the

end of the game. A strategy in such a game is, thus,

given by the single function λ = λn(t). Now assume

an individual who chooses the strategy λ in a group

of individuals, k of which choose the strategy m an

n – k (including the individual in question) choose λ,

k = 0, 1, ..., n – 1. Denote by φt(λ | k • µ , (n – k – 1) • λ )

the probability that, surviving to the moment t, this

individual will survive to the end of the game.

Indeed, survival to the end of the game depends,

in this case, on the possible events that may happen

in the time interval [t, t + h], and we are interested in

the case in which h > 0 is small. Ignoring events of

probability o(h), there are four possible events that

may occur at this time interval

(i) There is a probability λn(h) h + o (h) that the

individual in question will volunteer, in

which case the game is over and the player’s

conditioned survival probability is (1 – D(t))

+ o(h).

(ii) There is a probability

[(n – k – 1) λ (t) + kµ(t)]h + o(h)

that another individual will volunteer during

this time interval. In this case, the game is

over and the conditioned survival probabil-

ity of the player in question is 1.
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(iii) There is a probability sn(t)h + o(h) for the si-

multaneous death event during the time-in-

terval [t, t + h].

(iv) There is a probability

1 – [(n – k) λ (t) + km(t) + sn(t)]h + o(h)

that the game will continue to the time t + h,

at which time each participant will have a

conditioned probability φt + h (λ | k • m, (n – k)

• λ ) to survive to the end of the game.

We therefore get:

φ λ µ λ λt nk n k t D t h( , ( ) ) ( )( ( ))• − − • = − +1 1

+ − − +( ) ( ) ( )n k t h k t hn n1 λ µ

+ − − + +{ [( ) ( ) ( )1 n k t k tn nλ µ

+ • − − • ++s t h k n kn t h( )] } ( , ( ) )φ λ µ λ1

+ o(h). (3.1)

As h tends to 0, (3.1) yields the differential equation

′ • − − • =φ λ µ λ( , ( ) )k n k 1

= − + +[( ) ( ) ( ) ( )]n k t k t s tn n n tλ µ φ

( , ( ) )λ µ λk n k• − − •1

− − − −( ( )) ( ) ( ).n k D t t k tn nλ µ (3.2)

Where the prime stands for a derivation in respect

to t.

Theorem 3.1. λn(t) is a Nash strategy if and only if

λn

n
nt

D t s t D t

n D t
s t D t

( )

( ) ( )[ ( )]

( ) ( )
( ) [ln( ( )=

′ + −
−

> −1

1
1 ′

> − ′







]

( ) [ln( ( )]0 1s t D tn

. (3.3)

Proof.

(i) Suppose λ is a Nash strategy, then for an strat-

egy m, λ must satisfy the inequality

φ λ λ φ µ λt tn n( ( ) ) ( ( ) ).− • ≥ − •1 1 (3.4)

As a special case this is true for any strategy µ such

that

µ
λ τ τ [0, [ + ,
λ τ τn

n

n

t
t t h

c t t h
( )

( ) ) )

( ) [ , )
,=

∈ ∪ ∞
+ ∈ +





(3.5)

where h > 0 and c is any constant different from zero.

But for such a strategy m we know that, by defini-

tion, m = λ on [t + h, ∞), hence

φ λ λ φ µ λt h t hn n+ +− • = − •( ( ) ) ( ( ) ).1 1 (3.6)

From (3.1), (3.5) and (3.6) it, therefore, follows by

straightforward calculation that

φ λ λ φ µ λt tn n( ( ) ) ( ( ) )− • − − • =1 1

= − • − − ⋅ ⋅ +{ ( ( ) ) ( ( )} ( )φ λ λt n D t c h o h1 1

and with the Nash condition (3.4) this implies

{ ( ( ) ) ( ( ))}φ λ λt n D t c− • − − ⋅ ≥1 1 0 (3.7)

for any constant c.

We now distinguish between two different cases:

1. If λn(t) ≡ 0 on the interval [t, t + h), then the

constant c must be positive and therefore the

Nash condition becomes:

φ λ λt n D t( ( ) ) ( ).− • ≥ −1 1 (3.8)

2. If λn(t) > 0 on [t, t + h) then the constant c may

be either positive or negative. In this case (3.8)

can hold, both directions, only as an equality,

hence the Nash condition for λn(t) becomes:

φ λ λt n D t( ( ) ) ( ).− • = −1 1 (3.9)

Now, as a special case of (3.2) we get:

′ − • = + − ⋅ −φ λ λ λ φ λ λt n tn n t s t n( ( ) ) ( ( ) ( )) ( ( ) )1 1

− −( ( )) ( ).n D t tnλ (3.10)

If λn(t) > 0 we now insert (3.9) in (3.10) to get:

− ′ = + − − −D t n t s t D t n D t tn n n( ) [ ( ) ( )]( ( )) [ ( )] ( ).λ λ1 (3.11)

Hence:

λ n
nt

D t s t D t

n D t
( )

( ) ( )[ ( )]

( ) ( )
=

′ + −
−

1

1
. (3.12)

But the right-hand side of (3.12) is positive if and

only if s t
D t

D t
D tn ( )

( )

( )
[ln( ( ))] .> − ′

−
= − ′

1
1 If, on the

other hand s t
D t

D t
n ( )

( )

( )
≤ − ′

−1
, then no Nash strategy

with λn(t) > 0 can possibly exist and the only possi-
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ble Nash strategy, if exists, must be λn(t) = 0. We

have, thus, proved that if λn(t) is a Nash strategy,

than it must be given by (3.3).

(ii) We now suppose that λ is given by (3.3) and

show it is a Nash strategy. Equivalently, we

have to show that inequality (3.4) holds for all

t and for any alternative strategy mn(t). From

(3.10), after straightforward calculations, we

get:

′ − • − ′ − • =φ µ λ φ λ λt tn n( ( ) ) ( ( ) )1 1

= − + + ⋅[( ) ( ) ( ) ( )]n t s t tn n n1 λ µ

⋅ − • − − •[ ( ( ) ) ( ( ) )].φ µ λ φ λ λt tn n1 1 (3.13)

Denote:

φ µ λ φ λ λt tn n y t( ( ) ) ( ( ) ) ( )− • − − • =1 1 (3.14)

(3.13) becomes:

′ =y t( )

= − + + ⋅[( ) ( ) ( ) ( )] ( ).n t s t t y tn n n1 λ µ (3.15)

This is a simple linear differential equation in y and

as (n – 1) λn(t) + sn(t) + mn(t) ≥ 0, the sign of y′(t) is al-

ways equal to that of y(t) hence y(t), if different from

zero at one time should always be different from

zero and, moreover, it cannot possibly change its

sign. Equivalently, if (3.4) does not always hold and

for some µ, at some moment

φτ(µ|(n – 1) • λ ) > φτ(λ(n – 1) • λ ),

then this inequality should hold for all t > 0. But if λ
is a Nash strategy, we already know that φt(λ | (n – 1)

• λ ) = 1 – D(t), hence, confronting n – 1 λ-players,

one cannot possibly increase his survival probability

by increasing his probability of volunteering, in

which case he will have just a probability 1 – D(t) to

survive. On the other hand, if one can increase his

survival probability by decreasing his probability of

volunteering, than he clearly can do better by de-

creasing it to zero as one’s long-term survival proba-

bility is a linear function of his intensity of volun-

teering at any short-time interval. It is, therefore

sufficient to show that (3.4) holds for t = 0 and

µn(t) ≡ 0. Denote by

r t n t S tn n( ) ( ) ( ) ( )= − +1 λ (3.16)

the intensity of the event that either one of the play-

ers volunteers or all die.

Let λ satisfy (3.3) and let us assume first that

λn(t) > 0 for all t ≥ 0. Thus:

λ n
nt

D t S t D t

n D t
( )

( ) ( )[ ( )]

( ) ( )
=

′ + −
−

1

1

and therefore:

r t
D t S t

D t

n( )
( ) ( )

( )
.=

′ +
(3.17)

We get:

r u du
D u S u

D u
du

t

n

t

( )
( ) ( )

( )
=

′ + =∫ ∫
0 0

= − +∫l D t l D
S u

D u
dun n

n

t

( ) ( )
( )

( )
.0

0

(3.18)

The distribution function of the length of the game

is:

F t e
D

D t
e

S u

D u
du

r u du

t t

( )
( )

( )

( )

( )
.

( )

= −
∫

= −
∫− −

1 1
0

0 0 (3.19)

Hence, the total death probability of a non-volun-

teering individual is

[ ( )] ( ) ( )
( )

( )

( )

( )
1 0 0

00

− =
∫

=
−∞∞

∫F t S t dt D
S t

D t
e

S u

D u
dun

n

t

∫

=
∫

=
−∞

∫D
d

dt
e dt

S u

D u

n

t

( ) { }

( )

( )
0 0

0

= −
∫−
∞

D e

S t

D t
dtn

( )[ ].

( )

( )
0 1 0 (3.20)

But
S t

D t
S tn

n

( )

( )
( )≥ , hence it follows from (2.1) that

S t

D t
dtn ( )

( )
= ∞

∞

∫
0

(3.21)

and the right-hand side of (3.20) becomes D(0).

Hence, if λn(t) > 0 is a NASH strategy and µ ≡ 0, we

get

ϕ µ λ) ϕ λ λ0 01 1 0 1( ( ) ( ) ( ( ) )n D n− • = − = − • (3.22)

and from (3.15) we infer that

ϕ µ λ) ϕ λ )t tn n( ( ) ( ( ) .− • = − •1 1 2
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This remains true if at some intervalλ µn t t( ) ( )= =0 ,

hence a strategy λn(t) that satisfies (3.3) must be a

Nash strategy. This completes the proof of Theorem

3.1. @

Remark. Note, though, that if λn(t) > 0 is a Nash

strategy, then it is a weak Nash strategy in the sense

that if it is followed by all players except for one,

then the survival probability of this one is independ-

ent of the choice of his own strategy. This may not

be true, at least locally for the case where λn(t) = 0. It

is not surprising that if the risk D(t) of volunteering

is decreasing fast enough at the vicinity of t and if

the local risk of waiting sn(t) is relatively small, then

it is strictly disadvantageous to volunteer at the time-

vicinity of t, regardless of what other players do. In-

deed, in such a case it would have been advanta-

geous to postpone at least a little bit the moment of

volunteering, thereby decreasing the risk of volun-

teering without adding too much to the risk of dying

while waiting. On the other hand, we see that if D(t)

is not decreasing fast enough and if sn(t) is not small

enough as to satisfy sn(t) >
− ′
−
D t

D t

( )

( )1
, then the only

Nash strategy of the game requires a positive rate of

volunteering at t.

Corollary. The survival probability of a group of

players, fixed on the Nash population strategy is in-

dependent of the group size.

Theorem 3.2.

When the risk D(t) of volunteering is not decreas-

ing in time (or, more generally, when sn(t) >
− ′
−

= − ′D t

D t
D t

( )

( )
[ln( ( ))] )

1
1 , then the Nash intensity of

volunteering is always positive; Moreover, it then

adjusts itself so that the players’ survival probability

at any moment remains 1 – D(t), regardless of the in-

tensity sn(t) of the risk of waiting.

Proof. Immediate from (3.9) and Theorem 3.1.

The stationary case

If D(t) = D and sn(t) = sn, (3.3) becomes

λ = −
−

s D

n D

n ( )

( )
.

1

1
(3.23)

Theorem 3.3. In the stationary case the strategy λn,

given by (3.23), is an ESS.

Proof. In the stationary case φt = φ. Substituting this

in (3.1) one gets:

φ λ µ λ( , ( ) )k n k• − − • =1

= − + − − +
− + +

λ λ µ
λ µ

( ) ( )

( )

1 1D n k k

n k k s n

(3.24)

and similarly,

φ µ µ λ( , ( ) )k n k• − − • =1

= − + − − +
− − + + +

µ λ µ
λ µ

( ) ( )

( ) ( )
.

1 1

1 1

D n k k

n k k s n

(3.25)

In order to prove thatλ = −
−

s D

n D

n ( )

( )

1

1
is an ESS, we

must show that it obeys the (2.6) series of condi-

tions. As we have seen, the condition (2.6.1) is al-

ways satisfied. Thus, it will be sufficient to show

that (2.6.2) is fulfilled as strong inequality, i.e. for all

t ≥ 0

φ λµ λ φ µµ λ( , ( ) ) ( , ( ) ).n n− • > − •2 2 (3.26)

From (3.24) and (3.25) we get that (3.26) is equiva-

lent to the following:

λ λ µ
λ µ

( ) ( )

( )

1 2

1

− + − +
− + +

>D n

n s n

> − + − +
− + +

µ λ µ
λ µ

( ) ( )

( )

1 2

2 2

D n

n s n

. (3.27)

This is equivalent to

(µ – λ) {D(n – 2)λ + Dµ – (1 – D)sn} > 0. (3.28)

However, from (3.23) it follows that (1 – D)sn =

(n – 1)Dλ. Inserting this in (3.28), the left side of it

becomes D(m – λ)2 which is strictly positive for all

m ≠ λ as long as Dn ≠ 0.

4. The general case

We now assume, most generally, that if at the mo-

ment t, there are n participants present at the game

and if, within the short-time interval [t, t + h) none of

them volunteers, then there is a probability

hr t o hn n k, ( ) ( )− + (4.1)
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that k out of them would die within this time inter-

val,

k = 1, 2, 3, ... n.

If k < n, the game would then continue with n – k par-

ticipants.

The function rn,k–k will, therefore, be called the

transition-intensities of the game. It is further as-

sumed that once a death-event of k participants oc-

cur, the conditional death probability of each partici-

pant is
k

n
. For each participant, the intensity of the

death event is therefore:

S t r tn n n k

k

n

( ) ( ).,= −
=
∑

1

(4.2)

Examples:

(i) The case of the pending catastrophe

r t
S t k n

n n k
n

, ( )
( )

.− = =



if

0 otherwise

(ii) The case of independent death events

r t
nS t k

n n k
n

, ( )
( )

.− = =



if

0 otherwise

1

A general strategy λ_ λ= ={ ( )}k k

nt 1 of a player,

in such a case, should determine his behav-

iour at any moment, given that nobody has

volunteered before and that exactly k out of

the original n participants have still remained.

Apparently one may expect that in such a case a

decision to volunteer should be affected not only by

the direct individual risk functions Sn(t) and D(t), but

also by increase (or decrease) of the individual risk

due to the loss of one’s partners (see for comparison,

Eshel et al., 1994; Eshel and Shaked, 2000).

For example, if for any t ≥ 0, the individual inten-

sity of death Sk(t) increases as k decreases (i.e. if

one’s survival depends on the presence of other

players), and if for some 1 ≤ k ≤ n rn,n–k (t) > 0, then

the incentive to volunteer should increase. We see,

though, that under plausible conditions, this is not

true. Quite surprisingly, then, the intensity λn(t) of

volunteering at Nash equilibrium with the presence

of n participants at moment t, depends only on the

risk functions Sn(t) and D(t), regardless of either

{ ( )},r tn n k k

n

− =1 or { ( )}S tk k

n

=
−
1

1 . In such a case, λn(t) is

given by the equality (3.3), obtained for the special

case of the pending catastrophe.

Theorem 4.1. Assume any set of transition intensi-

ties { rn,n–k(t)} such that for all t ≥ 0 and for all n = 1,

2, 3, ...

S t
D t

D t
n ( )

( )

( )
> − ′

−1
(4.3)

then λ λ_ { ( )}= n t is a global Nash strategy iff for all

n = 2, 3, 4, ... λn(t) is given by (3.3) and λ1(t) = ∞ is

the strategy of immediate volunteering. Moreover, if

all participants follow this strategy, then the sur-

vival probability of each participant is 1 – D(t), re-

gardless of the number of players at a given moment.

Proof. Induction. Indeed, the theorem holds for

n = 1, in which case condition (4.3) readily indicates

that an immediate volunteering should yield a single

participant with his best survival probability 1– D(t).

Now assume that for a given n (n = 2, 3, 4, ...) the

assertment of the theorem holds for any game that

starts with k participants (k = 1, 2, ... n – 1) and let us

look at a game with n participants.

Assume that all participants except, maybe, for

the first one, follow the global strategy λ_ . We al-

ready know that in case of the pending catastrophe

with death intensity Sn(t) the survival probability of

the first player, if nothing happened till the moment

t, will be 1 – D(t), regardless of his own strategy. The

only difference between the special case of the pend-

ing death and that of a general transition intensity is

that in the latter case, the first participant, even if

surviving, can find himself with K – 1 rather than

with n – 1 other participants (K = 1, 2 ... n – 1) all fol-

lowing the appropriate Nash strategy. But then it fol-

lows from the induction assumption that his survival

probability still remains 1 – D(t), hence this is his

survival probability regardless of which other strat-

egy he chooses and λ_ is a NASH strategy. @

Condition (4.3) precludes a situation at which, at

some time interval, the risk D(t) of the volunteers

decreases so drastically and the death intensity is so

small, that it is worthwhile for a player to postpone

volunteering even if he knows that nobody else vol-

unteers. Theorem (4.1) asserts that whenever this

condition is satisfied (for all n), the Nash volunteer-

ing intensity λn(t) of a player should not take into

consideration the question whether the death of

other players increases or decreases his own risk,

while waiting for a volunteering act. This somewhat

counter intuitive result may be explained by the fact

that a player should know that as the death intensity
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Sk(t) increases, so should the tendency of his part-

ners to volunteer. Moreover, this tendency would in-

crease exactly to the level which balances the effect

of the increase in death-intensity, keeping the sur-

vival probability of the players 1 – D(t), regardless

of the number of players and of the risk of waiting.

Note, moreover, that if at a given time-interval,

one mutant player or more, out of the n, tend to vol-

unteer more than the prescription of the Nash strat-

egy, it is advantageous for the other to reduce his

tendency to volunteer and vice versa if the mutant

player or players is below the Nash prescription. In

both cases the Nash strategy is better than the mutant

one. Employing the criterion (2.6) for ESS, this ar-

gument readily indicates that the Nash strategy

{λn(t)} has the local property of an agent ESS,

namely of stability against those mutant strategies

that deviate from it only at given time intervals and

only in specific direction (see Eshel and Shaked,

2000). For the special case in which D(t) = D is inde-

pendent of time, and only time-homogeneous strate-

gies λn(t) = λn are allowed, the ESS property of the

Nash strategy follows immediately.

5. Summary

The motivation for this work stems from attempts to

explain a seemingly altruistic behaviour in some

natural situations in which neither the conditions for

kin selection, nor those of group selection or recip-

rocal altruism are met.

It was assumed that there is a group of unrelated

individuals taken at random from a large population

which is exposed to the same time-continuous threat

of dying. Accumulated loss of each player increases

as the game goes on until at least one participant vol-

unteers to take some extra risk on its own. The risk

taken by a volunteer in order to stop the threat may

or may not depend on the time of volunteering.

This situation can be modeled as an n-player War

of Attrition, which ends when one of the players vol-

unteers. We called this sort of generalization, “The

(n-player) volunteer dilemma”. Indeed, a two-player

volunteer dilemma is equivalent to the original War

of Attrition. It was further assumed that both the risk

for the volunteer and the intensity of the risk of wait-

ing are time-dependent according to some integrable

function, this instead of being constants as assumed

in the original War of Attrition model of Maynard

Smith. The integral over the time of the intensity of

the danger to which all non-volunteering individuals

are exposed while waiting is finite over every finite

interval of time, but it tends to infinity as time does

so, i.e. if no-one volunteers all will die.

In the first model under consideration, “The

Pending Catastrophe” it was assumed that the num-

ber of players in the encounter group remains con-

stant, i.e. death event, if occurs simultaneously to all

participants. This is a special case of an out-most de-

pendence among death events of non-volunteering

individuals.

Under this assumptions necessary and sufficient

conditions for a strategy to be a Nash strategy are

given. This strategy is characterized by a time-inten-

sity of volunteering.

It was also shown that if Nash intensity of volun-

teering is strictly positive, then it is a weak Nash

strategy in the sense that when followed by all play-

ers except one, then the survival probability of this

one is independent of the choice of his own strategy.

A somewhat surprising result is that if the risk of

volunteering is not dependent on the number of

players, then the survival probability of individuals

from a population fixed on the Nash strategy is also

not dependent on the number of contestants.

In the stationary case the Nash strategy is proven

to be evolutionarily stable.

In the second model a much more general case

was analyzed. It was assumed that if at some time

moment there are n participants present at the game

and if none of them volunteers, then there is a proba-

bility that K out of them would die and the game will

continue with n – k players. Apparently one may ex-

pect that in such a case a decision to volunteer

should be affected not only by the direct individual’s

risk of functions, but also by increase (or decrease)

of the individual risk due to the loss of one’s part-

ners. However, under plausible conditions, the in-

tensity of volunteering at Nash equilibrium depends

only on individual risk functions. In such a case it is

proved that the Nash intensity obtained for the spe-

cial case of “The Pending Catastrophe” is also a so-

lution of this population game, i.e. a global Nash

strategy.

The somewhat counter intuitive result that the

Nash volunteering intensity of a player should not

take into consideration the question whether the

death of other players increases or decreases his own

risk while waiting, may be elucidated by the fact that
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a player should know that as the death intensity in-

creases, so should the tendency of his partners to

volunteer.
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